Notes on multiple blocking sets of $\operatorname{PG}(2, q)$

Bence Csajbók

Politechnic University of Bari, Italy

Sixth Irsee Conference on "Finite Geometries"
 August 29, 2022

Π_{q} : A finite projective plane of order q
$\operatorname{PG}(2, q)$: The finite Desarguesian projective plane of order q
$\operatorname{PG}(2, q)=\operatorname{AG}(2, q) \cup \ell_{\infty}$, for me ℓ_{∞} has equation $Z=0$

Definition

- A blocking set of Π_{q} is a set of points meeting each line of Π_{q} in at least 1 point.
- A blocking set is called trivial if it contains a line.
- A t-fold blocking set of Π_{q} is a set of points meeting each line of Π_{q} in at least t points.
- A t-fold blocking set \mathcal{B} is called minimal if for each point P of \mathcal{B} the point set $\mathcal{B} \backslash\{P\}$ is not a t-fold blocking set.
- If q is a square then $\operatorname{PG}(2, q)$ can be partitioned into $q-\sqrt{q}+1$ Baer subplanes.
- The union of t pairwise disjoint Baer subplanes is a minimal t-fold blocking set of size

$$
t(q+\sqrt{q}+1)
$$

- If q is a square, t is "small" w.r.t. q and \mathcal{B} is a "small" t-fold blocking set in $\operatorname{PG}(2, q)$ then \mathcal{B} contains t pairwise disjoint Baer subplanes (Blokhuis-Storme-Szőnyi 1999 + Lovász 2007)
- If $q=t^{4}$ then there is a minimal t-fold blocking set of size

$$
t(q+\sqrt{q}+1)
$$

which is not the union of t Baer subplanes (Ball-Blokhuis-Lavrauw 2000).

Definition

A blocking set of size less than $3(q+1) / 2$ is called small.

Theorem (Lunardon 1999)

Assume $q=s^{n}$ for some prime power s.
Let U be an $(n+1)$-dimensional \mathbb{F}_{s}-subspace of $V=\mathbb{F}_{q} \times \mathbb{F}_{q} \times \mathbb{F}_{q}$.
The set of points

$$
L_{U}=\left\{\langle\mathbf{v}\rangle_{\mathbb{F}_{q}}: \mathbf{v} \in U \backslash\{\mathbf{0}\}\right\}
$$

is a minimal blocking set of $\mathrm{PG}(2, q)$ of size at most

$$
\frac{|U|-1}{s-1}=q+\frac{q-1}{s-1}
$$

L_{U} is called an \mathbb{F}_{s}-linear (or simply linear) blocking set. If $\langle U\rangle_{\mathbb{F}_{q}}=V$ then L_{U} is non-trivial.

Linearity Conjecture, planar case (Sziklai 2008)

If \mathcal{B} is a small minimal blocking set, then \mathcal{B} is a linear blocking set.

- If \mathcal{B} is a non-trivial blocking set of Π_{q} then for every line ℓ :

$$
|\mathcal{B} \backslash \ell| \geqslant q
$$

- If $|\mathcal{B} \backslash \ell|=q$ then \mathcal{B} is of Rédei type and ℓ is the Rédei line of \mathcal{B}.
- If \mathcal{U} is a set of q affine points then the set of directions determined by \mathcal{U} is

$$
D_{\mathcal{U}}=\left\{P \in \ell_{\infty}: P \in\langle R, Q\rangle \text { for some } R, Q \in \mathcal{U}\right\}
$$

- $\mathcal{U} \cup D_{\mathcal{U}}$ is a blocking set of Rédei type of size

$$
q+\left|D_{\mathcal{U}}\right|
$$

- If $D_{\mathcal{U}}=\ell_{\infty}$ then we obtain a trivial blocking set.
- If $D_{\mathcal{U}} \neq \ell_{\infty}$ then \mathcal{U} is equivalent to the graph of some $\mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ function f :

$$
\begin{gathered}
\mathcal{U} \cong \mathcal{U}_{f}=\left\{(x: f(x): 1): x \in \mathbb{F}_{q}\right\} \subseteq \mathrm{AG}(2, q) \\
D_{f}:=D_{\mathcal{U}_{f}}=\left\{\left(1: \frac{f(x)-f(y)}{x-y}: 0\right): x \neq y, x, y \in \mathbb{F}_{q}\right\} \subseteq \ell_{\infty}
\end{gathered}
$$

- If $\left|D_{f}\right|<(q+3) / 2$ then $U_{f} \cup D_{f}$ is a small blocking set.

Theorem (Part of Ball-Blokhuis-Brouwer-Storme-Szőnyi 1999 and Ball 2003)

Let f be an $\mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ function, $q=p^{n}, p$ prime, such that

$$
\left|D_{f}\right| \leqslant \frac{q+1}{2}
$$

Then $f(x)=c+\sum_{i=0}^{n-1} \alpha_{i} x^{p^{i}}$ and $U_{f} \cup D_{f}$ is a linear blocking set.

- The linearity conjecture states that blocking sets of size less than

$$
q+\frac{q+3}{2}
$$

are linear.

- If $\left|D_{f}\right| \leqslant \frac{q+1}{2}$, then the Rédei type blocking set $U_{f} \cup D_{f}$ is linear.
- We do not know whether there is a small non-linear Rédei type blocking set of size

$$
q+\frac{q}{2}+1
$$

Theorem (BCs)

If $\left|D_{f}\right|=\frac{q}{2}+1$ then parallel lines meeting U_{f} in at least one point meet U_{f} in the same number of points
(This is a property which holds for every additive function and when q is odd then it implies additivity.)

When q is even then there are non-additive functions such that parallel lines meeting U_{f} in at least one point meet U_{f} in the same number of points:

- Functions such that $U_{f} \cup\left(\ell_{\infty} \backslash D_{f}\right)$ is a non-translation hyperoval
- Functions such that $U_{f} \cup\left(\ell_{\infty} \backslash D_{f}\right)$ is a non-translation Korchmáros-Mazzocca arc
- There is another example where U_{f} is contained in a $\sqrt{q} \times \sqrt{q}$ grid

Problem 1

Is there an $\mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ function f not of the form $x \mapsto c+\sum_{i=0}^{n-1} \alpha_{i} x^{p^{i}}$ but determining $\frac{q}{2}+1$ directions?

2-fold blocking sets

- Union of the sides of a triangle is a 2-fold blocking set of size $3 q$
- If q is a prime then it is difficult to go below $3 q$.

There are examples of size $3 q-1$ when

- $q=13$, Braun-Kohnert-Wassermann 2005
- $q \in\{19,31,37,43\}$, BCs-Héger 2019
- The $q=s^{n}, n>1$ case
- Bacsó-Héger-Szőnyi 2013:

Construction of two disjoint linear blocking sets of Rédei type. Their union is a 2 -fold blocking set of size at most

$$
2\left(q+\frac{q-1}{s-1}\right)
$$

The $q=s^{n}, n>1$ case

- Similar constructions by De Beule, Héger, Szőnyi, Van de Voorde 2015, and also the following:
If \mathcal{B} is blocking set of $\mathrm{PG}(2, q),|\mathcal{B}| \leqslant \frac{3}{2}\left(q-\frac{q}{p}\right), p>5$, then there is a small linear Rédei type blocking set of size $q+\frac{q}{p}+1$ disjoint from \mathcal{B}.
- Bartoli, Cossidente, Marino, Pavese 2020:

They find two disjoint copies of $\operatorname{PG}(3, q)$ in $\operatorname{PG}\left(3, q^{3}\right)$ and a point P such that there is no line through P meeting both subgeometries.

The projection of the two subgeometries to a plane of $\operatorname{PG}\left(3, q^{3}\right)$ from P is the union of two disjoint small linear blocking sets and hence a small 2 -fold blocking set.

Corollary of BBBSSz

Assume

$$
\left|D_{f}\right| \leqslant \frac{q+1}{2} \quad \text { and } \quad\left|D_{g}\right| \leqslant \frac{q+1}{2}
$$

Then

$$
\left(U_{f} \cup D_{f}\right) \cap\left(U_{g} \cup D_{g}\right) \neq \varnothing
$$

Proof.

$$
f=F(x)+\alpha \quad \text { and } \quad g=G(x)+\beta \quad \text { where } F \text { and } G \text { are additive }
$$

$$
U_{f} \cap U_{g}=\varnothing \Rightarrow(F(x)+\alpha)-(G(x)+\beta)=0 \text { has no root in } \mathbb{F}_{q}
$$

$$
\Rightarrow F(x)-G(x) \quad \text { is additive and it is not a permutation of } \mathbb{F}_{q}
$$

Indeed, if it was a permutation, then we could solve

$$
F(x)-G(x)=\beta-\alpha
$$

\Rightarrow The set of roots of $F(x)-G(x)$ in \mathbb{F}_{q} is a non-trivial \mathbb{F}_{p}-subspace
\Rightarrow There exists $c \in \mathbb{F}_{q} \backslash\{0\}$ such that $F(c)=G(c)$
the line joining $(0: \alpha: 1),(c: F(c)+\alpha: 1) \in U_{f}$ and
the line joining $(0: \beta: 1),(c: G(c)+\beta: 1) \in U_{g}$
meet ℓ_{∞} at the same point:

$$
\begin{gathered}
\left(1: \frac{F(c)}{c}: 0\right)=\left(1: \frac{G(c)}{c}: 0\right) \\
\Downarrow \\
D_{f} \cap D_{g} \neq \varnothing
\end{gathered}
$$

Corollary

If \mathcal{B}_{1} and \mathcal{B}_{2} are disjoint small linear Rédei type blocking sets then they have different Rédei lines.

Problem 2

Is it possible to find two $\mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ functions f and g such that only one of them is additive and

$$
\left(U_{f} \cup D_{f}\right) \cap\left(U_{g} \cup D_{g}\right)=\varnothing ?
$$

$\mathcal{B}:=\left(U_{f} \cup D_{f}\right) \cup\left(U_{g} \cup D_{g}\right)$ wouldn't be a very small 2-fold blocking set but maybe it is easier to find a third small blocking set disjoint from \mathcal{B}.

To construct small 3-fold blocking sets, one can try to find 3 pairwise disjoint small Rédei type blocking sets.

The Rédei lines have to be different so they can form a triangle or they can be concurrent.

Computations with computer show that there are examples but I could not find an explicit description.

Problem 3

Find for each prime p and infinitely many odd $n, 3$ pairwise disjoint small Rédei type blocking sets in $\operatorname{PG}\left(2, p^{n}\right)$.

Example

$$
s:=137 \quad q:=137^{15}
$$

ω : a primitive element of \mathbb{F}_{q}

$$
\begin{aligned}
& \mathcal{B}_{1}:=\left\{\left(x: \omega x^{s}: y\right): x \in \mathbb{F}_{q}, y \in \mathbb{F}_{s}\right\} \\
& \mathcal{B}_{2}:=\left\{\left(y: x: \omega x^{s^{2}}\right): x \in \mathbb{F}_{q}, y \in \mathbb{F}_{s}\right\} \\
& \mathcal{B}_{3}:=\left\{\left(\omega x^{s^{12}}: y: x\right): x \in \mathbb{F}_{q}, y \in \mathbb{F}_{s}\right\}
\end{aligned}
$$

Then $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}$ are pairwise disjoint linear blocking sets of Rédei type. The Rédei lines form the base triangle.

Let φ be a collineation of order 3 and let \mathcal{B} be a blocking set.
Assume

$$
\begin{equation*}
\mathcal{B} \cap \varphi(\mathcal{B})=\varnothing . \tag{1}
\end{equation*}
$$

Then also

$$
\begin{gathered}
\varphi(\mathcal{B}) \cap \varphi^{2}(\mathcal{B})=\varnothing \quad \text { and } \quad \varphi^{2}(\mathcal{B}) \cap \mathcal{B}=\varnothing \\
\Downarrow \\
\mathcal{B} \cup \varphi(\mathcal{B}) \cup \varphi^{2}(\mathcal{B}) \text { is a 3-fold blocking set. }
\end{gathered}
$$

Thus it is enough to verify (1) in order to find a 3-fold blocking set.

Theorem (BCs)

Put $s=3^{n}$, with $\operatorname{gcd}(21, n)=1$.
In $\mathrm{PG}\left(2, s^{3}\right)$ there exist 3 pairwise disjoint \mathbb{F}_{s}-linear blocking sets.
Their union is a 3-fold blocking set of size at most

$$
3\left(1+s+s^{2}+s^{3}\right)
$$

Sketch of Proof.

ω : a root of $x^{3}-x-1 \in \mathbb{F}_{3}[x]$

$$
\begin{aligned}
U & :=\left\{\left(a+\omega b, b+\omega^{2} a, c+d \omega\right): a, b, c, d \in \mathbb{F}_{s}\right\} \subseteq \mathbb{F}_{s^{3}} \times \mathbb{F}_{s^{3}} \times \mathbb{F}_{s^{3}} \\
\mathcal{B} & :=L_{U}=\left\{\left(a+\omega b: b+\omega^{2} a: c+d \omega\right): a, b, c, d \in \mathbb{F}_{s}\right\} \subseteq \operatorname{PG}\left(2, s^{3}\right)
\end{aligned}
$$

φ : the collineation of order 3 mapping $(x: y: z)$ to $(z: x: y)$
We claim that $\mathcal{B} \cap \varphi(\mathcal{B})=\varnothing$.

- Assume $P \in \mathcal{B} \cap \varphi(\mathcal{B})$, so for some $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \in \mathbb{F}_{s}$

$$
\left(a+\omega b: b+\omega^{2} a: c+\omega d\right)=\left(c^{\prime}+\omega d^{\prime}: a^{\prime}+\omega b^{\prime}: b^{\prime}+\omega^{2} a^{\prime}\right)
$$

- It is easy to see that P cannot have a zero-coordinate so

$$
\begin{equation*}
\frac{a+\omega b}{b+\omega^{2} a}=\frac{c^{\prime}+\omega d^{\prime}}{a^{\prime}+\omega b^{\prime}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a+\omega b}{c+\omega d}=\frac{c^{\prime}+\omega d^{\prime}}{b^{\prime}+\omega^{2} a^{\prime}} \tag{3}
\end{equation*}
$$

- Applying $\omega^{3}=\omega+1$, (2) and (3) are equivalent with

$$
\left(a a^{\prime}-b c^{\prime}-a d^{\prime}\right)+\omega\left(a^{\prime} b+a b^{\prime}-a d^{\prime}-b d^{\prime}\right)+\omega^{2}\left(b b^{\prime}-a c^{\prime}\right)=0
$$

and

$$
\left(a b^{\prime}+a^{\prime} b-c c^{\prime}\right)+\omega\left(a^{\prime} b+b b^{\prime}-c^{\prime} d-c d^{\prime}\right)+\omega^{2}\left(a a^{\prime}-d d^{\prime}\right)=0
$$

- Recall $s=3^{n}$ and $3 \nmid n$. It follows that $\mathbb{F}_{s}(\omega)=\mathbb{F}_{s^{3}}$, so $\left\{1, \omega, \omega^{2}\right\}$ are \mathbb{F}_{s}-linearly independent and this gives

$$
a a^{\prime}-b c^{\prime}-a d^{\prime}=a^{\prime} b+a b^{\prime}-a d^{\prime}-b d^{\prime}=b b^{\prime}-a c^{\prime}=0
$$

and

$$
a b^{\prime}+a^{\prime} b-c c^{\prime}=a^{\prime} b+b b^{\prime}-c^{\prime} d-c d^{\prime}=a a^{\prime}-d d^{\prime}=0
$$

- This system of equations leads to

$$
\left(b^{\prime 3}-b^{\prime}+1\right)\left(b^{\prime 7}+b^{\prime 6}-b^{\prime 3}+b^{\prime 2}-b^{\prime}+1\right)=0
$$

Both factors are irreducible over \mathbb{F}_{3}, thus

$$
b^{\prime} \in\left(\mathbb{F}_{3^{3}} \cup \mathbb{F}_{3^{7}}\right) \backslash \mathbb{F}_{3} .
$$

But $b^{\prime} \in \mathbb{F}_{s}=\mathbb{F}_{3^{n}}, \operatorname{gcd}(21, n)=1$, a contradiction.

$$
\Downarrow
$$

$$
\begin{gathered}
\mathcal{B} \cap \varphi(\mathcal{B})=\varnothing \\
\Downarrow
\end{gathered}
$$

$\mathcal{B}, \varphi(\mathcal{B}), \varphi^{2}(\mathcal{B})$ are pairwise disjoint

Problem 4

For every non-square, non-prime q, find 3 pairwise disjoint small linear blocking sets in $\mathrm{PG}(2, q)$.

Problem 5

For every non-square, non-prime q, find the maximum number of pairwise disjoint small linear blocking sets in $\operatorname{PG}(2, q)$.

THANK YOU FOR YOUR ATTENTION
(1) Problem 1: Is there an $\mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ function f not of the form $x \mapsto c+\sum_{i=0}^{n-1} \alpha_{i} x^{p^{i}}$ but determining $\frac{q}{2}+1$ directions?
(2) Problem 2: Is it possible to find two $\mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ functions f and g such that one of them is additive and

$$
\left(U_{f} \cup D_{f}\right) \cap\left(U_{g} \cup D_{g}\right)=\varnothing ?
$$

(3) Problem 3: Find for each prime p and infinitely many odd $n, 3$ pairwise disjoint small Rédei type blocking sets in $\operatorname{PG}\left(2, p^{n}\right)$.
(4) Problem 4: For every non-square, non-prime q, find 3 pairwise disjoint small linear blocking sets in $\operatorname{PG}(2, q)$.
(5) Problem 5: For every non-square, non-prime q, find the maximum number of pairwise disjoint small linear blocking sets in $\operatorname{PG}(2, q)$.

