Notes on multiple blocking sets of PG(2, q)

Bence Csajbók

Politechnic University of Bari, Italy

Sixth Irsee Conference on "Finite Geometries" August 29, 2022

BCs (Poliba) Irsee, August 29, 2022 1/24

 Π_q : A finite projective plane of order q

PG(2, q): The finite Desarguesian projective plane of order q

 $PG(2,q) = AG(2,q) \cup \ell_{\infty}$, for me ℓ_{∞} has equation Z = 0

Definition

- A **blocking set** of Π_q is a set of points meeting each line of Π_q in at least 1 point.
- A blocking set is called trivial if it contains a line.
- A *t*-fold blocking set of Π_q is a set of points meeting each line of Π_q in at least *t* points.
- A *t*-fold blocking set \mathcal{B} is called **minimal** if for each point P of \mathcal{B} the point set $\mathcal{B}\setminus\{P\}$ is not a *t*-fold blocking set.

BCs (Poliba) Irsee, August 29, 2022 2/24

- If q is a square then PG(2, q) can be partitioned into $q \sqrt{q} + 1$ Baer subplanes.
- The union of t pairwise disjoint Baer subplanes is a minimal t-fold blocking set of size

$$t(q+\sqrt{q}+1).$$

- If q is a square, t is "small" w.r.t. q and B is a "small" t-fold blocking set in PG(2, q) then B contains t pairwise disjoint Baer subplanes (Blokhuis-Storme-Szőnyi 1999 + Lovász 2007)
- If $q = t^4$ then there is a minimal *t*-fold blocking set of size

$$t(q+\sqrt{q}+1)$$

which is not the union of *t* Baer subplanes (Ball-Blokhuis-Lavrauw 2000).

BCs (Poliba) Irsee, August 29, 2022 3/24

Definition

A blocking set of size less than 3(q + 1)/2 is called small.

Theorem (Lunardon 1999)

Assume $q = s^n$ for some prime power s.

Let U be an (n+1)-dimensional \mathbb{F}_s -subspace of $V=\mathbb{F}_q\times\mathbb{F}_q\times\mathbb{F}_q$.

The set of points

$$L_U = \{ \langle \mathbf{v} \rangle_{\mathbb{F}_q} : \mathbf{v} \in U \setminus \{\mathbf{0}\} \}$$

is a minimal blocking set of PG(2, q) of size at most

$$\frac{|U|-1}{s-1}=q+\frac{q-1}{s-1}.$$

 L_U is called an \mathbb{F}_s -linear (or simply linear) blocking set. If $\langle U \rangle_{\mathbb{F}_q} = V$ then L_U is non-trivial.

BCs (Poliba) Irsee, August 29, 2022

Linearity Conjecture, planar case (Sziklai 2008)

If \mathcal{B} is a small minimal blocking set, then \mathcal{B} is a linear blocking set.

• If \mathcal{B} is a non-trivial blocking set of Π_q then for every line ℓ :

$$|\mathcal{B}\setminus\ell|\geqslant q$$
.

- If $|\mathcal{B} \setminus \ell| = q$ then \mathcal{B} is of **Rédei type** and ℓ is the **Rédei line** of \mathcal{B} .
- If $\mathcal U$ is a set of q affine points then the **set of directions** determined by $\mathcal U$ is

$$D_{\mathcal{U}} = \{ P \in \ell_{\infty} : P \in \langle R, Q \rangle \text{ for some } R, Q \in \mathcal{U} \}.$$

• $\mathcal{U} \cup D_{\mathcal{U}}$ is a blocking set of Rédei type of size

$$q + |D_{\mathcal{U}}|$$
.

BCs (Poliba) Irsee, August 29, 2022

- If $D_{\mathcal{U}} = \ell_{\infty}$ then we obtain a trivial blocking set.
- If $D_{\mathcal{U}} \neq \ell_{\infty}$ then \mathcal{U} is equivalent to the graph of some $\mathbb{F}_q \to \mathbb{F}_q$ function f:

$$\mathcal{U} \cong \mathcal{U}_f = \{(x:f(x):1): x \in \mathbb{F}_q\} \subseteq \mathrm{AG}(2,q)$$

$$D_f := D_{\mathcal{U}_f} = \left\{ \left(1 : \frac{f(x) - f(y)}{x - y} : 0\right) : x \neq y, x, y \in \mathbb{F}_q \right\} \subseteq \ell_{\infty}$$

BCs (Poliba) Irsee, August 29, 2022 6/24

• If $|D_f| < (q+3)/2$ then $U_f \cup D_f$ is a small blocking set.

Theorem (Part of Ball–Blokhuis–Brouwer–Storme–Szőnyi 1999 and Ball 2003)

Let f be an $\mathbb{F}_q \to \mathbb{F}_q$ function, $q = p^n$, p prime, such that

$$|D_f|\leqslant \frac{q+1}{2}.$$

Then $f(x) = c + \sum_{i=0}^{n-1} \alpha_i x^{p^i}$ and $U_f \cup D_f$ is a linear blocking set.

BCs (Poliba) Irsee, August 29, 2022 7/24

The linearity conjecture states that blocking sets of size less than

$$q+\frac{q+3}{2}$$

are linear.

- If $|D_f| \leqslant \frac{q+1}{2}$, then the Rédei type blocking set $U_f \cup D_f$ is linear.
- We do not know whether there is a small non-linear Rédei type blocking set of size

$$q+\frac{q}{2}+1$$
.

Theorem (BCs)

If $|D_f| = \frac{q}{2} + 1$ then parallel lines meeting U_f in at least one point meet U_f in the same number of points

(This is a property which holds for every additive function and when q is odd then it implies additivity.)

When q is even then there are **non-additive** functions such that parallel lines meeting U_f in at least one point meet U_f in the same number of points:

- Functions such that $U_f \cup (\ell_{\infty} \backslash D_f)$ is a non-translation hyperoval
- Functions such that $U_f \cup (\ell_\infty \backslash D_f)$ is a non-translation Korchmáros–Mazzocca arc
- ullet There is another example where U_f is contained in a $\sqrt{q} imes \sqrt{q}$ grid

Problem 1

Is there an $\mathbb{F}_q \to \mathbb{F}_q$ function f not of the form $x \mapsto c + \sum_{i=0}^{n-1} \alpha_i x^{p^i}$ but determining $\frac{q}{2} + 1$ directions?

BCs (Poliba) Irsee, August 29, 2022 9/24

2-fold blocking sets

- Union of the sides of a triangle is a 2-fold blocking set of size 3q
- If q is a prime then it is difficult to go below 3q.
 There are examples of size 3q 1 when
 - q = 13, Braun-Kohnert-Wassermann 2005
 - *q* ∈ {19,31,37,43}, BCs–Héger 2019
- The $q = s^n$, n > 1 case
 - Bacsó–Héger–Szőnyi 2013:

Construction of two disjoint linear blocking sets of Rédei type. Their union is a 2-fold blocking set of size at most

$$2\left(q+\frac{q-1}{s-1}\right)$$

10/24

BCs (Poliba) Irsee, August 29, 2022

The $q = s^n$, n > 1 case

 Similar constructions by De Beule, Héger, Szőnyi, Van de Voorde 2015, and also the following:

If \mathcal{B} is blocking set of $\operatorname{PG}(2,q)$, $|\mathcal{B}| \leqslant \frac{3}{2}\left(q-\frac{q}{p}\right)$, p>5, then there is a small linear Rédei type blocking set of size $q+\frac{q}{p}+1$ disjoint from \mathcal{B} .

Bartoli, Cossidente, Marino, Pavese 2020:

They find two disjoint copies of PG(3, q) in $PG(3, q^3)$ and a point P such that there is no line through P meeting both subgeometries.

The projection of the two subgeometries to a plane of $PG(3,q^3)$ from P is the union of two disjoint small linear blocking sets and hence a small 2-fold blocking set.

BCs (Poliba) Irsee, August 29, 2022

Corollary of BBBSSz

Assume

$$|D_f|\leqslant rac{q+1}{2}$$
 and $|D_g|\leqslant rac{q+1}{2}.$

Then

$$(U_f \cup D_f) \cap (U_g \cup D_g) \neq \emptyset.$$

Proof.

$$f = F(x) + \alpha$$
 and $g = G(x) + \beta$ where F and G are additive

$$U_f \cap U_g = \varnothing \quad \Rightarrow \quad (F(x) + \alpha) - (G(x) + \beta) = 0 \text{ has no root in } \mathbb{F}_q$$

 \Rightarrow F(x) - G(x) is additive and it is not a permutation of \mathbb{F}_q

Indeed, if it was a permutation, then we could solve

$$F(x) - G(x) = \beta - \alpha.$$

BCs (Poliba)

 \Rightarrow The set of roots of F(x)-G(x) in \mathbb{F}_q is a non-trivial \mathbb{F}_p -subspace

$$\Rightarrow$$
 There exists $c \in \mathbb{F}_q \setminus \{0\}$ such that $F(c) = G(c)$

the line joining $(\mathbf{0}:\alpha:\mathbf{1}),(\mathbf{c}:\mathbf{F}(\mathbf{c})+\alpha:\mathbf{1})\in \mathbf{U_f}$ and

the line joining $(0:\beta:1), (c:G(c)+\beta:1)\in U_g$ meet ℓ_∞ at the same point:

$$\left(1:\frac{F(c)}{c}:0\right) = \left(1:\frac{G(c)}{c}:0\right)$$

$$\downarrow D_{f} \cap D_{\alpha} \neq \emptyset$$

BCs (Poliba) Irsee, August 29, 2022

Corollary

If \mathcal{B}_1 and \mathcal{B}_2 are **disjoint** small linear Rédei type blocking sets then they have different Rédei lines.

Problem 2

Is it possible to find two $\mathbb{F}_q \to \mathbb{F}_q$ functions f and g such that only one of them is additive and

$$(U_f \cup D_f) \cap (U_g \cup D_g) = \varnothing$$
?

 $\mathcal{B} := (U_f \cup D_f) \cup (U_g \cup D_g)$ wouldn't be a very small 2-fold blocking set but maybe it is easier to find a third small blocking set disjoint from \mathcal{B} .

BCs (Poliba) Irsee, August 29, 2022

To construct small 3-fold blocking sets, one can try to find 3 pairwise disjoint small Rédei type blocking sets.

The Rédei lines have to be different so they can form a triangle or they can be concurrent.

Computations with computer show that there are examples but I could not find an explicit description.

Problem 3

Find for each prime p and infinitely many odd n, 3 pairwise disjoint small Rédei type blocking sets in PG(2, p^n).

BCs (Poliba) Irsee, August 29, 2022

Example

$$\begin{split} s &:= 137 \quad q := 137^{15} \\ \omega &: \text{ a primitive element of } \mathbb{F}_q \\ \mathcal{B}_1 &:= \{ (x : \omega x^s : y) : x \in \mathbb{F}_q, \ y \in \mathbb{F}_s \} \\ \mathcal{B}_2 &:= \{ (y : x : \omega x^{s^2}) : x \in \mathbb{F}_q, \ y \in \mathbb{F}_s \} \\ \mathcal{B}_3 &:= \{ (\omega x^{s^{12}} : y : x) : x \in \mathbb{F}_q, \ y \in \mathbb{F}_s \} \end{split}$$

Then $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$ are pairwise disjoint linear blocking sets of Rédei type. The Rédei lines form the base triangle.

BCs (Poliba) Irsee, August 29, 2022

Let φ be a collineation of order 3 and let $\mathcal B$ be a blocking set.

Assume

$$\mathcal{B} \cap \varphi(\mathcal{B}) = \varnothing. \tag{1}$$

17/24

Then also

$$\varphi(\mathcal{B})\cap\varphi^2(\mathcal{B})=\varnothing\quad\text{ and }\quad\varphi^2(\mathcal{B})\cap\mathcal{B}=\varnothing$$

$$\mathcal{B} \cup \varphi(\mathcal{B}) \cup \varphi^2(\mathcal{B})$$
 is a 3-fold blocking set.

Thus it is enough to verify (1) in order to find a 3-fold blocking set.

BCs (Poliba) Irsee, August 29, 2022

Theorem (BCs)

Put $s = 3^n$, with gcd(21, n) = 1.

In PG(2, s^3) there exist 3 pairwise disjoint \mathbb{F}_s -linear blocking sets.

Their union is a 3-fold blocking set of size at most

$$3(1+s+s^2+s^3)$$
.

Sketch of Proof.

 ω : a root of $x^3 - x - 1 \in \mathbb{F}_3[x]$

$$U := \{(a + \omega b, b + \omega^2 a, c + d\omega) : a, b, c, d \in \mathbb{F}_s\} \subseteq \mathbb{F}_{s^3} \times \mathbb{F}_{s^3} \times \mathbb{F}_{s^3}$$

$$\mathcal{B}:=L_U=\{(a+\omega b:b+\omega^2a:c+d\omega):a,b,c,d\in\mathbb{F}_s\}\subseteq\mathrm{PG}(2,s^3)$$

 φ : the collineation of order 3 mapping (x : y : z) to (z : x : y)

We claim that $\mathcal{B} \cap \varphi(\mathcal{B}) = \emptyset$.

BCs (Poliba) Irsee, August 29, 2022

• Assume $P \in \mathcal{B} \cap \varphi(\mathcal{B})$, so for some $a,b,c,d,a',b',c',d' \in \mathbb{F}_s$

$$(\mathbf{a} + \omega \mathbf{b} : \mathbf{b} + \omega^2 \mathbf{a} : \mathbf{c} + \omega \mathbf{d}) = (\mathbf{c}' + \omega \mathbf{d}' : \mathbf{a}' + \omega \mathbf{b}' : \mathbf{b}' + \omega^2 \mathbf{a}')$$

It is easy to see that P cannot have a zero-coordinate so

$$\frac{a + \omega b}{b + \omega^2 a} = \frac{c' + \omega d'}{a' + \omega b'}$$
 (2)

and

$$\frac{a + \omega b}{c + \omega d} = \frac{c' + \omega d'}{b' + \omega^2 a'}$$
(3)

• Applying $\omega^3 = \omega + 1$, (2) and (3) are equivalent with

$$(aa' - bc' - ad') + \omega(a'b + ab' - ad' - bd') + \omega^{2}(bb' - ac') = 0$$

and

$$(ab' + a'b - cc') + \omega(a'b + bb' - c'd - cd') + \omega^2(aa' - dd') = 0.$$

• Recall $s=3^n$ and $3 \nmid n$. It follows that $\mathbb{F}_s(\omega)=\mathbb{F}_{s^3}$, so $\{1,\omega,\omega^2\}$ are \mathbb{F}_s -linearly independent and this gives

$$aa' - bc' - ad' = a'b + ab' - ad' - bd' = bb' - ac' = 0$$

and

$$ab' + a'b - cc' = a'b + bb' - c'd - cd' = aa' - dd' = 0.$$

20/24

BCs (Poliba) Irsee, August 29, 2022

This system of equations leads to

$$(b'^3 - b' + 1)(b'^7 + b'^6 - b'^3 + b'^2 - b' + 1) = 0.$$

Both factors are irreducible over \mathbb{F}_3 , thus

$$b' \in (\mathbb{F}_{3^3} \cup \mathbb{F}_{3^7}) \backslash \mathbb{F}_3.$$

But $b' \in \mathbb{F}_s = \mathbb{F}_{3^n}$, gcd(21, n) = 1, a contradiction.

 $\mathcal{B}, \varphi(\mathcal{B}), \varphi^2(\mathcal{B})$ are pairwise disjoint

BCs (Poliba) Irsee, August 29, 2022

Problem 4

For every non-square, non-prime q, find 3 pairwise disjoint small linear blocking sets in PG(2, q).

Problem 5

For every non-square, non-prime q, find the maximum number of pairwise disjoint small linear blocking sets in PG(2, q).

BCs (Poliba) Irsee, August 29, 2022

THANK YOU FOR YOUR ATTENTION

BCs (Poliba) Irsee, August 29, 2022

- **Problem 1:** Is there an $\mathbb{F}_q \to \mathbb{F}_q$ function f not of the form $x \mapsto c + \sum_{i=0}^{n-1} \alpha_i x^{p^i}$ but determining $\frac{q}{2} + 1$ directions?
- **Problem 2:** Is it possible to find two $\mathbb{F}_q \to \mathbb{F}_q$ functions f and g such that one of them is additive and

$$(U_f \cup D_f) \cap (U_g \cup D_g) = \varnothing$$
?

- **9 Problem 3:** Find for each prime p and infinitely many odd n, 3 pairwise disjoint small Rédei type blocking sets in $PG(2, p^n)$.
- **9 Problem 4:** For every non-square, non-prime q, find 3 pairwise disjoint small linear blocking sets in PG(2, q).
- **9 Problem 5:** For every non-square, non-prime q, find the maximum number of pairwise disjoint small linear blocking sets in PG(2, q).

BCs (Poliba) Irsee, August 29, 2022,