Minimal blocking sets in small Desarguesian projective planes

Arne Botteldoorn
Joint work with K. Coolsaet and V. Fack

Dept. of Applied Mathematics, Computer Science and Statistics

Preliminaries

In a finite projective plane, a blocking set B is a set of points such that every line of the plane contains at least one point of B.

Preliminaries

In a finite projective plane, a blocking set B is a set of points such that every line of the plane contains at least one point of B.
A blocking set containing an entire line is called trivial.

Preliminaries

In a finite projective plane, a blocking set B is a set of points such that every line of the plane contains at least one point of B.
A blocking set containing an entire line is called trivial.

A blocking set is called minimal if no proper subset is a blocking set.

Preliminaries

In a finite projective plane, a blocking set B is a set of points such that every line of the plane contains at least one point of B.
A blocking set containing an entire line is called trivial.

A blocking set is called minimal if no proper subset is a blocking set.

The weight of a line is the amount of points of the blocking set on it.

Research

1. Generation
2. Description

Research

1. Generation

- isomorph-free backtracking

2. Description

Research

1. Generation

- isomorph-free backtracking

2. Description

- describing the set and its automorphism group

Research

1. Generation

- isomorph-free backtracking

2. Description

- describing the set and its automorphism group. . . if possible

PG $(2,5)$

$\|B\|$	9		10		11		12					
\#	1		5		1		1					
	\|G		\#	\|G		\#	\|G		\#	\|G		\#
	24	1	2	2	20	1	96	1				
			8	1								
			12	1								
				1								

Classification of minimal blocking sets in small Desarguesian projective planes

Kris Coolsaet © | Arne Botteldoorn © | Veerle Fack ©

$\widehat{\text { IIIIII }}$
 UNIVERSITEIT GENT

PG $(2,7)$

$\|B\|$	12		13		14		15		16		17		18		19							
\#	2		9		227		446		702		38		7		1							
	\|G		\#	$\|G\|$	\#	\|G		\#	\|G		\#	\|G		\#	\|G		\#	$\|G\|$	\#	\|G		\#
	54	1	2	1	1	154	1	402	1	642	1	28	2	3	57	1						
	216	1	4	2	2	54	2	25	2	49	2	2	6	1								
			6	3	3	6	3	12	3	5	3	4	9	1								
			8	1	4	5	4	5	4	4	6	4	12	1								
			12	1	6	4	6	1	6	2			216	1								
			24	1	12	1	12	1														
					18	1																
					24	1																
					42	1																

PG $(2,9)$

$\|B\|$	13			15			16			17			18				
\# ${ }_{\text {PGL }}$	1			2			3			132			30726				
\# ${ }_{\text {PrL }}$	1			2			3			91			15855				
	\| $\Gamma \mid$	\|G		\#	\| $\Gamma \mid$	\|G			$\|\Gamma\|$	$\|G\|$	\#	\| $\Gamma \mid$	G\|	\#	$\|\Gamma\|$	G\|	\#
	11232	5616	1	120	60	1	6	3	1	1	1	14	1	1	14263		
				192	96	1	16	8	1	2	1	20	2	1	795		
							72	36	1	2	2	24	2	2	570		
										4	2	17	3	3	15		
										4	4	2	4	2	144		
										6	6	1	4	4	11		
										8	4	5	6	3	11		
										12	6	2	6	6	11		
										16	8	3	8	4	15		
										24	12	1	8	8	1		
										32	16	1	12	6	9		
										48	24	1	16	8	4		
													18	9	1		
													24	12	2		
													32	16	1		
													48	24	1		
													144	72	1		

PG $(2,9)$

$\|B\|$	19			20			21			22						
\#PGL	524394			4544050			12508783			10899207						
\# ${ }_{\text {PrL }}$	263904			2276093			6259366			5453644						
	\| $\Gamma \mid$	\|G		\#	$\|\Gamma\|$	\|G		\#	$\|\Gamma\|$	\|G		\#	$\|\Gamma\|$	\|G		\#
	1	1	259106	1	1	2263708	1	1	6247527	1	1	5442318				
	2	1	3255	2	1	7850	2	1	9820	2	1	7794				
	2	2	1320	2	2	4218	2	2	1704	2	2	3019				
	3	3	32	3	3	7	3	3	164	3	3	196				
	4	2	110	4	2	261	4	2	93	4	2	219				
	4	4	30	4	4	22	4	4	19	4	4	26				
	6	3	21	6	3	4	6	3	20	6	3	34				
	6	6	2	6	6	1	6	6	2	6	6	3				
	8	4	21	8	4	11	8	4	8	8	4	21				
	12	6	2	10	10	1	8	8	1	12	6	5				
	16	8	2	12	6	4	12	6	1	16	8	4				
	18	9	1	16	8	4	14	7	1	18	18	1				
	36	18	1	24	12	2	16	8	3	32	16	1				
	192	96	1				32	16	1	36	18	1				
							42	21	1	48	24	1				
							336	168	1	64	32	1				

PG $(2,9)$

\| B \|	23			24			25			26			28					
\# ${ }_{\text {PGL }}$	2252493			65702			195			6			2					
\#PrL	1127161			33011			100			5			2					
	$\|\Gamma\|$	\|G		\#	$\|\Gamma\|$	\|G		\#	\| Γ	G\|	\#	$\|\Gamma\|$	$\|G\|$	\#	$\|\Gamma\|$	\|G		\#
	1	1	1125123	1	1	32551	1	1	86	4	4	1	216	108	1			
	2	1	1800	2	1	299	2	1	2	8	4	2	12096	6048	1			
	2	2	202	2	2	88	2	2	2	24	12	1						
	4	2	23	3	3	47	3	3	7	48	24	1						
	4	4	7	4	2	9	4	2	2									
	8	4	5	4	4	1	6	3	1									
	16	8	1	6	3	8												
				6	6	4												
				12	6	2												
				24	12	1												
				768	384	1												

$\widehat{I I I I I}$
 UNIVERSITEIT GENT

Derived from a Baer subplane

Example

In PG(2, $\left.q^{2}\right)$, let β denote a Baer subplane, in which lies a point P. Let $\ell_{1}, \ell_{2}, \ell_{3}$ denote three lines of the Baer subplane through P. Let \mathscr{L}_{i} denote the extension of ℓ_{i} to $\operatorname{PG}\left(2, q^{2}\right)$.

Then $B=\left(\mathscr{L}_{1} \backslash \ell_{1}\right) \cup\left(\mathscr{L}_{2} \backslash \ell_{2}\right) \cup\left(\ell_{3}\right)$ is a minimal blocking set of $\mathrm{PG}\left(2, q^{2}\right)$ of size $2 q^{2}-q+1$.

Derived from a Baer subplane

Example

In PG(2, $\left.q^{2}\right)$, let β denote a Baer subplane, in which lies a point P. Let $\ell_{1}, \ell_{2}, \ell_{3}$ denote three lines of the Baer subplane through P. Let \mathscr{L}_{i} denote the extension of ℓ_{i} to $\operatorname{PG}\left(2, q^{2}\right)$.

Then $B=\left(\mathscr{L}_{1} \backslash \ell_{1}\right) \cup\left(\mathscr{L}_{2} \backslash \ell_{2}\right) \cup\left(\ell_{3}\right)$ is a minimal blocking set of $\mathrm{PG}\left(2, q^{2}\right)$ of size $2 q^{2}-q+1$.

For $q>2$, the collineation group of B has size $4 q^{2}(q-1)$.

From a Hermitian curve

From a Hermitian curve

From a Hermitian curve

From a Hermitian curve

From a Hermitian curve

From a Hermitian curve

From a Hermitian curve

From a Hermitian curve

From a perfect difference set in $\operatorname{PG}(2,9)$

Use a perfect difference set representation of the plane, for example: $L_{0}=\{0,1,3,9,27,81,61,49,56,77\}$
(points are represented by the integers mod 91, lines by the sets $L_{i}=L_{0}-i$.)

From a perfect difference set in $\operatorname{PG}(2,9)$

Use a perfect difference set representation of the plane, for example: $L_{0}=\{0,1,3,9,27,81,61,49,56,77\}$
(points are represented by the integers mod 91 , lines by the sets $L_{i}=L_{0}-i$.)

- $B_{s}=\left\{P_{i} \mid i \equiv s \bmod 7\right\}$ is a Baer subplane for each $s \in\{0, \ldots, 6\}$

From a perfect difference set in $\operatorname{PG}(2,9)$

Use a perfect difference set representation of the plane, for example: $L_{0}=\{0,1,3,9,27,81,61,49,56,77\}$
(points are represented by the integers mod 91 , lines by the sets $L_{i}=L_{0}-i$.)

- $B_{s}=\left\{P_{i} \mid i \equiv s \bmod 7\right\}$ is a Baer subplane for each $s \in\{0, \ldots, 6\}$
- $K_{r}=\left\{P_{i} \mid i \equiv r \bmod 13\right\}$ is a complete 7-arc for each $r \in\{0, \ldots, 12\}$

From a perfect difference set in $\operatorname{PG}(2,9)$

Use a perfect difference set representation of the plane, for example: $L_{0}=\{0,1,3,9,27,81,61,49,56,77\}$
(points are represented by the integers mod 91 , lines by the sets $L_{i}=L_{0}-i$.)

- $B_{s}=\left\{P_{i} \mid i \equiv s \bmod 7\right\}$ is a Baer subplane for each $s \in\{0, \ldots, 6\}$
- $K_{r}=\left\{P_{i} \mid i \equiv r \bmod 13\right\}$ is a complete 7-arc for each $r \in\{0, \ldots, 12\}$
- The union of the four 7 -arcs K_{0}, K_{2}, K_{5} and K_{6} form a Hermitian curve.

From a perfect difference set in $\operatorname{PG}(2,9)$

Constructing minimal blocking sets by taking the union of 3 such arcs:

- $K_{0} \cup K_{2} \cup K_{4}$ has a projective automorphism group of size 7
- $K_{0} \cup K_{2} \cup K_{8}$ has a projective automorphism group of size 21
- $K_{0} \cup K_{2} \cup K_{7}$ has a projective automorphism group of size 168

From a perfect difference set in $\operatorname{PG}(2,9)$
Let $B=K_{10} \cup K_{12} \cup K_{4}$, which is equivalent to $K_{0} \cup K_{2} \cup K_{7}$.

From a perfect difference set in $\operatorname{PG}(2,9)$
Let $B=K_{10} \cup K_{12} \cup K_{4}$, which is equivalent to $K_{0} \cup K_{2} \cup K_{7}$. B can be partitioned into polar triangles (w.r.t. Herm. curve $K_{0} \cup K_{2} \cup K_{5} \cup K_{6}$):

δ_{1}				δ_{2}		
K_{4}	K_{10}	K_{12}	K_{4}	K_{10}	K_{12}	
4	10	64	30	10	12	
17	23	77	43	23	25	
30	36	90	56	36	38	
43	49	12	69	49	51	
56	62	25	82	62	64	
69	75	38	4	75	77	
82	88	51	17	88	90	

From a perfect difference set in $\operatorname{PG}(2,9)$
Let $B=K_{10} \cup K_{12} \cup K_{4}$, which is equivalent to $K_{0} \cup K_{2} \cup K_{7}$.
B can be partitioned into polar triangles (w.r.t. Herm. curve $K_{0} \cup K_{2} \cup K_{5} \cup K_{6}$):

δ_{1}				δ_{2}		
K_{4}	K_{10}	K_{12}	K_{4}	K_{10}	K_{12}	
4	10	64	30	10	12	
17	23	77	43	23	25	
30	36	90	56	36	38	
43	49	12	69	49	51	
56	62	25	82	62	64	
69	75	38	4	75	77	
82	88	51	17	88	90	

Define the incidence geometry $\mathscr{G}=(\mathscr{P}, \mathscr{L}, I)$ with

- \mathscr{P} the polar triangles of type δ_{1};
- \mathscr{L} the polar triangles of type δ_{2};
- the natural incidence.

From a perfect difference set in $\operatorname{PG}(2,9)$
Let $B=K_{10} \cup K_{12} \cup K_{4}$, which is equivalent to $K_{0} \cup K_{2} \cup K_{7}$.
B can be partitioned into polar triangles (w.r.t. Herm. curve $K_{0} \cup K_{2} \cup K_{5} \cup K_{6}$):

δ_{1}				δ_{2}		
K_{4}	K_{10}	K_{12}	K_{4}	K_{10}	K_{12}	
4	10	64	30	10	12	
17	23	77	43	23	25	
30	36	90	56	36	38	
43	49	12	69	49	51	
56	62	25	82	62	64	
69	75	38	4	75	77	
82	88	51	17	88	90	

Define the incidence geometry $\mathscr{G}=(\mathscr{P}, \mathscr{L}, I)$ with

- \mathscr{P} the polar triangles of type δ_{1};
- \mathscr{L} the polar triangles of type δ_{2};
- the natural incidence.
\mathscr{G} is a Fano plane.

From a perfect difference set in $\operatorname{PG}(2,9)$

Lemma (Polster - Van Maldeghem (2001))

Let \mathscr{U} be a Hermitian unital in PG(2,9). Let \mathscr{P} be the set of 63 points off \mathscr{U} and let \mathscr{L} be the set of 63 polar triangles with respect to \mathscr{U}.
Then $\left(\mathscr{P}, \mathscr{L}, I_{\text {nat }}\right)$ is a generalized hexagon of order $(2,2)$ isomorphic to the dual of $\mathbf{H}(2)$.

Future work

- Generation

Future work

- Generation
- $\operatorname{PG}(2,11)$

Future work

- Generation
- $\operatorname{PG}(2,11)$
- Specific blocking sets?

