

Minimal blocking sets in small Desarguesian projective planes

Arne Botteldoorn Joint work with K. Coolsaet and V. Fack

Dept. of Applied Mathematics, Computer Science and Statistics

In a finite projective plane, a *blocking set* B is a set of points such that every line of the plane contains at least one point of B.

In a finite projective plane, a *blocking set* B is a set of points such that every line of the plane contains at least one point of B. A blocking set containing an entire line is called *trivial*.

In a finite projective plane, a *blocking set* B is a set of points such that every line of the plane contains at least one point of B. A blocking set containing an entire line is called *trivial*.

A blocking set is called *minimal* if no proper subset is a blocking set.

In a finite projective plane, a *blocking set* B is a set of points such that every line of the plane contains at least one point of B. A blocking set containing an entire line is called *trivial*.

A blocking set is called *minimal* if no proper subset is a blocking set.

The weight of a line is the amount of points of the blocking set on it.

- 1. Generation
- 2. Description

Research

1. Generation

- isomorph-free backtracking
- 2. Description

Research

1. Generation

- isomorph-free backtracking
- 2. Description
 - describing the set and its automorphism group

Research

1. Generation

- isomorph-free backtracking
- 2. Description
 - describing the set and its automorphism group...if possible

PG(2,5)

B	9		10) (11	L	12		
#	1		5		1		1		
	<i>G</i>	#	G	#	G	#	<i>G</i>	#	
	24	1	2	2	20	1	96	1	
			8	1					
			12	1					
			20	1					

Received: 22 October 2021	Revised: 5 March 2022	Accepted: 7 March 2022	
---------------------------	-----------------------	------------------------	--

DOI: 10.1002/jcd.21842

RESEARCH ARTICLE

WILEY

Classification of minimal blocking sets in small Desarguesian projective planes

Kris Coolsaet 💿 🕴 Arne Botteldoorn 💿 🕴 Veerle Fack 💿

PG(2,7)

B	12	.	13	3	1	4	1	5	1	.6	1	7	18		19	9
#	2		9		2	27	4	46	70	02	3	3	7		1	
	G	#	G	#	G	#	G	#	G	#	G	#	G	#	G	#
	54	1	2	1	1	154	1	402	1	642	1	28	2	3	57	1
	216	1	4	2	2	54	2	25	2	49	2	2	6	1		
			6	3	3	6	3	12	3	5	3	4	9	1		
			8	1	4	5	4	5	4	4	6	4	12	1		
			12	1	6	4	6	1	6	2			216	1		
			24	1	12	1	12	1								
					18	1										
					24	1										
					42	1										

															PG	(2,8)
B		13			15			16	1		17			18		(')
#pgl	1 33		33		2498				1839	2		6687	'3			
#ppl	1			17				852			6156	i		2235	3	
	F	G	#	Г	G	#	Г	G	#		G	#	Г	G	#	
	288	96	1	1	1	1	1	1	757	1	1	6004	1	1	22098	
				2	2	4	2	2	64	2	2	102	2	2	127	
				3	1	2	3	1	27	3	1	31	3	1	81	
				4	4	1	3	3	1	4	4	12	3	3	32	
				6	2	2	4	4	1	6	2	4	4	4	1	
				6	6	1	6	2	1	12	4	1	6	2	8	
				21	7	1	42	14	1	24	8	1	6	6	2	
				24	8	2				96	32	1	9	3	1	
				24	24	1							12	4	1	
				42	14	1							18	6	1	
				168	56	1							36	12	1	

B		19			20			21			22			23	
#pgl		4214	1		6584	ļ.		125			3			1	
#ppl		1405	53		2204	ļ.		49			1			1	
	 	G	#	F	G	#	Г	G	#	Γ	G	#	Г	G	#
	1	1	13973	1	1	2188	1	1	38	1	1	1	21	7	1
	2	2	67	2	2	2	3	1	10						
	3	1	7	3	1	12	882	294	1						
	4	4	3	6	2	2									
	6	1	1												
	8	8	1												
	12	4	1												

PG(2,9)

B	13			15			16		17				18		
#pgl		1			2			3			132			3072	6
#ppl		1		2				3			91			1585	5
	Г	G	#	Г	G	#	Г	G	#	Г	G	#	Г	G	#
	11232	5616	1	120	60	1	6	3	1	1	1	14	1	1	14263
				192	96	1	16	8	1	2	1	20	2	1	795
							72	36	1	2	2	24	2	2	570
										4	2	17	3	3	15
										4	4	2	4	2	144
										6	6	1	4	4	11
										8	4	5	6	3	11
										12	6	2	6	6	11
										16	8	3	8	4	15
										24	12	1	8	8	1
										32	16	1	12	6	9
										48	24	1	16	8	4
													18	9	1
													24	12	2
													32	16	1
													48	24	1
													144	72	1

PG(2,9)

<i>B</i>		19		20				21		22			
#pgl		5243	94		4544	050		12508	783		1089	9207	
#ppl		2639	04		2276	i093		62593	366		5453	3644	
	Г	G	#	Г	Γ G #			G	#	Γ	G	#	
	1	1	259106	1	1	2263708	1	1	6247527	1	1	5442318	
	2	1	3255	2	1	7850	2	1	9820	2	1	7794	
	2	2	1320	2	2	4218	2	2	1704	2	2	3019	
	3	3	32	3	3	7	3	3	164	3	3	196	
	4	2	110	4	2	261	4	2	93	4	2	219	
	4	4	30	4	4 4 22			4	19	4	4	26	
	6	3	21	6	3	4	6	3	20	6	3	34	
	6	6	2	6	6	1	6	6	2	6	6	3	
	8	4	21	8	4	11	8	4	8	8	4	21	
	12	6	2	10	10	1	8	8	1	12	6	5	
	16	8	2	12	6	4	12	6	1	16	8	4	
	18	9	1	16	16 8 4		14	7	1	18	18	1	
	36	18	1	24 12 2		16	8	3	32	16	1		
	192	96	1			32	16	1	36	18	1		
						42	21	1	48	24	1		
							336	168	1	64	32	1	

PG(2,9)

B	23			24				25			26			28	
#pgl		2252	2493		65702	2		195			6			2	
#ppl	1127161			33011				100			5			2	
	Г	G	#	F	G	#		G	#	Г	G	#	 	G	#
	1	1	1125123	1	1	32551	1	1	86	4	4	1	216	108	1
	2	1	1800	2	1	299	2	1	2	8	4	2	12096	6048	1
	2	2	202	2	2	88	2	2	2	24	12	1			
	4	2	23	3	3	47	3	3	7	48	24	1			
	4	4	7	4	2	9	4	2	2						
	8	4	5	4	4	1	6	3	1						
	16	8	1	6	3	8									
				6	6	4									
				12	6	2									
				24	12	1									
				768	384	1									

Derived from a Baer subplane

Example

In PG(2, q^2), let β denote a Baer subplane, in which lies a point *P*. Let ℓ_1, ℓ_2, ℓ_3 denote three lines of the Baer subplane through *P*. Let \mathcal{L}_i denote the extension of ℓ_i to PG(2, q^2).

Then $B = (\mathscr{L}_1 \setminus \ell_1) \cup (\mathscr{L}_2 \setminus \ell_2) \cup (\ell_3)$ is a minimal blocking set of $PG(2, q^2)$ of size $2q^2 - q + 1$.

Derived from a Baer subplane

Example

In PG(2, q^2), let β denote a Baer subplane, in which lies a point *P*. Let ℓ_1, ℓ_2, ℓ_3 denote three lines of the Baer subplane through *P*. Let \mathcal{L}_i denote the extension of ℓ_i to PG(2, q^2).

Then $B = (\mathscr{L}_1 \setminus \ell_1) \cup (\mathscr{L}_2 \setminus \ell_2) \cup (\ell_3)$ is a minimal blocking set of $PG(2, q^2)$ of size $2q^2 - q + 1$.

For q > 2, the collineation group of B has size $4q^2(q-1)$.

Use a perfect difference set representation of the plane, for example: $L_0 = \{0, 1, 3, 9, 27, 81, 61, 49, 56, 77\}$ (points are represented by the integers mod 91, lines by the sets $L_i = L_0 - i$.)

Use a perfect difference set representation of the plane, for example: $L_0 = \{0, 1, 3, 9, 27, 81, 61, 49, 56, 77\}$ (points are represented by the integers mod 91, lines by the sets $L_i = L_0 - i$.) $\blacktriangleright B_s = \{P_i | i \equiv s \mod 7\}$ is a Baer subplane for each $s \in \{0, \dots, 6\}$

Use a perfect difference set representation of the plane, for example: $L_0 = \{0, 1, 3, 9, 27, 81, 61, 49, 56, 77\}$ (points are represented by the integers mod 91, lines by the sets $L_i = L_0 - i$.) $\blacktriangleright B_s = \{P_i | i \equiv s \mod 7\}$ is a Baer subplane for each $s \in \{0, \dots, 6\}$

• $K_r = \{P_i | i \equiv r \mod 13\}$ is a complete 7-arc for each $r \in \{0, \dots, 12\}$

Use a perfect difference set representation of the plane, for example: $L_0 = \{0, 1, 3, 9, 27, 81, 61, 49, 56, 77\}$ (points are represented by the integers mod 91, lines by the sets $L_i = L_0 - i$.)

- ▶ $B_s = \{P_i | i \equiv s \mod 7\}$ is a Baer subplane for each $s \in \{0, ..., 6\}$
- $K_r = \{P_i | i \equiv r \mod 13\}$ is a complete 7-arc for each $r \in \{0, \dots, 12\}$
- ▶ The union of the four 7-arcs K_0 , K_2 , K_5 and K_6 form a Hermitian curve.

Constructing minimal blocking sets by taking the union of 3 such arcs:

- ▶ $K_0 \cup K_2 \cup K_4$ has a projective automorphism group of size 7
- ▶ $K_0 \cup K_2 \cup K_8$ has a projective automorphism group of size 21
- ▶ $K_0 \cup K_2 \cup K_7$ has a projective automorphism group of size 168

From a perfect difference set in PG(2,9)Let $B = K_{10} \cup K_{12} \cup K_4$, which is equivalent to $K_0 \cup K_2 \cup K_7$.

From a perfect difference set in PG(2,9)Let $B = K_{10} \cup K_{12} \cup K_4$, which is equivalent to $K_0 \cup K_2 \cup K_7$. B can be partitioned into polar triangles (w.r.t. Herm. curve $K_0 \cup K_2 \cup K_5 \cup K_6$):

	δ_1			δ_2	
K_4	K_{10}	K_{12}	K_4	K_{10}	K_{12}
4	10	64	30	10	12
17	23	77	43	23	25
30	36	90	56	36	38
43	49	12	69	49	51
56	62	25	82	62	64
69	75	38	4	75	77
82	88	51	17	88	90

From a perfect difference set in PG(2, 9)Let $B = K_{10} \cup K_{12} \cup K_4$, which is equivalent to $K_0 \cup K_2 \cup K_7$. B can be partitioned into polar triangles (w.r.t. Herm. curve $K_0 \cup K_2 \cup K_5 \cup K_6$):

	δ_1			δ_2	
K_4	K_{10}	<i>K</i> ₁₂	K_4	K_{10}	K_{12}
4	10	64	30	10	12
17	23	77	43	23	25
30	36	90	56	36	38
43	49	12	69	49	51
56	62	25	82	62	64
69	75	38	4	75	77
82	88	51	17	88	90

Define the incidence geometry $\mathscr{G} = (\mathscr{P}, \mathscr{L}, I)$ with

- \mathscr{P} the polar triangles of type δ_1 ;
- \mathscr{L} the polar triangles of type δ_2 ;
- the natural incidence.

From a perfect difference set in PG(2, 9)Let $B = K_{10} \cup K_{12} \cup K_4$, which is equivalent to $K_0 \cup K_2 \cup K_7$. B can be partitioned into polar triangles (w.r.t. Herm. curve $K_0 \cup K_2 \cup K_5 \cup K_6$):

	δ_1			δ_2	
K_4	K_{10}	K_{12}	K_4	K_{10}	K_{12}
4	10	64	30	10	12
17	23	77	43	23	25
30	36	90	56	36	38
43	49	12	69	49	51
56	62	25	82	62	64
69	75	38	4	75	77
82	88	51	17	88	90

Define the incidence geometry $\mathscr{G} = (\mathscr{P}, \mathscr{L}, I)$ with

- \mathscr{P} the polar triangles of type δ_1 ;
- \mathscr{L} the polar triangles of type δ_2 ;
- the natural incidence.

 ${\mathscr G}$ is a Fano plane.

Lemma (Polster - Van Maldeghem (2001))

Let \mathscr{U} be a Hermitian unital in $\mathrm{PG}(2,9)$. Let \mathscr{P} be the set of 63 points off \mathscr{U} and let \mathscr{L} be the set of 63 polar triangles with respect to \mathscr{U} . Then $(\mathscr{P}, \mathscr{L}, I_{nat})$ is a generalized hexagon of order (2, 2) isomorphic to the dual of $\mathbf{H}(2)$.

Future work

Future work

Future work

- ▶ PG(2,11)
- Specific blocking sets?