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Introduction ® 000

Curves, surfaces, rational points and all that jazz

We let F; denote a finite field with g elements and ]P)gq the projective space.

An algebraic projective variety X defined over F, is the set of zeros of homogenous polynomials
fi,-- -, fr € Fylzo, ..., xy] irreducible over F:

XE{PeP| fi(P) = = f(P)=0}.
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We let F; denote a finite field with g elements and ]P)gq the projective space.

An algebraic projective variety X defined over F, is the set of zeros of homogenous polynomials

fi,-- -, fr € Fylzo, ..., xy] irreducible over F:
X pep | f(P)=-- = f.(P) =0}
The set of rational points of X is
X(F) E{P=(ap: - :an) € X|Vi,a; €F,}
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Introduction ® 000

Curves, surfaces, rational points and all that jazz

We let F; denote a finite field with g elements and ]P)gq the projective space.
An algebraic projective variety X defined over F, is the set of zeros of homogenous polynomials
fi,-- -, fr € Fylzo, ..., xy] irreducible over F:

XE{PeP| fi(P) = = f(P)=0}.

The set of rational points of X is

def Frobenius morphism

X(Fy) ={P=(ap: --:a,) € X|Vi,a;€eF} ={PeX|PP)=P}.

Today: algebraic varieties of dimension one (curves C') and two (surfaces S) in [P%.

On the number of rational points of curves over a surface in 3 E. Berardini & J. Nardi 2/13



Introduction O®0O

Existing bounds

Theorem [Hasse-Weil, 1948]

If C'is an absolutely irreducible smooth curve of genus g defined over the finite field I, then
#C(Fy) < q+1+2g,/.
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Introduction O®0O
Existing bounds
Theorem [Hasse-Weil, 1948]

If C'is an absolutely irreducible smooth curve of genus g defined over the finite field I, then
#C(Fy) <q+1+29./7.

Theorem [Homma, 2012]

If C'is a non—degenerate curve defined over F, of degree ¢ in P, with n > 3, then
HO(F,) < (5— 1)g+ 1.
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Introduction O®0O

Existing bounds

Theorem [Hasse-Weil, 1948]

If C'is an absolutely irreducible smooth curve of genus g defined over the finite field I, then
#C(Fy) <q+1+29./7.

Theorem [Homma, 2012]

If C'is a non—degenerate curve defined over F, of degree ¢ in P, with n > 3, then
HO(F,) < (5— 1)g+ 1.

Theorem [Stohr—Voloch, 1986]

Let C/F, be an irreducible smooth curve of genus g and degree ¢ in P". Let v4,...,v,—1 beits
Frobenius orders (generically v; = ¢). Then

HOWES) < = (4 vo)(20 — 2) + (g + )o).

On the number of rational points of curves over a surface in p3 E. Berardini & J. Nardi



Introduction OO®O

Stohr and Voloch'’s strategy for plane curves

Take C' a plane curve of deg. ¢ defined by f = 0 over F,. Write ® for the g—Frobenius morphism.
C(F,) = {PeC|®(P)=P}
IN
(PeC|®P) eTrCt™ 2.
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Introduction OO®O

Stohr and Voloch'’s strategy for plane curves

Take C' a plane curve of deg. ¢ defined by f = 0 over F,. Write ® for the g—Frobenius morphism.
C(F,) = {PeC|®(P)=P}
IN
(PeC|®P) eTrCt™ 2.

Set g(X,Y) = Xfx +Yify + Z1fz.
Then Z=Cn(g=0).
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Introduction OO®O

Stohr and Voloch'’s strategy for plane curves
Take C' a plane curve of deg. ¢ defined by f = 0 over F,. Write ® for the g—Frobenius morphism.

C(F,) = {PeC|®(P)=P}
N
(PeC|dP)eTpCt ™ z.

Set g(X,Y) = Xfx +Yify + Z1f7.
Then Z=Cn(g=0).

Bézout’s theorem: if dim Z = 0, the number
of points in Z counted with multiplicity is equal
to (deg f) - (degg) = 6(6 +q—1).

E. Berardini & J. Nardi

" " —=
On the number of rational points of curves over a surface in P



Introduction OO®O

Stohr and Voloch'’s strategy for plane curves
Take C' a plane curve of deg. ¢ defined by f = 0 over F,. Write ® for the g—Frobenius morphism.
C(F,) = {PeC|a(P)=P}

N
(PeC|®P) eTrCt™ 2.

Set g(X,Y) = Xfx +Yify + Z1fz.
Then Z=Cn(g=0).

Bézout’s theorem: if dim Z = 0, the number
of points in Z counted with multiplicity is equal
to (deg f) - (degg) = 6(6 +q—1).

Multiplicity: If P € C(F,), then mp(Z) > 2.
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Introduction OO®O

Stohr and Voloch'’s strategy for plane curves

Take C' a plane curve of deg. ¢ defined by f = 0 over F,. Write ® for the g—Frobenius morphism.
C(F,) = {PeC|®(P)=P}
IN
(PeC|®P) eTrCt™ 2.

Set g(X,Y) = Xfx +Yify + Z1f7.
Then Z=Cn(g=0).

Bézout’s theorem: if dim Z = 0, the number
of points in Z counted with multiplicity is equal

to (deg f) - (degg) =0(6 + ¢ —1).
Multiplicity: If P € C(F,), then mp(Z) > 2.

Theorem [Stohr—Voloch, 1986]
If C has at least a non—flex point (= dim Z = 0), then #C(F,) < 36(6 + ¢ —1).

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi



Introduction OO0®
Ideas & Motivations

Let C C S < P" (via a very ample divisor).

Goal: bounding #C(F,) in terms of the embedding.
(features of the surface S and the ambient P™)

Main motivations:

® New bound for the number of rational points on projective curves.
(hopefully improving the previous ones)

® Application to geometric coding theory.

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi



Introduction OO0®
Ideas & Motivations

Let C C S < P" (via a very ample divisor).

Goal: bounding #C(F,) in terms of the embedding.
(features of the surface S and the ambient P™)

Main motivations:

® New bound for the number of rational points on projective curves.
(hopefully improving the previous ones)

® Application to geometric coding theory.

Bounding the minimum distance - Bounding #C(F,)
of a code from a surface S for the irreducible curves C' on S
Better lower bound for the minimum distance = Better upper bound for #C(F,)

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi



Strategy @00
Strategy (n = 3)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.
Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
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Strategy @00
Strategy (n = 3)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.
Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q—1.
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Strategy @00
Strategy (n = 3)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.

Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q—1.

Take a curve C' C S of degree 4. Then C(F,) C CNC3.

IfCnN Cg is a finite set of points, then

deg(C' N CY) < dd+q—-1)

i C,C3) 2
Lt "

#CO(Fy) <

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi



Strategy O®O

Comparisons with pre—existing bounds

—— BN21
—— Homma 12
—— Stoéhr-Voloch 86

Upper bound

Degree 0 of the curve C Degree 0 of the curve C

(a)g=9andd=5 (b)g=13and d =4

Figure: Bounds on the number of F,~points on a non—plane curve C on a degree d surface S C P3.

— It is worth working on this bound!

On the number of rational points of curves over a surface in

E. Berardini & J. Nardi



Strategy 00®
Strategy (2/2)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.

Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q— 1.

Take a curve C' C S of degree 6. Then C(F,) C CNC3.

If C'NC3 is a finite set of points, then

deg(C N CE) cO0d+q-1)

i C,C3) 2
plef, ")

#C(F,) <

Two necessary conditions for dim(C'NC3) = 0:

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi
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Strategy (2/2)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.

Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q— 1.

Take a curve C' C S of degree 6. Then C(F,) C CNC3.

If C'NC3 is a finite set of points, then

deg(C N CE) cO0d+q-1)

i C,C3) 2
plef, ")

#C(F,) <

Two necessary conditions for dim(C'NC3) = 0:
® dim ng = 1: in this case, the surface is said to be Frobenius classical;
Counterexample: the Hermitian surface X V7Tt 4 yvatt 4 zvatl L pVatl — g over F,,.
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Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.

Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q— 1.

Take a curve C' C S of degree 6. Then C(F,) C CNC3.

If C'NC3 is a finite set of points, then

deg(C N CE) cO0d+q-1)

i C,C3) 2
plef, ")

#C(F,) <

Two necessary conditions for dim(C'NC3) = 0:

® dim ng = 1: in this case, the surface is said to be Frobenius classical;
Counterexample: the Hermitian surface X V7Tt 4 yvatt 4 zvatl L pVatl — g over F,,.
¥ ptd(d—1)= S is Frobenius classical.
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Strategy 00®
Strategy (2/2)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.

Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q— 1.

Take a curve C' C S of degree 6. Then C(F,) C CNC3.

If C'NC3 is a finite set of points, then

deg(C N CE) cO0d+q-1)

i C,C3) 2
plef, ")

#C(F,) <

Two necessary conditions for dim(C'NC3) = 0:

@ dim C$ = 1: in this case, the surface is said to be Frobenius classical:
Counterexample: the Hermitian surface X V7Tt 4 yvatt 4 zvatl L pVatl — g over F,,.
¥ ptd(d—1)= S is Frobenius classical.

@® C does not share any components with C3.

Counterexample: if S contains a F,—line L, then L C C'5. The bound does not hold.

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi



Strategy 00®
Strategy (2/2)

Let S: (f = 0) C P be a smooth irreducible algebraic surface of degree d defined F,.

Set C5 (P e 5| ®(P)eTpS}. Then S(F,) C C5.
CS:f=h=0forh:=Xfo+ XIfi +XIfo+ XIfs=degh=d+q— 1.

Take a curve C' C S of degree 6. Then C(F,) C CNC3.

If C'NC3 is a finite set of points, then

deg(C N CE) cO0d+q-1)

i C,C3) 2
plef, ")

#C(F,) <

Two necessary conditions for dim(C'NC3) = 0:

@ dim C$ = 1: in this case, the surface is said to be Frobenius classical:
Counterexample: the Hermitian surface X V7Tt 4 yvatt 4 zvatl L pVatl — g over F,,.
¥ ptd(d—1)= S is Frobenius classical.

@® C does not share any components with C3.

Counterexample: if S contains a F,—line L, then L C C'5. The bound does not hold.

Aim: understanding the components of the curve Cj for a Frobenius classical surface.

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi




Geometry of curves @0

Osculating spaces and P-orders (Stohr—Voloch theory 1)

Let C C P?3 be an absolutely irreducible projective curve defined over F,. Fix P € C.
An integer j is a P—order if there exists a plane intersecting the curve C' with multiplicity j at P.
If C'is non—plane and P is non—singular, there are exactly four distinct P—orders:

Jo=0<j1 <j2 <Js.
Remark: j; =1 < C'is non—singular at the point P.

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi



Geometry of curves @0

Osculating spaces and P-orders (Stohr—Voloch theory 1)

Let C C P?3 be an absolutely irreducible projective curve defined over F,. Fix P € C.
An integer j is a P—order if there exists a plane intersecting the curve C' with multiplicity j at P.
If C'is non—plane and P is non—singular, there are exactly four distinct P—orders:

Jo=0<j1 <j2 <js3.

Remark: j; =1 < C'is non—singular at the point P.

Osculating spaces: TS)C = ({planes H s.t. mp(C, H) > ji i1}

Xo X Xo X3
- ; @ | o 1 T2 R
Equation of the osculating plane T5"C' : Dt('“)xo D,g'“)xl D,E'“)xg Dt('“)xg =

Dg./:)mo Dt(,lz)xl Dt(,/_’)xz D,g/“’)frg
where Dt(j) are the Hasse derivatives with respect to a a local parameter ¢t at P defined by

DItk = (’:) ki,

E. Berardini & J. Nardi
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Geometry of curves O®
Frobenius orders (Stohr—Voloch theory 2)

Fix P € C C P3 with P—orders (0, j1, j2, j3). Then ®(P) € T C if and only if
x4 zf 5 z§
or| @ @ @ @
) B D§]1)$0 Dgh).’tl ngl)ilfg D§]1)$3 B
DE‘D)JjO ngz)xl Dt(jz)l‘g D§]2)$3

A(j1, J2

" " c —=
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Geometry of curves O®
Frobenius orders (Stohr—Voloch theory 2)

Fix P € C C P3 with P—orders (0, j1, j2, j3). Then ®(P) € T C if and only if
x4 zf 5 z§
A | 7 73 T3 |
J1,J2) = ngl)xo ngl)xl D)E]l)l,2 Di(tjl)x3 -
D§]2)$0 ngz).rl Dt(jz)xg D§J2)$3

Theorem [Stohr—Voloch, 1986]

There exist integers 11 < v3 s.t. A(vy,12) is a nonzero function.

Definition
The integers vy = 0, 11, 2 chosen minimally with respect to the lexicographic order are called the
Frobenius orders of C.

The curve C'is Frobenius classical if (v1,12) = (1,2), Frobenius non—classical otherwise.

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 10/13



Curves over Frobenius classical surfaces @0

Frobenius non—classical curves on surfaces
Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.

On the number of rational points of curves over a surface in p3 E. Berardini & J. Nardi 1



Curves over Frobenius classical surfaces @0

Frobenius non—classical curves on surfaces
Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.

Proposition [BN21]

Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi 11/13



Curves over Frobenius classical surfaces @0

Frobenius non—classical curves on surfaces
Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.

Proposition [BN21]
Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

What about v > 17

E. Berardini & J. Nardi 11/13
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Curves over Frobenius classical surfaces @0

Frobenius non—classical curves on surfaces
Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.

Proposition [BN21]

Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

What about v; > 17 1n > 1= ®(P) € TpC C TpS

(Sad) Fact: Frobenius non—classical curves with ; > 1 are components of C3.

E. Berardini & J. Nardi 11/13

On the number of rational points of curves over a surface in P’



Curves over Frobenius classical surfaces @0
Frobenius non—classical curves on surfaces

Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.
Proposition [BN21]

Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

What about v; > 17 1n > 1= ®(P) € TpC C TpS

(Sad) Fact: Frobenius non—classical curves with ; > 1 are components of C'J. However...

Proposition [BN21]

Assume that C' is Frobenius non—classical with v; > 1 and 6 < q. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with
v1 > 1, while Borges and Homma (2018) studied singular plane curves with v1 > 1.

On the number of rational points of curves over a surface in P E. Berardini & J. Nardi 11/13



Curves over Frobenius classical surfaces @0
Frobenius non—classical curves on surfaces

Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.
Proposition [BN21]

Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

What about v; > 17 1n > 1= ®(P) € TpC C TpS

(Sad) Fact: Frobenius non—classical curves with ; > 1 are components of C'J. However...

Proposition [BN21]

Assume that C' is Frobenius non—classical with v; > 1 and 6 < q. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with
v1 > 1, while Borges and Homma (2018) studied singular plane curves with v1 > 1.

Tool: Use the existence and the minimality of the Frobenius orders vy, 5 s.t. A(vq,v2) # 0.
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Curves over Frobenius classical surfaces @0
Frobenius non—classical curves on surfaces

Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.
Proposition [BN21]

Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

What about v; > 17 1n > 1= ®(P) € TpC C TpS

(Sad) Fact: Frobenius non—classical curves with ; > 1 are components of C'J. However...
Proposition [BN21]

Assume that C' is Frobenius non—classical with v; > 1 and 6 < q. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with
v1 > 1, while Borges and Homma (2018) studied singular plane curves with v1 > 1.

Tool: Use the existence and the minimality of the Frobenius orders vy, 5 s.t. A(vq,v2) # 0.
Example: C' is Frobenius non—classical = {v1,v2} # {1,2} = A(1,2) = 0. If (P) € TpS

=AML= W'-g'w) (=)~ (-] =0

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 11/13



Curves over Frobenius classical surfaces @0
Frobenius non—classical curves on surfaces

Aim: Understand the components of C3= {P € S | ®(P) € TpS} on a Frob. classical surface.
Proposition [BN21]

Let C be a non—plane curve lying on a surface S. Assume that C is Frobenius non—classical with
vy = 1. Then C is not a component of C3.

What about v; > 17 1n > 1= ®(P) € TpC C TpS

(Sad) Fact: Frobenius non—classical curves with ; > 1 are components of C'J. However...
Proposition [BN21]

Assume that C' is Frobenius non—classical with v; > 1 and 6 < q. Then C is plane.

Remark: Hefez and Voloch (1990) gave the exact number of rational points on smooth curves with
v1 > 1, while Borges and Homma (2018) studied singular plane curves with v1 > 1.

Tool: Use the existence and the minimality of the Frobenius orders vy, 5 s.t. A(vq,v2) # 0.
Example: C' is Frobenius non—classical = {v1,v2} # {1,2} = A(1,2) = 0. If (P) € TpS

ALY = W —g'w) [(-D)g (-7 =0
®(P) & TpS v > 1

On the number of rational points of curves over a surface in P3 E. Berardini & J. Nardi 11/13



Curves over Frobenius classical surfaces O®

vS

Frobenius classical components of C3

Recap: A component of Cg falls in one of the following cases:
® 1 > 1: in this case, if it has § < ¢, it is plane;

® it is Frobenius classical, i.e. {vy,10} ={1,2}.

Conjecture: Non—plane Frobenius classical curves with § < ¢ are not components of C.

On the number of rational points of curves over a surface in p3 E. Berardini & J. Nardi 1



Curves over Frobenius classical surfaces O®

Frobenius classical components of Cs

Recap: A component of Cg falls in one of the following cases:
® 1 > 1: in this case, if it has § < ¢, it is plane;

® it is Frobenius classical, i.e. {vy,10} ={1,2}.

Conjecture: Non—plane Frobenius classical curves with § < ¢ are not components of C.

Example of surface with highly reducible C%

Over F5, consider the surface S defined by

f= 2XoX?+2X}+2X2X; +2XoX1 X + X2X; + 2Xo X2 + 3X1 X2
+3X3 + 4X3X3 + XoX1X3 + X2 X3 + 2X1 X2 X3 + 2X3X;3
+3XOX§ + 4X1X32 ar XQX??.

The curve C3 has degree 21 and is formed of 15 F5-lines and one non—plane sextic (6 = ¢ + 1).

On the number of rational points of curves over a surface in P* E. Berardini & J. Nardi
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Result and conclusion ®

Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C' be a non—plane
irreducible curve of degree 0 < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

0(d+qg—1)
#C(F,) < —

Under the conjecture, the bound also holds for Frobenius classical curves.

" " —=
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Geometry of curves OO Curves over Frobenius classical surfaces OO

Result and conclusion ®

Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C' be a non—plane
irreducible curve of degree 0 < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

6(d+qg—1
#C(F,) < %,
Under the conjecture, the bound also holds for Frobenius classical curves.

® A plane curve on a degree d surface has § < d = our bound holds for plane curves which
have at least one point P such that ®(P) ¢ TpC by Stohr—Voloch bound (6(0 + ¢ — 1)/2).
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Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C' be a non—plane
irreducible curve of degree 0 < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

< 6(d+2q— 1).

#C(Fy)

Under the conjecture, the bound also holds for Frobenius classical curves.

® A plane curve on a degree d surface has § < d = our bound holds for plane curves which
have at least one point P such that ®(P) ¢ TpC by Stohr—Voloch bound (6(0 + ¢ — 1)/2).

®* Embedding entails arithmetic and geometric constraints on a variety:
For 6 =11 and d = 5 over Fg, C' has genus at most 17 and #C(F,) < 72.
In ManyPoints, maximal curves of genus 16 and 17 have 74 Fg—points.
These record curves cannot lie on a Frobenius classical surface in P3, unless being a
component of C3.
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Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C' be a non—plane
irreducible curve of degree 0 < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

0(d+qg—1)
#C(F,) < —

Under the conjecture, the bound also holds for Frobenius classical curves.

Future question

Our theorem essentially relies on the geometry of space curves and the intersection theory in P3.

Can we generalize our approach when C' C S C P", forn > 47
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Main result & Conclusion

Theorem [BN21]

Let S be an irreducible Frobenius classical surface of degree d > 1 in P2. Let C' be a non—plane
irreducible curve of degree 0 < ¢ lying on S. Suppose C' is Frobenius non—classical. Then

0(d+qg—1)
#C(F,) < —

Under the conjecture, the bound also holds for Frobenius classical curves.

Future question

Our theorem essentially relies on the geometry of space curves and the intersection theory in P3.

Can we generalize our approach when C' C S C P", forn > 47

Thank you for your attention!
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What about C C S C P" for n > 47

Can we generalize our approach when C' C S C P", forn >4 7

On the number of rational points of curves over a surface in ‘ E. Berardini & J. Nardi



What about C C S C P" for n > 47

Can we generalize our approach when C' C S C P", forn >4 7

Consider the varieties in S x P
® I'c = {(P,®(P)) € C? | P € C} the graph of ® restricted to the curve C,
o Ts={(P,Q)eSxP"|PecS QecTpS}.

Then C(F,) <~ T'e NTs =~ {P € C | ®(P) € TpS}.
Remark: C3 was the image of T'c N Ts € S x P3 under the 1% projection.

E. Berardini & J. Nardi

13/13
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What about C C S C P" for n > 47

Can we generalize our approach when C' C S C P", forn >4 7
Consider the varieties in S x P
® I'c = {(P,®(P)) € C? | P € C} the graph of ® restricted to the curve C, (dim 1)
o Ts={(P,Q)eSxP"|PecS QecTpS}. (dim 4)
Then C(F,) <~ T'e NTs =~ {P € C | ®(P) € TpS}.
Remark: C3 was the image of T'c N Ts € S x P3 under the 1% projection.

I'c and Ts have complementary dimensions in S x P" (of dim n + 2) if and only if n = 3.
— bound the number of rational points on C' by a fraction of the intersection product [T'¢] - [Ts].

When n >4, [T¢] - [Ts] = 0 while Te N Ts # @.

Idea: Fix this dimension incompatibility by blowing up 7g or S x S.
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