The geometry of stabiliser codes

Simeon Ball

Let $\left\{|x\rangle \mid x \in \mathbb{F}_{p}\right\}$ be a basis for \mathbb{C}^{p}.

Let η be a primitive p-th root of unity in \mathbb{C}.
For $a, b \in \mathbb{F}_{p}$, define linear maps $X(a)$ and $Z(b)$ as

$$
X(a)|x\rangle=|x+a\rangle
$$

and

$$
Z(b)|x\rangle=\eta^{b x}|x\rangle
$$

The "commuting" relation is

$$
X(a) Z(b) X\left(a^{\prime}\right) Z\left(b^{\prime}\right)=\eta^{a^{\prime} b-b^{\prime} a} X\left(a^{\prime}\right) Z\left(b^{\prime}\right) X(a) Z(b)
$$

The n qupit Hilbert space of local dimension p is $\left(\mathbb{C}^{p}\right)^{\otimes n}$
the elements of which are

$$
\sum_{x \in \mathbb{F}_{p}^{n}} c_{x}\left|x_{1} x_{2} \cdots x_{n}\right\rangle
$$

The norm of c_{x} is the probability of finding the quantum state in $\left|x_{1} x_{2} \cdots x_{n}\right\rangle$.

Example

The Bell state

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

The linear maps on $\left(\mathbb{C}^{p}\right)^{\otimes n}$

$$
\sigma_{1} \otimes \cdots \otimes \sigma_{n}
$$

where the Pauli operator $\sigma_{i}=X\left(a_{i}\right) Z\left(b_{i}\right)$, form a basis for the linear maps on this space.

Let $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$. The "commuting" relation is

$$
X(a) Z(b) X\left(a^{\prime}\right) Z\left(b^{\prime}\right)=\eta^{a \cdot b^{\prime}-b \cdot a^{\prime}} X\left(a^{\prime}\right) Z\left(b^{\prime}\right) X(a) Z(b)
$$

The (multiplicative) subgroup

$$
S=\{X(a) Z(b) \mid(a, b) \in C\}
$$

is commutative iff $C \subseteq \mathbb{F}_{p}^{2 n}$ is a totally isotropic subspace w.r.t the symplectic form.

Let

$$
\left.Q(S)=\left\{|\phi\rangle \in\left(\mathbb{C}^{p}\right)^{\otimes n}|M| \phi\right\rangle=|\phi\rangle, \forall M \in S\right\}
$$

Lemma

$$
\operatorname{dim} Q(S)=p^{k} \text { iff }|S|=p^{n-k} \text { iff } \operatorname{dim} C=n-k
$$

Lemma

For E and E^{\prime} Pauli operators and orthogonal $|\phi\rangle,\left|\phi^{\prime}\right\rangle \in Q(S)$,

$$
E|\phi\rangle \text { and } E^{\prime}\left|\phi^{\prime}\right\rangle \text { are orthogonal }
$$

unless $E^{\dagger} E^{\prime} \in$ Centraliser $(S) \backslash S$.
Observe from the "commuting" relation

$$
\text { Centraliser }(S)=\left\{X(a) Z(b) \mid(a, b) \in C^{\perp}\right\}
$$

Aim: Find C for which $C^{\perp} \backslash C$ has only large symplectic weight vectors. $\left(\operatorname{swt}((a, b))=\left|\left\{i \mid\left(a_{i}, b_{i}\right) \neq(0,0)\right\}\right|\right)$
$Q(S)$ is a $[[n, k, d]]_{p}$ quantum stabiliser code, where d is the minimum symplectic weight of $C^{\perp} \backslash C$.

Suppose the $(n-k) \times 2 n$ matrix

$$
G=(A \mid B)
$$

is the generator matrix of a symplectic self-orthogonal code C.
The i-th and the $(i+n)$-th coordinate correspond to the i-th Pauli operator.

Let ℓ_{i} be the line spanned by the i-th and $(i+n)$-th column of G.
The set

$$
\mathcal{X}=\left\{\ell_{i} \mid i=1, \ldots, n\right\}
$$

of n lines in $P G(n-k-1, p)$ is called a quantum set of lines.

For $k=0$ we can take A be a symmetric $n \times n$ matrix with entries from \mathbb{F}_{p} and B to be the identity.

Replacing the i-th and $(i+n)$-th column of G with another basis for ℓ_{i} gives an equivalent stabiliser code.

Thus, equivalent $[[n, 0, d]]_{p}$ stabiliser codes are given by different graphs with \mathbb{F}_{p} weighted edges.
(Glynn et al.) An $[[n, k, d]]_{2}$ stabiliser code is equivalent to a set \mathcal{X} of n lines in $P G(n-k-1,2)$ in which every co-dimension 2 subspace is skew to an even number of the lines of \mathcal{X}.

1. This is assuming that C^{\perp} has no codewords of weight one.
2. The minimum distance is the minimum d for which $x_{1}+\cdots+x_{d}=0$ where x_{i} are on distinct lines of \mathcal{X} (and the remaining lines are not all contained in a hyperplane).
3. (Bierbrauer, Marcugini, Pambianco 2009) used this to prove that there is no $[[13,5,4]]_{2}$ stabiliser code.
4. The line $\ell_{i} \in \mathcal{X}$ is the span of the i-th and $(i+n)$-th column of a generator matrix for C.

Given a $n \times n$ symmetric matrix $\left(a_{i j}\right)$ over \mathbb{F}_{p}, we define the (graphical) set of lines in $P G(n-1, p)$ as the set of lines ℓ_{i}, where ℓ_{i} is the span of e_{i} and $\sum_{j} a_{i j} e_{j}$.

(Ball-Puig 2021)

An $[[n, k, d]]_{p}$ stabiliser code is equivalent to a graphical set \mathcal{X} of n lines in $P G(n-1, p)$ and a $(k-1)$-dimensional subspace U.

1. If pure then the minimum distance is the minimum d for which $x_{1}+\cdots+x_{d} \in U, x_{i}$ are on distinct lines of \mathcal{X}.
2. An $[[n, k, d]]_{p}$ stabiliser code is a $\left(\left(n, p^{k}, d\right)\right)_{p}$ quantum error-correcting code.
(Ball-Puig 2021) We can replace U by a set of points and get a $((n,(p-1)|U|+1, d))_{p}$ quantum error-correcting code.
1.The minimum distance is the minimum d for which $x_{1}+\cdots+x_{d} \in\left\langle u_{1}, u_{2}\right\rangle, x_{i}$ are on distinct lines of \mathcal{X} and $u_{i} \in U$.
3. The Rains-Hardin-Shor-Sloane $((5,6,2))_{2}$ code from 1997 has $\ell_{i}=\left\langle e_{i}, e_{i-1}+e_{i+1}\right\rangle$ in $P G(4,2)$ with $e_{i}+e_{i+1}+e_{i+3}$ being the points of U.
4. The Yo-Chen-Lai-Oh $((9,12,3))_{2}$ code from 2007 has
$\ell_{i}=\left\langle e_{i}, e_{i-1}+e_{i+1}\right\rangle$ in $P G(8,2)$ with U being a code of 5 linearly independent points with vertex $e_{1}+e_{4}+e_{7}$.
5. This may allow us to determine if there is a $((9,12,4))_{3}$ code which is the direct sum of stabiliser codes.
(Ball-Moreno 2022) An $[[n, k, d]]_{2^{h}}$ stabiliser code is equivalent to a set \mathcal{X} of n sets of h lines in $\operatorname{PG}(h(n-k)-1,2)$ in which every co-dim 2 subspace is skew to an even number of the lines of \mathcal{X}.
6. This is assuming that C^{\perp} has no codewords of weight one.
7. d is the minimum for which $x_{1}+\cdots+x_{d}=0$ where $x_{i} \in \pi_{i}$ and
π_{i} is space spanned by i-th element of \mathcal{X}.
8. This should allow us to classify all $[[8,0,5]]_{4}$ stabiliser codes.
