Planes intersecting the Veronese surface in $\operatorname{PG}(5, q), q$ even

Nour Alnajjarine
(Joint work with Michel Lavrauw)
Faculty of Engineering and Natural Sciences
Sabancı University

Sixth Irsee Conference

Hello!

BASIC DEFINITIONS AND NOTATIONS

Let V_{1}, \ldots, V_{t} be vector spaces over the field $\mathbb{F}_{q} ; \operatorname{dim}\left(V_{i}\right)=m_{i}$.

- The t-order tensor product $V:=V_{1} \otimes \ldots \otimes V_{t}$ is defined as the set of multilinear functions from $V_{1}^{\vee} \times \ldots \times V_{t}^{\vee}$ into \mathbb{F}_{q}, where V_{i}^{\vee} is the dual space of V_{i}.
- Fundamental (pure or rank-1) tensors are tensors of the form $v_{1} \otimes \ldots \otimes v_{t}$.
- The rank of a tensor $A \in V$ is the smallest integer r such that

$$
\begin{equation*}
A=\sum_{i=1}^{r} A_{i} \tag{1}
\end{equation*}
$$

with each A_{i} a fundamental tensor of V.

$$
V=V_{1} \otimes \ldots \otimes V_{t} ; V_{i} \cong \mathbb{F}_{q}^{n_{i}}
$$

- Algorithms: given a tensor A, does there exist an algorithm that determines $R(A)$ and decompose it as the sum of fundamental tensors?
- Classifications: can we determine orbits of tensors under some natural group actions:
- $G:=$ Stabiliser in $\mathrm{GL}(V)$ of the set of rank-1 tensors.

Our focus:

The classification of subspaces of $\operatorname{PG}(5, q)$.

Motivation

- $\operatorname{Rank}(A)=\operatorname{Rank}(\lambda A)$ for $A \in V$ and $\lambda \in \mathbb{F}$.
- Determining the rank of tensors in $V \Longleftrightarrow$ Determining the rank of points in $\mathrm{PG}(V)$.
- Example: $\mathrm{PG}\left(\mathbb{F}_{q}^{2} \otimes \mathbb{F}_{q}^{3} \otimes \mathbb{F}_{q}^{3}\right) \cong \mathrm{PG}(17, \mathrm{q})$.

If $V=\mathbb{F}_{q}^{2} \otimes \mathbb{F}_{q}^{3} \otimes \mathbb{F}_{q}^{3}$, the number of G-orbits is $\mathbf{1 8}$ (ML, Sheekey, 2015).
G-orbits of subspaces of V :

- Classification of lines in $\operatorname{PG}(8, q)$ (ML, Sheekey, 2015).
- Classification of lines in $\operatorname{PG}(5, q)$ (ML, Popiel, 2020).
- Classification of Planes in $\operatorname{PG}(5, q), q$ odd, having at least one rank-1 point (ML, Popiel, Sheekey, 2020).

Algebraic Varieties:

- Fundamental tensors in $V \Longleftrightarrow$ Points of the Segre variety.
- Example: $\sigma_{1,2,2}: \mathrm{PG}\left(\mathbb{F}_{q}^{2}\right) \times \mathrm{PG}\left(\mathbb{F}_{q}^{3}\right) \times \mathrm{PG}\left(\mathbb{F}_{q}^{3}\right) \longrightarrow \mathrm{PG}(17, q)$

$$
\left(\left\langle v_{1}\right\rangle,\left\langle v_{2}\right\rangle,\left\langle v_{3}\right\rangle\right) \mapsto\left\langle v_{1} \otimes v_{2} \otimes v_{3}\right\rangle
$$

- Fundamental tensors in the subspace of symmetric tensors in V \Longleftrightarrow Points of the Veronese variety.
- The Veronese surface: $\mathcal{V}\left(\mathbb{F}_{q}\right) \subset S_{2,2}\left(\mathbb{F}_{q}\right)$:

$$
\begin{gathered}
\nu: \mathrm{PG}(2, q) \longrightarrow \mathrm{PG}(5, q) \\
\left\langle\left(x_{0}, x_{1}, x_{2}\right)\right\rangle \mapsto\left(x_{0}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right) .
\end{gathered}
$$

- $K:=$ Stabiliser of $\mathcal{V}\left(\mathbb{F}_{q}\right)$.

Subspaces of $\mathrm{PG}(5, q)$ are points in $\mathrm{PG}\left(S^{2} \mathbb{F}_{q}^{3} \otimes \mathbb{F}_{q}^{r}\right)$.

The space $\operatorname{PG}(5, q)$ and Linear systems of conics

Linear systems of conics := Subspaces $(\mathrm{PG}(W))$, where $W=$ space of 2-forms on $\operatorname{PG}(2, q)$).

$$
\begin{gathered}
\nu: \mathrm{PG}(2, q) \longrightarrow \mathrm{PG}(5, q) \\
\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(x_{0}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)
\end{gathered}
$$

- $C=\mathcal{Z}\left(a_{00} X_{0}^{2}+a_{01} X_{0} X_{1}+\ldots+a_{22} X_{2}^{2}\right)$ in $\operatorname{PG}(2, q)$ corresponds to the hyperplane section

$$
H\left[a_{00}, a_{01}, a_{02}, a_{11}, a_{12}, a_{22}\right] \cap \mathcal{V}\left(\mathbb{F}_{q}\right)
$$

Subspaces of $\mathrm{PG}(5, q)$ correspond to linear systems of conics in $\operatorname{PG}(2, q)$.

Particularly:

- a pencil of conics $\mathcal{P}=\left\langle C_{1}, C_{2}\right\rangle$ corresponds to a solid of $\operatorname{PG}(5, q)$.
- a net of conics $\mathcal{N}=\left\langle C_{1}, C_{2}, C_{3}\right\rangle$ corresponds to a plane of $\operatorname{PG}(5, q)$.
- a web of conics $\mathcal{W}=\left\langle C_{1}, C_{2}, C_{3}, C_{4}\right\rangle$ corresponds to a line of $\operatorname{PG}(5, q)$.

Classifying linear systems of conics in $\mathrm{PG}(2, q) \Longleftrightarrow$ classifying subspaces of $\operatorname{PG}(5, q)$.

Previous results on linear systems of conics

- Dickson (1908): Classified pencils of conics over \mathbb{F}_{q}, q odd.
- Wilson (1914): Incompletely classified rank-one nets of conics (nets with at least a //) over \mathbb{F}_{q}, q odd.
- Campbell (1927): Incompletely classified pencils of conics over \mathbb{F}_{q}, q even.
- Campbell (1928): Incompletely classified nets of conics over \mathbb{F}_{q}, q even.

Previous results on orbits of subspaces of

$\operatorname{PG}(5, q)$:

- points, hyperplanes, for all q :
- lines, for all q : [ML, T. Popiel, 2020]
- solids, for q odd:
[ML, T. Popiel, 2020]
- planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially, for q odd:
[ML, T. Popiel, J. Sheekey, 2020]
- solids, for q even:
[N. Alnajjarine, ML, T. Popiel, 2022]
- planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially, for q even.
- planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ trivially, for q odd.
- planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ trivially, for q even.

Previous results on orbits of subspaces of

$\operatorname{PG}(5, q)$:

- points, hyperplanes, for all $q: \checkmark$
- lines, for all $q: \sqrt{ }$
[ML, T. Popiel, 2020]
- solids, for q odd:
[ML, T. Popiel, 2020]
- planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially, for q odd:
[ML, T. Popiel, J. Sheekey, 2020]
- solids, for q even:
[N. Alnajjarine, ML, T. Popiel, 2022]
- planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially, for q even.

PG(5, odd) $\operatorname{vs} \operatorname{PG}(5$, even $)$

- q odd: \exists a polarity: the set of conic planes of $\mathcal{V}\left(\mathbb{F}_{q}\right) \rightarrow$ the set of tangent planes of $\mathcal{V}\left(\mathbb{F}_{q}\right)$.
- lines $\stackrel{\text { polarity }}{\Longleftrightarrow}$ solids.
- $\mathcal{N}=\left\langle C_{1}, C_{2}, C_{3}\right\rangle ; C_{1}=/ / \longrightarrow$
$\pi=H_{1} \cap H_{2} \cap H_{3} \xrightarrow{\text { polarity }}$
$\pi^{\prime}=\left\langle P_{1}, P_{2}, P_{3}\right\rangle ; P_{1} \in \mathcal{V}\left(\mathbb{F}_{q}\right) \longrightarrow$
Rank-one nets of conics \Longleftrightarrow planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially.
- q even: No such polarity \longrightarrow
- lines $\stackrel{?}{\Longleftrightarrow}$ solids.
- Rank-one nets of conics $\stackrel{?}{\Longleftrightarrow}$ planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially.

OUR MAIN RESULT

- $K:=$ Setwise stabiliser of $\mathcal{V}\left(\mathbb{F}_{q}\right)$ in $\operatorname{PGL}(6, q)$.
- $q=2, K \cong \operatorname{Sym}(7)$ (as the kernel of this action is trivial).
- $q>2, K \cong \operatorname{PGL}(3, q)$.

Planes in $\operatorname{PG}(5, q)$ meeting $\mathcal{V}\left(\mathbb{F}_{q}\right), q$ even:
Theorem: There are 15 K -orbits of planes having at least one rank-1 point in $\mathrm{PG}(5, q)$ and 5 when $q=2$.

Points and Lines of $\mathrm{PG}(5, q)$

K-orbits of Points:

- Rank-one points $\left(q^{2}+q+1\right)$.
- Rank-two points in the nucleus plane $\left(q^{2}+q+1\right)$.
- Rank-two points outside the nucleus plane $\left(q^{2}-1\right)\left(q^{2}+q+1\right)$.
- Rank-three points $\left(q^{5}-q^{2}\right)$.
- Each two points P, Q of $\mathcal{V}\left(\mathbb{F}_{q}\right)$ lie on a unique conic of defined by $\mathcal{C}_{P, Q}:=\nu\left(\left\langle\nu^{-1}(P), \nu^{-1}(Q)\right\rangle\right)$.
- Each rank-2 point R of $\operatorname{PG}(5, q)=\left\langle\mathcal{V}\left(\mathbb{F}_{q}\right)\right\rangle$ defines a unique conic \mathcal{C}_{R} in $\mathcal{V}\left(\mathbb{F}_{q}\right)$.
K-orbits of lines: [ML-Popiel, 2020] There are $15 K$-orbits of lines in $\operatorname{PG}(5, q)$.

Lines in PG(5, $q), q$ EVEN:

Orbits	Point-OD's
o_{5}	$[2,0, q-1,0]$
o_{6}	$[1,1, q-1,0]$
$o_{8,1}$	$[1,0,1, q-1]$
$o_{8,2}$	$[1,1,0, q-1]$
o_{9}	$[1,0,0, q]$
o_{10}	$[0,0, q+1,0]$
$o_{12,1}$	$[0, q+1,0,0]$
$o_{12,2}$	$[0,1, q, 0]$
$o_{13,1}$	$[0,1,1, q-1]$
$o_{13,2}$	$[0,0,2, q-1]$
o_{14}	$[0,0,3, q-2]$
o_{15}	$[0,0,1, q]$
$o_{16,1}$	$[0,1,0, q]$
$o_{16,2}$	$[0,0,1, q]$
o_{17}	$[0,0,0, q+1]$

Representation of Subspaces of $\operatorname{PG}(5, q)$

- $\operatorname{PG}(5, q)=\left\langle\mathcal{V}\left(\mathbb{F}_{q}\right)\right\rangle$.
- Every point $x=\left(x_{0}, . ., x_{5}\right) \in \mathrm{PG}(5, q)$ can be represented by

$$
M_{x}=\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{1} & x_{3} & x_{4} \\
x_{2} & x_{4} & x_{5}
\end{array}\right]
$$

- The plane in $\operatorname{PG}(5, q)$ spanned by the 1st three points of the standard frame is

$$
\pi=\left[\begin{array}{ccc}
x & y & z \\
y & . & \cdot \\
z & . & .
\end{array}\right]:=\left\{\left[\begin{array}{ccc}
x & y & z \\
y & 0 & 0 \\
z & 0 & 0
\end{array}\right]:(x, y, z) \in \mathbb{F}_{q}^{3} ;(x, y, z) \in \mathrm{PG}(2, q)\right\} .
$$

Planes of $\operatorname{PG}(5, q)$ and cubic curves in $\operatorname{PG}(2, q)$
$\pi \longrightarrow \mathrm{C}=\mathcal{Z}$ (determinant of its matrix representation).

K-ORBITS INVARIANTS

Let W be a subspace of $\operatorname{PG}(5, q)$.

- The rank distribution of W is

$$
\left[r_{1}, r_{2}, r_{3}\right]
$$

where

$$
r_{i}=\# \text { of rank } i \text { points in } W
$$

Let $U_{1}, U_{2}, \ldots, U_{m}$ denote the distinct K-orbits of r-spaces in $\mathrm{PG}(5, q)$.

- The r-space orbit-distribution of W is

$$
\left[u_{1}, u_{2}, \ldots, u_{m}\right]
$$

where
$u_{i}=\#$ of r-spaces incident with W which belong to the orbit U_{i}.

Properties and Approach:

- Approach: We study the possible Point-orbit distributions and discuss the possibility of planes with same Point-OD to split or not under the action of K.
- Lemma: Planes with rank distribution $\left[1,0, q^{2}+q\right]$ and [$2, r_{2}, r_{3}$] with $r_{2}<q$ do not exist.
- Rank-2 points: The geometry associated with rank-1,2 points can help! $\left(\pi=\left\langle Q_{1}, Q_{2}, ?\right\rangle\right.$, where $\operatorname{rank}\left(Q_{1}\right)=1$ and $\left.\operatorname{rank}\left(Q_{2}\right)=2\right)$.

The Structure of Discussion:

THE CASE $r_{2 n}=0$:

$\pi=\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle: \operatorname{rank}\left(Q_{1}\right)=1, \operatorname{rank}\left(Q_{i}\right)=2, i=2,3$, and $\pi \cap \mathcal{N}=\emptyset$.

- $\mathcal{C}_{Q_{2}}=\mathcal{C}_{Q_{3}}: Q_{1} \in \mathcal{C}_{Q_{2}}$ or $Q_{1} \notin \mathcal{C}_{Q_{2}} \rightarrow \Sigma_{6}$.
- $Q_{1}=U=\mathcal{C}_{Q_{2}} \cap \mathcal{C}_{Q_{3}}$.
- $Q_{1} \in \mathcal{C}_{Q_{2}} \backslash \mathcal{C}_{Q_{3}}$.
- $Q_{1} \notin \mathcal{C}_{Q_{2}} \cup \mathcal{C}_{Q_{3}}:$
- The perspective is changed to study the possible line orbit of $\left\langle Q_{2}, Q_{3}\right\rangle$.
- $\left\langle Q_{2}, Q_{3}\right\rangle \in o_{13,2} \Longleftrightarrow Q_{2} \in T_{U}\left(\mathcal{C}_{Q_{2}}\right)$ and $Q_{3} \notin T_{U}\left(\mathcal{C}_{Q_{3}}\right)$, and $\left\langle Q_{2}, Q_{3}\right\rangle \in o_{14} \Longleftrightarrow Q_{2} \notin T_{U}\left(\mathcal{C}_{Q_{2}}\right)$ and $Q_{3} \notin T_{U}\left(\mathcal{C}_{Q_{3}}\right)$.
- A line of type $o_{13,2}$ is contained in $\pi \rightarrow \Sigma_{12}, \Sigma_{13}, \Sigma_{14}(q \neq 4)$ OR
- No line of type $o_{13,2}$ is contained in $\pi \rightarrow \Sigma_{14}^{\prime}(q=4)$.

K-orbits of planes	Representatives	Point-OD	Condition(s)
Σ_{1}	$\left[\begin{array}{lll}x & y & \cdot \\ y & z & \cdot \\ \cdot & \cdot & \cdot\end{array}\right]$	$\left[q+1,1, q^{2}-1,0\right]$	
Σ_{2}	$\left[\begin{array}{ccc}x & \cdot & \cdot \\ \cdot & y & \cdot \\ \cdot & \cdot & z\end{array}\right]$	$\left[3,0,3 q-3, q^{2}-2 q+1\right]$	
Σ_{3}	$\left[\begin{array}{ccc}x & \cdot & z \\ \cdot & y & \cdot \\ z & \cdot & \cdot\end{array}\right]$	$\left[2,1,2 q-2, q^{2}-q\right]$	
Σ_{4}	$\left[\begin{array}{ccc}x & \cdot & z \\ \cdot & y & z \\ z & z & \cdot\end{array}\right]$	$\left[2,1,2 q-2, q^{2}-q\right]$	
Σ_{5}	$\left[\begin{array}{lll}x & . & z \\ \cdot & y & z \\ z & z & z\end{array}\right]$	$\left[2,0,2 q-2, q^{2}-q+1\right]$	
Σ_{6}	$\left[\begin{array}{cc}x & . \\ \cdot & y+c z \\ . & z\end{array}\right.$	$\left[1,0, q+1, q^{2}-1\right]$	$\operatorname{Tr}\left(c^{-1}\right)=1$
Σ_{7}	$\left[\begin{array}{lll}x & y & z \\ y & \cdot & \cdot \\ z & \cdot & \cdot\end{array}\right]$	$\left[1, q+1, q^{2}-1,0\right]$	
Σ_{8}	$\left[\begin{array}{lll}x & y & \cdot \\ y & \cdot & z \\ \cdot & z & \cdot\end{array}\right]$	$\left[1, q+1, q-1, q^{2}-q\right]$	

$$
\begin{aligned}
& \Sigma_{9} \quad\left[\begin{array}{lll}
x & y & \cdot \\
y & z & z \\
\cdot & z & \cdot \\
\cdot & \cdot & y \\
y & z & \cdot \\
\cdot & \cdot & z
\end{array}\right] \\
& {\left[1,1,2 q-1, q^{2}-q\right]} \\
& {\left[1,1,2 q-1, q^{2}-q\right]} \\
& \Sigma_{11}\left[\begin{array}{ccc}
x & y & \dot{c} \\
y & z & z \\
\cdot & z & x+z
\end{array}\right] \quad\left[1,1, q-1, q^{2}\right] \\
& \Sigma_{12}\left[\begin{array}{ccc}
x & y & c x \\
y & y+z & \cdot \\
c x & \cdot & c^{2} x+z
\end{array}\right] \quad\left[1,0, q+1, q^{2}-1\right] \quad \operatorname{Tr}(c)=1,(*) \\
& \Sigma_{13}\left[\begin{array}{ccc}
x & y & c x \\
y & y+z & c^{2} \cdot \\
c x & \cdot & c^{2}+z
\end{array}\right] \quad\left[1,0, q-1, q^{2}+1\right] \quad \operatorname{Tr}(c)=0,(* *) \\
& \Sigma_{14}\left[\begin{array}{ccc}
x & y & c x \\
y & y+z & \cdot \\
c x & \cdot & c^{2} x+z
\end{array}\right] \quad\left[1,0, q \mp 1, q^{2} \pm 1\right] \quad \operatorname{Tr}(c)=\operatorname{Tr}(1), q \neq 4,(* * *) \\
& \Sigma_{14}^{\prime} \quad\left[\begin{array}{ccc}
x+z & z & z \\
z & y+z & z \\
z & z & y
\end{array}\right] \\
& {\left[1,0, q-1, q^{2}+1\right] \quad q=4} \\
& \Sigma_{15} \quad\left[\begin{array}{lll}
x & y & z \\
y & z & \cdot \\
z & \cdot & \cdot
\end{array}\right] \\
& {\left[1,1, q-1, q^{2}\right]}
\end{aligned}
$$

The orbits Σ_{12}, Σ_{13} AND Σ_{14}

- $\pi=\left\langle\right.$ Rep of $\left.o_{13,2}, Q_{1}\right\rangle ; Q_{1}=\nu(a, b, c) \rightarrow$

$$
\pi_{c}=\left[\begin{array}{ccc}
x & y & c x \\
y & y+z & \cdot \\
c x & \cdot & c^{2} x+z
\end{array}\right]
$$

- The cubic curve associated with π_{c} is:

$$
C_{c}=x\left(z^{2}+y z+c^{2} y^{2}\right)+y^{2} z .
$$

Inflexion Points of cubic curves

$$
C=\sum_{0 \leqslant i \leqslant j \leqslant k \leqslant 2} a_{i j k} X_{i} X_{j} X_{k} .
$$

- $C=C(A, a) ; a:=$ coefficient of $X_{0} X_{1} X_{2}$ and $A=\left[a_{i j k}\right]$.
- C^{\prime} is the curve corresponding to the tangent lines to the curve C
- $C^{\prime \prime}$ is the curve corresponding to the tangent lines to the curve C^{\prime}
- If $a \neq 0$, then inflexion points are nonsingular points of $C \cap C^{\prime \prime}$.

THE ORBITS Σ_{12}, Σ_{13} AND Σ_{14}

- $\pi=\left\langle\right.$ Rep of $\left.o_{13,2}, Q_{1}\right\rangle ; Q_{1}=\nu(a, b, c) \rightarrow$

$$
\pi_{c}=\left[\begin{array}{ccc}
x & y & c x \\
y & y+z & \cdot \\
c x & \cdot & c^{2} x+z
\end{array}\right]
$$

- The cubic curve associated with π_{c} is:

$$
C_{c}=x\left(z^{2}+y z+c^{2} y^{2}\right)+y^{2} z .
$$

- The Hessian of C_{c} is:

$$
C_{c}^{\prime \prime}=x\left(z^{2}+y z+c^{2} y^{2}\right)+z^{3}+\left(1+c^{2}\right) y^{2} z+c^{2} y^{3} .
$$

- Let $y=1$ and $\theta=c^{-1} z$: inflexion points of C_{c} correspond to solutions of $\theta^{3}+\theta+c^{-1}=0$.

Cubic equations over $\mathbb{F}_{2^{h}}$, (Berlekamp, Rumsey, Solomon, 1966)

$$
\theta^{3}+\theta+c^{-1}=0
$$

- has three solutions if and only if $q \neq 4, \operatorname{Tr}(c)=\operatorname{Tr}(1)$ and c^{-1} is admissible: $c^{-1}=\frac{v+v^{-1}}{\left(1+v+v^{-1}\right)^{3}}$ for some $v \in \mathbb{F}_{q} \backslash \mathbb{F}_{4}$,
- a unique solution if and only if $\operatorname{Tr}(c) \neq \operatorname{Tr}(1)$ and
- no solution if and only if $\operatorname{Tr}(c)=\operatorname{Tr}(1)$ and c^{-1} is not admissible

Characterization:

- Three inflexions $\rightarrow \Sigma_{14} ; q \neq 4$.
- A unique inflexion point $\rightarrow \Sigma_{12}\left(q=2^{\text {even }}\right)$ or $\Sigma_{13}\left(q=2^{\text {odd }}\right)$.
- No inflexion points $\rightarrow \Sigma_{12}\left(q=2^{\text {odd }}\right)$ or $\Sigma_{13}\left(q=2^{\text {even }}\right)$.

THE UNIQUENESS OF Σ_{14}

Proof:

Let L (the inflexion line) be parametrised by $(0,1,0),(0,0,1)$ and $(0,1,1)$ respectively and $Q_{a, b, c}=\nu(a, b, c)$. Then,

$$
\pi_{a, b, c}=\left\langle L, Q_{a, b, c}\right\rangle \in \Sigma_{14} .
$$

If follows that $\left\langle Q_{a, b, c}, E_{i}\right\rangle \in o_{8,1} ; 1 \leq i \leq 3$, and thus $a, b, c \neq 0$.

$$
\pi_{b, c}:\left[\begin{array}{ccc}
x+y & b x & c x \\
b x & b^{2} x+y+z & b c x \\
c x & b c x & c^{2} x+z
\end{array}\right]
$$

- $1+b+c=0, \rightarrow \#$.
- $1+b+c \neq 0, \mathscr{C}_{b, c}^{\prime \prime}=\mathcal{Z}\left(h_{b, c}\right), \alpha=\left(1+b^{2}+c^{2}\right)$ and $h_{b, c}=c^{2} \alpha^{5} x y^{2}+\alpha^{5} x z^{2}+c^{2}\left(1+b^{2}\right) \alpha y^{3}+\alpha\left(\left(1+b^{2}\right)+\alpha^{3}\left(b^{2}+\right.\right.$ $\left.\left.c^{2}\right)\right) y z^{2}+\alpha\left(c^{2}\left(b^{2}+c^{2}\right)+\alpha^{3}\left(1+b^{2}\right)\right) y^{2} z+\left(b^{2}+c^{2}\right) \alpha z^{3}$. Imposing the conditions: $E_{i} \in \mathscr{C}_{b, c}^{\prime \prime} ; 1 \leq i \leq 3$, implies that $c^{2}\left(1+b^{2}\right) \alpha=\left(b^{2}+c^{2}\right) \alpha=c^{2}\left(1+b^{2}\right) \alpha+\alpha\left(\left(1+b^{2}\right)+\right.$ $\left.\alpha^{3}\left(b^{2}+c^{2}\right)\right)+\alpha\left(c^{2}\left(b^{2}+c^{2}\right)+\alpha^{3}\left(1+b^{2}\right)\right)+\left(b^{2}+c^{2}\right) \alpha=0$. As $\alpha, c \neq 0$, we get $b=c=1$.

Conclusion:

$\Phi_{14}: \Sigma_{14} \longrightarrow o_{14}: \pi \mapsto L$ is a bijection.

UNIQUENESS OF Σ_{12}, Σ_{13}

$q=2^{\text {even }}:$

- $\pi \in \Sigma_{12}$ has a unique inflexion point $\xrightarrow{\mathbb{F}_{q^{2}}} \pi\left(\mathbb{F}_{q^{2}}\right) \in \Sigma_{14} \longrightarrow$ $L\left(\mathbb{F}_{q^{2}}\right) \subset \mathrm{PG}\left(5, q^{2}\right)$ is the unique inflexion line in $\pi\left(\mathbb{F}_{q^{2}}\right) \longrightarrow$ $L_{s}=L\left(\mathbb{F}_{q^{2}}\right) \cap \pi \in\left\{o_{15}, o_{16,2}\right\}$. Since $o_{16,2}$ cannot split by extension, $L_{s} \in o_{15}$.
- $\Phi_{12}: \Sigma_{12} \longrightarrow o_{15}: \pi \mapsto L_{s}$ is a bijection ($o_{15}:[0,0,1, q]$).
- Similarly, we can extend our work to $\mathbb{F}_{q^{3}}$ to conclude Φ_{13} : $\Sigma_{13} \longrightarrow o_{17}: \pi \mapsto L_{s}$ is a bijection ($o_{17}:[0,0,0, q+1]$).

COMPARISON WITH THE q ODD CASE:

Rank-one nets of conics μ planes meeting $\mathcal{V}\left(\mathbb{F}_{q}\right)$ non-trivially.
$\pi_{6} \in \Sigma_{6}$ meets $\mathcal{V}\left(\mathbb{F}_{q}\right)$ in a unique point, however its associated net of conics \mathcal{N}_{6} defined by

$$
\alpha X_{0} X_{1}+\beta X_{0} X_{2}+\gamma\left(X_{1}^{2}+c X_{1} X_{2}+X_{2}^{2}\right)=0
$$

has $q+1$ pairs of real lines defined by the pencil

$$
\mathcal{Z}\left(X_{0} X_{1}, X_{0} X_{2}\right)\left(\in \Omega_{4}\right)
$$

and a unique pair of conjugate imaginary lines given by

$$
\mathcal{Z}\left(X_{1}^{2}+c X_{1} X_{2}+X_{2}^{2}\right)
$$

implying that \mathcal{N}_{6} is not a rank- 1 net of conics.

K-orbits of Subspaces of $\operatorname{PG}(5, q)$

- points, for all $q: \sqrt{ }$
- lines, for all q :
[ML, T. Popiel, 2020]
- planes meeting \mathcal{V} nontrivially, for q odd: [ML, T. Popiel, J. Sheekey, 2020]
- planes meeting \mathcal{V} nontrivially, for q even: [N. Alnajjarine, ML, 2022]
- planes meeting \mathcal{V} trivially, for q odd:
- planes meeting \mathcal{V} trivially, for q even:
- solids, for q odd:
[ML, T. Popiel, 2020]
- solids, for q even: [N. Alnajjarine, ML, T. Popiel, 2021]
- hyperplanes, for all q :

Thank you!

References I

Alnajjarine, N., ML, M., Popiel, T.: Solids in the space of the Veronese surface in even characteristic, Finite Fields and Their Applications. 83, 102068, 2022.
© Alnajjarine, N., ML, M. : Planes intersecting the Veronese Surface in $\operatorname{PG}(5, q), q$ even, preprint.

雷 M. ML and T. Popiel, "The symmetric representation of lines in PG $\left(\mathbb{F}_{q}^{3} \otimes \mathbb{F}_{q}^{3}\right) "$, Discrete Math. 343, 111775, 2020.

- M. ML, T. Popiel and J. Sheekey, "Nets of conics of rank one in PG(2, q), q odd", J. Geom. 111, 36, 2020.

