On additive MDS codes with linear projections

Sam Adriaensen (Joint work with Simeon Ball)

Irsee 6

Linear MDS codes have been well studied. It is widely believed that the longest linear MDS codes are extended Reed-Solomon codes, aside from some known exceptions. Linear MDS codes have been well studied. It is widely believed that the longest linear MDS codes are extended Reed-Solomon codes, aside from some known exceptions.

What if we relax linearity to additivity? Are there long additive MDS codes over finite fields, which are not equivalent to linear codes?

Linear codes and their geometry

Let *C* be a linear $[n, k, d]_q$ code over \mathbb{F}_q .

Let *C* be a linear $[n, k, d]_q$ code over \mathbb{F}_q . Choose a generator matrix *G* for *C*.

$$G = k \left[\begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix} \right]$$

Let *C* be a linear $[n, k, d]_q$ code over \mathbb{F}_q . Choose a generator matrix *G* for *C*. RowSp(*G*) = *C*.

Let *C* be a linear $[n, k, d]_q$ code over \mathbb{F}_q . Choose a generator matrix *G* for *C*. RowSp(*G*) = *C*.

$$G = k \left[\begin{array}{c} \left(\vdots \\ \vdots \\ \vdots \\ \vdots \\ n \end{array} \right) \dots \\ \vdots \\ \vdots \\ n \end{array} \right]$$

Every column of *G* represents a point of PG(k - 1, q). This gives us a (mutli)set of *n* points in PG(k - 1, q).

Sam Adriaensen

Equivalence classes

Different generator matrices *G* of *C* may yield different point sets in PG(k - 1, q). The different point sets form an orbit of PGL(k, q).

Equivalence classes

Different generator matrices *G* of *C* may yield different point sets in PG(k - 1, q). The different point sets form an orbit of PGL(k, q).

Vice versa, from a point set we can construct a code (by reversing the previous process). This can yield different point sets, which are an orbit under code equivalence.

The parameters of the code

	Linear code	Point set
n	length	size
k	dimension	(vector) dimension of the ambient projective space
d	minimum Hamming distance	minimum number of points outside any hyperplane

Sam Adriaensen

Additive codes and their geometry

Definition

A code *C* over \mathbb{F}_q is *additive* if

 $(\forall \mathbf{x}, \mathbf{y} \in \mathbf{C})(\mathbf{x} + \mathbf{y} \in \mathbf{C}).$

Definition

A code *C* over \mathbb{F}_q is *additive* if

$$(\forall \mathbf{x}, \mathbf{y} \in \mathbf{C})(\mathbf{x} + \mathbf{y} \in \mathbf{C}).$$

Equivalently, *C* is linear over \mathbb{F}_p (with *p* the prime number dividing *q*).

Definition

A code *C* over \mathbb{F}_q is *additive* if

$$(\forall \mathbf{x}, \mathbf{y} \in \mathbf{C})(\mathbf{x} + \mathbf{y} \in \mathbf{C}).$$

Equivalently, *C* is linear over \mathbb{F}_p (with *p* the prime number dividing *q*).

In this talk we will consider codes over \mathbb{F}_{q^h} which are linear over \mathbb{F}_q .

Definition

A code *C* over \mathbb{F}_q is *additive* if

$$(\forall \mathbf{x}, \mathbf{y} \in \mathbf{C})(\mathbf{x} + \mathbf{y} \in \mathbf{C}).$$

Equivalently, *C* is linear over \mathbb{F}_p (with *p* the prime number dividing *q*).

In this talk we will consider codes over \mathbb{F}_{q^h} which are linear over \mathbb{F}_q . $q = q^h \rightarrow$ linear code q prime \rightarrow additive code

Sam Adriaensen

Let *C* be an \mathbb{F}_q -linear $(n, q^k, d)_{q^h}$ code over \mathbb{F}_{q^h} .

Let *C* be an \mathbb{F}_q -linear $(n, q^k, d)_{q^h}$ code over \mathbb{F}_{q^h} . Let *G* be a generator matrix for *C* over \mathbb{F}_q . This means that $G \in \mathbb{F}_{q^h}^{k \times n}$, and the rows of *G* are an \mathbb{F}_q -basis for *C*.

Sam Adriaensen

Let *C* be an \mathbb{F}_q -linear $(n, q^k, d)_{q^h}$ code over \mathbb{F}_{q^h} . Let *G* be a generator matrix for *C* over \mathbb{F}_q . This means that $G \in \mathbb{F}_{q^h}^{k \times n}$, and the rows of *G* are an \mathbb{F}_q -basis for *C*.

Take an \mathbb{F}_q -basis $\alpha_1, \ldots, \alpha_h$ of \mathbb{F}_{q^h} and write $\alpha = (\alpha_1, \ldots, \alpha_h)$. The *j*th column of *G* is of the form αG_j for some unique $G_j \in \mathbb{F}_q^{h \times k}$.

Sam Adriaensen

Let *C* be an \mathbb{F}_q -linear $(n, q^k, d)_{q^h}$ code over \mathbb{F}_{q^h} . Let *G* be a generator matrix for *C* over \mathbb{F}_q .

Take an \mathbb{F}_q -basis $\alpha_1, \ldots, \alpha_h$ of \mathbb{F}_{q^h} and write $\alpha = (\alpha_1, \ldots, \alpha_h)$. The *j*th column of *G* is of the form αG_j for some unique $G_j \in \mathbb{F}_q^{h \times k}$.

$$\begin{pmatrix} g_{1j} \\ \vdots \\ g_{kj} \end{pmatrix} = \begin{pmatrix} \alpha_1 g_{1j}^{(1)} + \dots + \alpha_h g_{1j}^{(h)} \\ \vdots \\ \alpha_1 g_{kj}^{(1)} + \dots + \alpha_h g_{kj}^{(h)} \end{pmatrix} = \alpha \begin{pmatrix} g_{1j}^{(1)} & \dots & g_{1j}^{(h)} \\ \vdots \\ g_{kj}^{(1)} & \dots & g_{kj}^{(h)} \end{pmatrix}$$

On additive MDS codes with linear projections

Sam Adrigenser

Let *C* be an \mathbb{F}_q -linear $(n, q^k, d)_{q^h}$ code over \mathbb{F}_{q^h} . Let *G* be a generator matrix for *C* over \mathbb{F}_q .

Take an \mathbb{F}_q -basis $\alpha_1, \ldots, \alpha_h$ of \mathbb{F}_{q^h} and write $\alpha = (\alpha_1, \ldots, \alpha_h)$. The *j*th column of *G* is of the form αG_j for some unique $G_j \in \mathbb{F}_q^{h \times k}$.

$$\begin{pmatrix} g_{1j} \\ \vdots \\ g_{kj} \end{pmatrix} = \begin{pmatrix} \alpha_1 g_{1j}^{(1)} + \dots + \alpha_h g_{1j}^{(h)} \\ \vdots \\ \alpha_1 g_{kj}^{(1)} + \dots + \alpha_h g_{kj}^{(h)} \end{pmatrix} = \alpha \begin{pmatrix} g_{1j}^{(1)} & \dots & g_{1j}^{(h)} \\ \vdots \\ g_{kj}^{(1)} & \dots & g_{kj}^{(h)} \end{pmatrix}$$

Consider the subspaces $ColSp(G_1), \ldots, ColSp(G_n)$ of PG(k - 1, q).

Sam Adriaensen

Equivalence

Definition

Call two \mathbb{F}_q -linear codes *C* and *D* over $\mathbb{F}_{q^h} \mathbb{F}_q$ -equivalent if *C* can be transformed into *D* by

- 1. permuting the coordinate positions,
- 2. in each coordinate, apply an \mathbb{F}_q -linear bijection. This bijection can be different for different coordinates.

Equivalence

Definition

Sam Adrigense

Call two \mathbb{F}_q -linear codes *C* and *D* over $\mathbb{F}_{q^h} \mathbb{F}_q$ -equivalent if *C* can be transformed into *D* by

- 1. permuting the coordinate positions,
- 2. in each coordinate, apply an \mathbb{F}_q -linear bijection.

There exist an equivalence between:

- 1. equivalence classes of \mathbb{F}_q -linear $(n, q^k, d)_{q^h}$ codes,
- 2. PGL(k, q)-orbits of multisets of *n* subspaces in PG(k 1, q) of dimension at most h 1.

Parameters of the code

Sam Adriaensen

	\mathbb{F}_q -linear code over \mathbb{F}_{q^h}	Set of subspaces of dimension < h
n	length	size
k	\mathbb{F}_q -dimension	(vector) dimension of the ambient projective space
d	minimum Hamming distance	minimum number of subspaces not contained in a hyperplane

Recognising linear codes

Theorem

Sam Adriaenser

An \mathbb{F}_q -linear $(n,q^k,d)_{q^h}$ code is \mathbb{F}_q -equivalent to a linear code

its associated set of subspaces is a subset of a Desarguesian (h - 1)-spread of PG(k - 1, q).

On additive MDS codes with linear projections

Irsee 6

9/21

MDS codes and their geometry

Linear MDS codes and arcs

Theorem (Singleton bound) If an $(n, M, d)_q$ code exists, then

$$M \leq q^{n-d+1}$$

Sam Adriaensen

On additive MDS codes with linear projections

Irsee 6

Linear MDS codes and arcs

Theorem (Singleton bound) If an $(n, M, d)_q$ code exists, then

 $M \leq q^{n-d+1}.$

Codes meeting this bound are called MDS (maximum distance separable) codes.

Sam Adriaensen

On additive MDS codes with linear projections

Irsee 6

Linear MDS codes and arcs

Theorem (Singleton bound) If an $(n, M, d)_q$ code exists, then

 $M \leq q^{n-d+1}.$

Codes meeting this bound are called MDS codes.

Proposition

A linear code is MDS

its associated point set is an arc, i.e. a set of points in PG(k - 1, q) of which any k span the space.

Sam Adriaensen

Additive MDS codes and generalised arcs

Definition

A set of (h - 1)-spaces in PG(kh - 1, q) is a called a *generalised arc* if any k of them span the space.

Sam Adriaensen

On additive MDS codes with linear projections

Irsee 6

Additive MDS codes and generalised arcs

Definition

A set of (h - 1)-spaces in PG(kh - 1, q) is a called a *generalised arc* if any k of them span the space.

Proposition (Ball, Lavrauw, Gamboa; 2021) An \mathbb{F}_q -linear $(n, q^{kh}, d)_{q^h}$ code is MDS

its associated set of subspaces is a generalised arc of (h - 1)-spaces in PG(kh - 1, q).

Question

Can we make long additive MDS codes over finite fields, which aren't equivalent to linear codes?

Can we make large generalised arcs which aren't contained in a Desarguesian spread?

Sam Adriaensen

On additive MDS codes with linear projections

12/21

Irsee 6

Generalised arcs and translation generalised quadrangles

Sam Adriaensen

On additive MDS codes with linear projections

Irsee 6 13/2

The $\mathcal{T}_2(\mathcal{O})$ construction by Tits

In PG(3, q), take a plane Π_∞ and an oval $\mathcal{O}\subset\Pi_\infty.$ We can construct a GQ

The $\mathcal{T}_2(\mathcal{O})$ construction by Tits

In PG(3, q), take a plane Π_{∞} and an oval $\mathcal{O} \subset \Pi_{\infty}$. We can construct a GQ with

Points:

- affine points,
- planes intersecting
- Π_∞ in a tangent line to \mathcal{O}_{r}

- П $_\infty$.

The $\mathcal{T}_2(\mathcal{O})$ construction by Tits

In PG(3, q), take a plane Π_{∞} and an oval $\mathcal{O} \subset \Pi_{\infty}$. We can construct a GQ with

Points:

- affine points,
- planes intersecting Π_∞ in a tangent line to ${\cal O}$, $\Pi_\infty.$

Lines:

- lines intersecting Π_∞ in a point of \mathcal{O} ,
- points of \mathcal{O} .

The $\mathcal{T}_2(\mathcal{O})$ construction by Tits

In PG(3, q), take a plane Π_{∞} and an oval $\mathcal{O} \subset \Pi_{\infty}$. We can construct a GQ with

Points:

- affine points,
- planes intersecting Π_∞ in a tangent line to ${\cal O}$, $\Pi_\infty.$

Lines:

- lines intersecting Π_{∞} in a point of \mathcal{O} ,
- points of \mathcal{O} .

and the natural incidence inherited from PG(3, q).

Translation generalised quadrangles

An oval is an arc of q + 1 points in PG(2, q). The previous construction can be generalised using a generalised arc of $q^h + 1$ (h - 1)-spaces in PG(3h - 1, q). These GQs can be characterised by certain properties of their automorphism group, and are called *translation GQs*.

Translation generalised quadrangles

An oval is an arc of q + 1 points in PG(2, q). The previous construction can be generalised using a generalised arc of $q^h + 1$ (h - 1)-spaces in PG(3h - 1, q). These GQs can be characterised by certain properties of their automorphism group, and are called *translation GQs*. The only known construction of such generalised arcs is through field reduction (i.e. they are contained in a Desarguesian spread).

Translation generalised quadrangles

An oval is an arc of q + 1 points in PG(2, q). The previous construction can be generalised using a generalised arc of $q^h + 1$ (h - 1)-spaces in PG(3h - 1, q). These GQs can be characterised by certain properties of their automorphism group, and are called *translation GQs*. The only known construction of such generalised arcs is through field reduction (i.e. they are contained in a Desarguesian spread). There have been efforts to prove that there are no other examples.

Sam Adriaensen

Definition

Let $\mathcal{A} = \{\pi_1, \dots, \pi_n\}$ be a generalised arc of (h - 1)-spaces in PG(kh - 1, q). The *projection* of \mathcal{A} from π_j is constructed as follows.

Definition

Let $\mathcal{A} = \{\pi_1, \dots, \pi_n\}$ be a generalised arc of (h - 1)-spaces in PG(kh - 1, q). The *projection* of \mathcal{A} from π_i is constructed as follows.

1. Take a ((k-1)h-1)-space Σ skew to π_j ,

Definition

Let $\mathcal{A} = \{\pi_1, \dots, \pi_n\}$ be a generalised arc of (h - 1)-spaces in PG(kh - 1, q). The *projection* of \mathcal{A} from π_i is constructed as follows.

- 1. Take a ((k-1)h-1)-space Σ skew to π_j ,
- 2. construct $\mathcal{A}' = \{ \langle \pi_i, \pi_j \rangle \cap \Sigma \| i \neq j \},\$

Definition

Let $\mathcal{A} = \{\pi_1, \dots, \pi_n\}$ be a generalised arc of (h - 1)-spaces in PG(kh - 1, q). The *projection* of \mathcal{A} from π_i is constructed as follows.

- 1. Take a ((k-1)h-1)-space Σ skew to π_j ,
- 2. construct $\mathcal{A}' = \{ \langle \pi_i, \pi_j \rangle \cap \Sigma \| i \neq j \},\$
- 3. \mathcal{A}' is a generalised arc of (h 1)-spaces in Σ and the choice of Σ irrelevant (up to isomorphism).

Definition

Let $\mathcal{A} = \{\pi_1, \dots, \pi_n\}$ be a generalised arc of (h - 1)-spaces in PG(kh - 1, q). The *projection* of \mathcal{A} from π_i is constructed as follows.

- 1. Take a ((k-1)h-1)-space Σ skew to π_j ,
- 2. construct $\mathcal{A}' = \{ \langle \pi_i, \pi_j \rangle \cap \Sigma \| i \neq j \},\$
- 3. \mathcal{A}' is a generalised arc of (h 1)-spaces in Σ and the choice of Σ irrelevant (up to isomorphism).

If \mathcal{A} is associated to the \mathbb{F}_q -linear MDS code over \mathbb{F}_{q^h} , then \mathcal{A}' is associated to

$$\{(c_1, \ldots, c_{j-1}, c_{j+1}, \ldots, c_n) \, \| \, (c_1, \ldots, c_{j-1}, 0, c_{j+1}, \ldots, c_n) \in C \}$$

Sam Adriaensen

Generalised arcs through projections

Let \mathcal{A} be a generalised arc of n (h - 1)-spaces in PG(3h - 1, q). Call a generalised arc *linear* if it is contained in a Desarguesian spread. \mathcal{A} is linear if

- (Penttila, Van de Voorde; 2013) q is odd, n > size of the second largest complete arc in PG(2, q^h), A has at least 1 linear projection;
- ► (Rottey, Van de Voorde; 2015) (Thas; 2019) q is even, h is prime, n = q^h + 1, all projections of A are linear.

Additive MDS codes with linear projections

The projection of a code

Definition Recall that the projection of a code *C* from the *i*th coordinate equals

$$\{(\mathbf{c}_1,\mathbf{c}_2)\,\|\,(\mathbf{c}_1, \quad \underbrace{0}, \quad \mathbf{,c}_2)\in C\}$$

ith coordinate

Sam Adriaensen

On additive MDS codes with linear projections

The case k > 3

Theorem (A., Ball; 2022+)

Let C be an \mathbb{F}_q -linear $(n,q^{kh},n-k+1)_{q^h}$ MDS code over $\mathbb{F}_{q^h}.$ Suppose that

- ► k > 3,
- ▶ n ≥ q + k,

► there are two coordinates from which the projection of C is F_q-equivalent to a linear code.

Then C is \mathbb{F}_q -equivalent to an \mathbb{F}_{q^s} -linear code (for some 1 < s|h).

The case k > 3

Theorem (A., Ball; 2022+)

Let C be an \mathbb{F}_q -linear $(n,q^{kh},n-k+1)_{q^h}$ MDS code over $\mathbb{F}_{q^h}.$ Suppose that

- ► k > 3,
- ▶ n ≥ q + k,

► there are two coordinates from which the projection of C is F_q-equivalent to a linear code.

Then C is \mathbb{F}_q -equivalent to an \mathbb{F}_{q^s} -linear code (for some 1 < s|h).

Corollary

If the above conditions hold and $n \ge q^e + k$, with $e = \max\{t < h \mid \mid t \mid h\}$, then C is equivalent to a linear code.

The case k = 3

Sam Adriaensen

On additive MDS codes with linear projections

The case k = 3

The case k = 3 is harder, since there is too little overlap in different projections.

Theorem (A., Ball; 2022+)

Suppose that C is an \mathbb{F}_q -linear $(n,q^{3h},n-2)_{q^h}$ MDS code over \mathbb{F}_{q^h} , and suppose that

▶
$$n \ge \max\{q^{h-1}, hq - 1\} + 4$$
,

There are 3 coordinates from which the projection of C is F_q-equivalent to a linear code.

Then C is \mathbb{F}_q -equivalent to a linear code.

Conclusion

We supported some evidence that if an additive MDS code over a finite field exists such that

- it is reasonably long,
- it is in a sense close to being (essentially) a linear code,

it must be (essentially) a linear code.

Conclusion

We supported some evidence that if an additive MDS code over a finite field exists such that

- it is reasonably long,
- it is in a sense close to being (essentially) a linear code,

it must be (essentially) a linear code.

Progress in this direction might help reduce the additive MDS conjecture to the linear MDS conjecture.

Summer school Finite geometry & Friends 2nd edition 18-22 September 2023 Brussels