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Central question

Linear MDS codes have been well studied. It is widely believed
that the longest linear MDS codes are extended Reed-Solomon
codes, aside from some known exceptions.

What if we relax linearity to additivity? Are there long additive
MDS codes over finite fields, which are not equivalent to linear
codes?
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Linear codes and their
geometry



From a linear code to projective point sets

Let C be a linear [n, k, d]q code over Fq.

Choose a generator matrix G for C.

RowSp(G) = C.

G =

· · · ·
...

... · · ·
...

...
· · · ·

k

n

Every column of G represents a point of PG(k− 1,q). This
gives us a (mutli)set of n points in PG(k − 1,q).
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Equivalence classes

Different generator matrices G of C may yield different
point sets in PG(k − 1,q). The different point sets form
an orbit of PGL(k,q).

Vice versa, from a point set we can construct a code (by
reversing the previous process). This can yield different
point sets, which are an orbit under code equivalence.
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The parameters of the code

Linear code Point set
n length size

k dimension (vector) dimension of the
ambient projective space

d minimum
Hamming distance

minimum number of points
outside any hyperplane
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Additive codes and their
geometry



Additive codes

Definition
A code C over Fq is additive if

(∀ x, y ∈ C)(x+ y ∈ C).

Equivalently, C is linear over Fp (with p the prime number
dividing q).

In this talk we will consider codes over Fqh which are
linear over Fq.

q = qh → linear code
q prime → additive code
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From an additive code to a set of subspaces

Let C be an Fq-linear (n,qk, d)qh code over Fqh .

Let G be a generator matrix for C over Fq.
Take an Fq-basis α1, . . . , αh of Fqh and write
α = (α1, . . . , αh). The jth column of G is of the form αGj

for some unique Gj ∈ Fh×k
q .
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Equivalence

Definition
Call two Fq-linear codes C and D over Fqh Fq-equivalent if
C can be transformed into D by
1. permuting the coordinate positions,
2. in each coordinate, apply an Fq-linear bijection. This

bijection can be different for different coordinates.

There exist an equivalence between:
1. equivalence classes of Fq-linear (n,qk, d)qh codes,
2. PGL(k,q)-orbits of multisets of n subspaces in

PG(k − 1,q) of dimension at most h− 1.
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Parameters of the code

Fq-linear code
over Fqh

Set of subspaces
of dimension < h

n length size

k Fq-dimension (vector) dimension of the
ambient projective space

d minimum
Hamming distance

minimum number of subspaces
not contained in a hyperplane
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Recognising linear codes

Theorem
An Fq-linear (n,qk, d)qh code is Fq-equivalent to a linear
code

⇐⇒

its associated set of subspaces is a subset of a
Desarguesian (h− 1)-spread of PG(k − 1,q).
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MDS codes and their
geometry



Linear MDS codes and arcs

Theorem (Singleton bound)
If an (n,M, d)q code exists, then

M ≤ qn−d+1.

Codes meeting this bound are called MDS codes.

Proposition
A linear code is MDS

⇐⇒

its associated point set is an arc, i.e. a set of points in
PG(k − 1,q) of which any k span the space.
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Additive MDS codes and generalised arcs

Definition
A set of (h− 1)-spaces in PG(kh− 1,q) is a called a
generalised arc if any k of them span the space.

Proposition (Ball, Lavrauw, Gamboa; 2021)
An Fq-linear (n,qkh, d)qh code is MDS

⇐⇒

its associated set of subspaces is a generalised arc of
(h− 1)-spaces in PG(kh− 1,q).
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Question

Can we make long additive MDS codes over finite fields,
which aren’t equivalent to linear codes?

Can we make large generalised arcs which aren’t
contained in a Desarguesian spread?
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Generalised arcs and
translation generalised

quadrangles



Generalised quadrangles

Definition
A generalised quadrangle (GQ) is a point- and
block-regular incidence geometry such that given any
point P and a line/block ℓ ̸∋ P, there is a unique point
Q ∈ ℓ collinear to P.
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The T2(O) construction by Tits

In PG(3,q), take a plane Π∞ and an oval O ⊂ Π∞. We can
construct a GQ

O

Π∞

Points:
- affine points,
- planes intersecting Π∞ in a tangent line to O,
- Π∞.

Lines:
- lines intersecting Π∞ in a point of O,
- points of O.

and the natural incidence inherited from PG(3,q).
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Translation generalised quadrangles

An oval is an arc of q+ 1 points in PG(2,q).

The previous
construction can be generalised using a generalised arc
of qh + 1 (h− 1)-spaces in PG(3h− 1,q). These GQs can
be characterised by certain properties of their
automorphism group, and are called translation GQs.
The only known construction of such generalised arcs is
through field reduction (i.e. they are contained in a
Desarguesian spread). There have been efforts to prove
that there are no other examples.
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Projections of a generalised arc

Definition
Let A = {π1, . . . , πn} be a generalised arc of
(h− 1)-spaces in PG(kh− 1,q). The projection of A from
πj is constructed as follows.

1. Take a ((k − 1)h− 1)-space Σ skew to πj,
2. construct A′ = {

〈
πi, πj

〉
∩ Σ ∥ i ̸= j},

3. A′ is a generalised arc of (h− 1)-spaces in Σ and the
choice of Σ irrelevant (up to isomorphism).

If A is associated to the Fq-linear MDS code over Fqh ,
then A′ is associated to

{(c1, . . . , cj−1, cj+1, . . . , cn) ∥ (c1, . . . , cj−1,0, cj+1, . . . , cn) ∈ C}.
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Generalised arcs through projections

Let A be a generalised arc of n (h− 1)-spaces in
PG(3h− 1,q). Call a generalised arc linear if it is
contained in a Desarguesian spread.

A is linear if
▶ (Penttila, Van de Voorde; 2013) q is odd, n > size of

the second largest complete arc in PG(2,qh),
A has at least 1 linear projection;

▶ (Rottey, Van de Voorde; 2015) (Thas; 2019) q is even,
h is prime, n = qh + 1,
all projections of A are linear.
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Additive MDS codes with
linear projections



The projection of a code

Definition
Recall that the projection of a code C from the ith
coordinate equals

{(c1, c2) ∥ (c1, 0︸︷︷︸
ith coordinate

, c2) ∈ C}
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The case k > 3

Theorem (A., Ball; 2022+)
Let C be an Fq-linear (n,qkh, n− k + 1)qh MDS code over
Fqh . Suppose that
▶ k > 3,
▶ n ≥ q+ k,
▶ there are two coordinates from which the projection

of C is Fq-equivalent to a linear code.
Then C is Fq-equivalent to an Fqs -linear code (for some
1 < s|h).

Corollary
If the above conditions hold and n ≥ qe + k, with
e = max{t < h ∥ t|h}, then C is equivalent to a linear code.
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The case k = 3

The case k = 3 is harder, since there is too little overlap
in different projections.

Theorem (A., Ball; 2022+)
Suppose that C is an Fq-linear (n,q3h, n− 2)qh MDS code
over Fqh , and suppose that
▶ h ∈ {2,3},
▶ n ≥ max{qh−1, hq− 1}+ 4,
▶ There are 3 coordinates from which the projection of

C is Fq-equivalent to a linear code.
Then C is Fq-equivalent to a linear code.
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Conclusion

We supported some evidence that if an additive MDS
code over a finite field exists such that
▶ it is reasonably long,
▶ it is in a sense close to being (essentially) a linear

code,
it must be (essentially) a linear code.

Progress in this direction might help reduce the additive
MDS conjecture to the linear MDS conjecture.
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