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Ovals

q = 2m

An oval in a projective plane PG(2,q) is a set of q + 1 points,
no three of which are collinear.

Hyperoval: set of q + 2 points, no three of which are collinear.

For any oval there is a unique point (called nucleus) that
completes oval to hyperoval
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Linear Codes and Sets of Points in Projective Spaces

Consider multi-set of n points P = {{P1,P2, . . . ,Pn}} from
PG(2,q).

Construct (3× n)-matrix G whose columns are points Pi .

Then one can consider a linear [n,3]-code C with a generator
matrix G.

If P is a hyperoval then C is an MDS code with parameters
[q + 2,3,q].

MDS: d = n − k + 1
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Extended Cyclic Codes and Sets of Hyperovals

Ding (2019) gave a construction extended cyclic code with
parameters [q + 2,3,q].
It is an MDS code. Therefore, it defines a hyperoval.

Theorem
Any extended cyclic code over Fq with parameters [q + 2,3,q]
is equivalent to an MDS code obtained from a regular
hyperoval.

(Two codes are equivalent if one can be obtained from the
other by a permutation of the coordinates)
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Maximal Arcs

A {k ; t}-arc in PG(2,q) is a set K of k points such that t is the
maximum number of points in K that are collinear.

k ≤ (q + 1)(t − 1) + 1

A {k ; t}-arc in PG(2,q) with k = (q + 1)(t − 1) + 1 is called a
maximal arc.

If K is a maximal {k ; t}-arc in PG(2,q) and 1 < t < q then q is
even, t is a divisor of q, and every line in PG(2,q) intersects K
in 0 or t points.

The {q + 2; 2}-arcs in PG(2,q) are hyperovals.
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Denniston Maximal Arcs

Choose δ ∈ F = Fq such that the polynomial X 2 + δX + 1 is
irreducible over F . For each λ ∈ F consider the quadratic curve
Dλ in AG(2,q) defined by the equation X 2 + δXY + Y 2 = λ.

If λ 6= 0 then Dλ is a conic and its nucleus is the point (0,0).
If λ = 0 then Dλ consists of the single point (0,0).

Let ∆ ⊆ F . Then the set

D =
⋃
λ∈∆

Dλ (1)

is a maximal arc in AG(2,q) (and therefore in PG(2,q)) if and
only if ∆ is a subgroup of the additive group of F . In this case D
is a maximal {qt − q + t ; t}-arc with t = |∆|.
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Polar coordinate presentation
K/F field extension of degree 2, K = F2n , F = F2m , n = 2m.

Consider K as AG(2,q), q = 2m.
The conjugate of x ∈ K over F is

x̄ = xq.

Norm and Trace maps from K to F are

N(x) = xx̄ , T = x + x̄ .

The unit circle of K is the set of elements of norm 1:

S = {u ∈ K : N(x) = 1}.

Each element x ∈ K ∗ has a unique presentation

x = λu

with λ ∈ F ∗ and u ∈ S (polar coordinate presentation).
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Denniston Maximal Arcs

The next theorem shows that in terms of polar coordinates the
Denniston maximal arcs can be expressed in a very simple way.

Theorem
The Denniston maximal arcs (1) can be expressed as

D =
⋃
λ∈Λ

λS ⊂ K , (2)

where Λ is a subgroup of the additive group of the field F and S
is the unit circle of K .
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Codes from Denniston Arcs

De Winter, Ding & Tonchev (2019) gave a constuction of an
extended cyclic code obtained from a Denniston arc.

They showed that this code has parameters
[qt − q + t ,3,qt − q] and nonzero weights qt − q and qt − q + t .
Furthermore, the dual minimum distance d⊥ of the code C is 3
when t > 2 and 4 when t = 2 (hyperoval case).

We consider now the reverse process.

Theorem
Any extended cyclic code over Fq with parameters
[qt − q + t ,3,qt − q], 1 < t < q, q is a power of t, is equivalent
to a code obtained from a cyclic Denniston maximal arc.
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Cyclic codes and ovoids

In PG(n,q), n ≥ 3, a set K of k points no three of which are
collinear is called a k -cap.

For any k -cap K in PG(3,q) with q 6= 2:

k ≤ q2 + 1.

A (q2 + 1)-cap of PG(3,q), q 6= 2, is called an ovoid.

A linear [q2 + 1,4]-code is called an ovoid code if the columns
of its generator matrix G constitute an ovoid in PG(3,q).
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Cyclic codes and ovoids

Let Q be a non-degenerate quadratic form on 4-dimensional
vector space V over F .

The set of singular points of Q defines either hyperbolic or
elliptic quadric in PG(3,q).

The elliptic quadric in PG(3,q) is an ovoid and contains q2 + 1
points.
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Cyclic codes and ovoids

Ding (2019) introduced a family of cyclic codes with parameters
[q2 + 1,4,q2 − q] and stated without proof that they can be
obtained from elliptic quadrics. The next theorem proves this
statement and shows a very natural connection between these
cyclic codes and elliptic quadrics.

Theorem

A cyclic code over Fq with parameters [q2 + 1,4,q2 − q] is
equivalent to an ovoid code obtained from an elliptic quadric in
PG(3,q).
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Cyclic codes and ovoids

The next theorem provides a coordinate-free presentation of
the elliptic quadric in PG(3,q).

Theorem

Let E ⊃ K ⊃ F be a chain of finite fields, |E | = q4, |K | = q2,
|F | = q, q = 2m. Then

Q(x) = TrK/F (NE/K (x))

is a non-degenerate quadratic form on 4-dimensional vector
space E over F . Moreover, the set

O = {u ∈ E | NE/K (u) = 1} = {u ∈ E | uq2+1 = 1}

determines an elliptic quadric in PG(3,q).

Kanat Abdukhalikov Linear codes from arcs and quadrics



Vandermonde sets

(Gács, Weiner, Sziklai, Takáts, . . . )
Let 1 < t < q2. A set T = {y1, · · · , yt} ⊆ K is called a
Vandermonde set if

πk (T ) :=
∑
y∈T

yk = 0,

for all 1 ≤ k ≤ t − 2.

The set T is a super-Vandermonde set if it is a Vandermonde
set and πt−1(T ) = 0.
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Vandermonde sets

We showed that if O is an oval with points in AG(2,q) = K and
nucleus 0, then O is a super-Vandermonde set.

Also, a hyperoval with points in AG(2,q) = K is a
Vandermonde set.
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LCD codes

A linear code C over Fq is called a Euclidean linear
complementary dual code (Euclidean LCD code) if
C ∩ C⊥ = {0}.

A linear code C over Fq2 is called a Hermitian linear
complementary dual code (Hermitian LCD code) if
C ∩ C⊥H = {0}.
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LCD codes
Let V := {v1, · · · , vq+1} be a super-Vandermonde set of size
q + 1 in K . Write vi = xi + yi i, where xi , yi ∈ F .
Let Cψ = Cψ(V ) be the [q + 2,3]-linear code over Fq with
generator matrix

G =

x1 x2 x3 . . . xq+1 0
y1 y2 y3 . . . yq+1 0
1 1 1 . . . 1 ψ

 .
Theorem
For ψ 6= 1, the code Cψ(V ) is a Euclidean LCD code.

Corollary
Let O be an oval of q + 1 points in K with nucleus at 0, ψ 6= 1.
Then Cψ(O) is a Euclidean LCD MDS code with parameters
[q + 2,3,q].
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LCD codes
Let V := {v1, · · · , vq+1} be a super-Vandermonde set of size
q + 1 in K . Write vi = xi + yi i, where xi , yi ∈ F .
Let Cα = Cα(V ) be the [q + 2,3]-linear code over Fq2 with
generator matrix

G =

x1 x2 x3 . . . xq+1 0
y1 y2 y3 . . . yq+1 0
1 1 1 . . . 1 α

 .
Theorem

For αq+1 6= 1, the code Cα(V ) is a Hermitian LCD code.

Corollary
Let O be an oval of q + 1 points in K with nucleus at 0,
αq+1 6= 1. Then Cα(O) is a Hermitian LCD MDS code with
parameters [q + 2,3,q].
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KM-arcs and codes

In the projective plane PG(2,q), a KM-arc of type t is a set H of
q + t points meeting every line in 0,2 or t points.
(Korchmáros & Mazzocca (1990): (q + t)-arcs of type (0,2, t))
(Gács, Weiner, De Boeck, Van de Voorde, . . . )

If H is a KM-arc of type t in PG(2,q), 2 < t < q, then
1 q is even and t is a divisor of q;
2 each point of H is on exactly one t-secant

3 there are
q
t

+ 1 different t-secants to H, and they are
concurrent at a unique point called the t-nucleus of H;
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KM-arcs and codes

Definition
Let t ≥ 2. A set H of q + t points in K = AG(2,q) is called a

star-set if all points of H belong to a union of
q
t

+ 1 lines
concurrent at 0, and each line contains t points of H.

E :=


m−1∑
j=0

2jxj > 0 | xj ∈ {0,1,q}

 .

Theorem
Let H be a star-set. Then H is a KM-arc of type t with t-nucleus
at 0 if and only if πe(H) = 0 for all e ∈ E.
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KM-arcs and codes

Theorem
Let H be a KM-arc of type t > 2 with points in K and nucleus at
0. Then the associated code C is a three-weight
[q + t ,3,q]-code with weight enumerator

A(z) = 1 + Xzq + Yzq+t−2 + Zzq+t ,

where
X =

(q − 1)(q + t)
t

,

Y =
q(q − 1)(q + t)

2
,

and

Z =
q(q − 1)(qt − t2 + 2t − 2)

2t
.

The dual distance of C is 3.
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Thank you for your attention!
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