Linear codes from arcs and quadrics

Kanat Abdukhalikov
(Joint work with Duy Ho)
Dept of Mathematical Sciences, UAEU
Finite Geometries 2022
Sixth Irsee Conference
August 29 - September 2, 2022
Irsee, Germany

Outline

- Hyperovals and extended cyclic codes
- Maximal arcs and codes
- Ovoids and codes
- Vandermonde sets and LCD codes
- KM-arcs and codes

Ovals

$q=2^{m}$
An oval in a projective plane $P G(2, q)$ is a set of $q+1$ points, no three of which are collinear.

Hyperoval: set of $q+2$ points, no three of which are collinear.
For any oval there is a unique point (called nucleus) that completes oval to hyperoval

Linear Codes and Sets of Points in Projective Spaces

Consider multi-set of n points $\mathcal{P}=\left\{\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}\right\}$ from $P G(2, q)$.
Construct ($3 \times n$)-matrix G whose columns are points P_{i}.
Then one can consider a linear [$n, 3$]-code C with a generator matrix G.

If \mathcal{P} is a hyperoval then C is an MDS code with parameters $[q+2,3, q]$.
MDS: $d=n-k+1$

Extended Cyclic Codes and Sets of Hyperovals

Ding (2019) gave a construction extended cyclic code with parameters $[q+2,3, q]$.
It is an MDS code. Therefore, it defines a hyperoval.

Theorem
 Any extended cyclic code over \mathbb{F}_{q} with parameters $[q+2,3, q]$ is equivalent to an MDS code obtained from a regular hyperoval.

(Two codes are equivalent if one can be obtained from the other by a permutation of the coordinates)

Maximal Arcs

A $\{k ; t\}$-arc in $P G(2, q)$ is a set \mathcal{K} of k points such that t is the maximum number of points in \mathcal{K} that are collinear.

$$
k \leq(q+1)(t-1)+1
$$

A $\{k ; t\}$-arc in $P G(2, q)$ with $k=(q+1)(t-1)+1$ is called a maximal arc.

If \mathcal{K} is a maximal $\{k ; t\}$-arc in $P G(2, q)$ and $1<t<q$ then q is even, t is a divisor of q, and every line in $\operatorname{PG}(2, q)$ intersects \mathcal{K} in 0 or t points.

The $\{q+2 ; 2\}$-arcs in $P G(2, q)$ are hyperovals.

Denniston Maximal Arcs

Choose $\delta \in F=\mathbb{F}_{q}$ such that the polynomial $X^{2}+\delta X+1$ is irreducible over F. For each $\lambda \in F$ consider the quadratic curve D_{λ} in $A G(2, q)$ defined by the equation $X^{2}+\delta X Y+Y^{2}=\lambda$.

If $\lambda \neq 0$ then D_{λ} is a conic and its nucleus is the point $(0,0)$. If $\lambda=0$ then D_{λ} consists of the single point $(0,0)$.

Let $\Delta \subseteq F$. Then the set

$$
\begin{equation*}
D=\bigcup_{\lambda \in \Delta} D_{\lambda} \tag{1}
\end{equation*}
$$

is a maximal arc in $A G(2, q)$ (and therefore in $P G(2, q)$) if and only if Δ is a subgroup of the additive group of F. In this case D is a maximal $\{q t-q+t ; t\}$-arc with $t=|\Delta|$.

Polar coordinate presentation

K / F field extension of degree $2, K=\mathbb{F}_{2^{n}}, F=\mathbb{F}_{2^{m}}, n=2 m$.
Consider K as $A G(2, q), q=2^{m}$.
The conjugate of $x \in K$ over F is

$$
\bar{x}=x^{q} .
$$

Norm and Trace maps from K to F are

$$
N(x)=x \bar{x}, \quad T=x+\bar{x}
$$

The unit circle of K is the set of elements of norm 1 :

$$
S=\{u \in K: N(x)=1\} .
$$

Each element $x \in K^{*}$ has a unique presentation

$$
x=\lambda u
$$

with $\lambda \in F^{*}$ and $u \in S$ (polar coordinate presentation).

Denniston Maximal Arcs

The next theorem shows that in terms of polar coordinates the Denniston maximal arcs can be expressed in a very simple way.

Theorem

The Denniston maximal arcs (1) can be expressed as

$$
\begin{equation*}
D=\bigcup_{\lambda \in \Lambda} \lambda S \subset K, \tag{2}
\end{equation*}
$$

where \wedge is a subgroup of the additive group of the field F and S is the unit circle of K.

Codes from Denniston Arcs

De Winter, Ding \& Tonchev (2019) gave a constuction of an extended cyclic code obtained from a Denniston arc.
They showed that this code has parameters $[q t-q+t, 3, q t-q]$ and nonzero weights $q t-q$ and $q t-q+t$. Furthermore, the dual minimum distance d^{\perp} of the code C is 3 when $t>2$ and 4 when $t=2$ (hyperoval case).

We consider now the reverse process.

Theorem

Any extended cyclic code over \mathbb{F}_{q} with parameters [$q t-q+t, 3, q t-q], 1<t<q, q$ is a power of t, is equivalent to a code obtained from a cyclic Denniston maximal arc.

Cyclic codes and ovoids

In $P G(n, q), n \geq 3$, a set \mathcal{K} of k points no three of which are collinear is called a k-cap.

For any k-cap \mathcal{K} in $P G(3, q)$ with $q \neq 2$:

$$
k \leq q^{2}+1
$$

A $\left(q^{2}+1\right)$-cap of $P G(3, q), q \neq 2$, is called an ovoid.
A linear [$\left.q^{2}+1,4\right]$-code is called an ovoid code if the columns of its generator matrix G constitute an ovoid in $P G(3, q)$.

Cyclic codes and ovoids

Let Q be a non-degenerate quadratic form on 4-dimensional vector space V over F.

The set of singular points of Q defines either hyperbolic or elliptic quadric in $P G(3, q)$.
The elliptic quadric in $P G(3, q)$ is an ovoid and contains $q^{2}+1$ points.

Cyclic codes and ovoids

Ding (2019) introduced a family of cyclic codes with parameters $\left[q^{2}+1,4, q^{2}-q\right]$ and stated without proof that they can be obtained from elliptic quadrics. The next theorem proves this statement and shows a very natural connection between these cyclic codes and elliptic quadrics.

Theorem

A cyclic code over \mathbb{F}_{q} with parameters $\left[q^{2}+1,4, q^{2}-q\right]$ is equivalent to an ovoid code obtained from an elliptic quadric in $P G(3, q)$.

Cyclic codes and ovoids

The next theorem provides a coordinate-free presentation of the elliptic quadric in $P G(3, q)$.

Theorem

Let $E \supset K \supset F$ be a chain of finite fields, $|E|=q^{4},|K|=q^{2}$, $|F|=q, q=2^{m}$. Then

$$
Q(x)=\operatorname{Tr}_{K / F}\left(N_{E / K}(x)\right)
$$

is a non-degenerate quadratic form on 4-dimensional vector space E over F. Moreover, the set

$$
\mathcal{O}=\left\{u \in E \mid N_{E / K}(u)=1\right\}=\left\{u \in E \mid u^{q^{2}+1}=1\right\}
$$

determines an elliptic quadric in $P G(3, q)$.

Vandermonde sets

(Gács, Weiner, Sziklai, Takáts, ...)
Let $1<t<q^{2}$. A set $T=\left\{y_{1}, \cdots, y_{t}\right\} \subseteq K$ is called a Vandermonde set if

$$
\pi_{k}(T):=\sum_{y \in T} y^{k}=0
$$

for all $1 \leq k \leq t-2$.
The set T is a super-Vandermonde set if it is a Vandermonde set and $\pi_{t-1}(T)=0$.

Vandermonde sets

We showed that if \mathcal{O} is an oval with points in $A G(2, q)=K$ and nucleus 0 , then \mathcal{O} is a super-Vandermonde set.

Also, a hyperoval with points in $A G(2, q)=K$ is a Vandermonde set.

A linear code C over \mathbb{F}_{q} is called a Euclidean linear complementary dual code (Euclidean LCD code) if $C \cap C^{\perp}=\{0\}$.

A linear code C over $\mathbb{F}_{q^{2}}$ is called a Hermitian linear complementary dual code (Hermitian LCD code) if $C \cap C^{\perp_{H}}=\{0\}$.

LCD codes

Let $V:=\left\{v_{1}, \cdots, v_{q+1}\right\}$ be a super-Vandermonde set of size $q+1$ in K. Write $v_{i}=x_{i}+y_{i} \mathbf{i}$, where $x_{i}, y_{i} \in F$. Let $\mathcal{C}_{\psi}=\mathcal{C}_{\psi}(V)$ be the $[q+2,3]$-linear code over \mathbb{F}_{q} with generator matrix

$$
G=\left[\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{q+1} & 0 \\
y_{1} & y_{2} & y_{3} & \ldots & y_{q+1} & 0 \\
1 & 1 & 1 & \ldots & 1 & \psi
\end{array}\right]
$$

Theorem

For $\psi \neq 1$, the $\operatorname{code} \mathcal{C}_{\psi}(V)$ is a Euclidean $L C D$ code.

Corollary

Let \mathcal{O} be an oval of $q+1$ points in K with nucleus at $0, \psi \neq 1$. Then $\mathcal{C}_{\psi}(\mathcal{O})$ is a Euclidean LCD MDS code with parameters $[q+2,3, q]$.

LCD codes

Let $V:=\left\{v_{1}, \cdots, v_{q+1}\right\}$ be a super-Vandermonde set of size $q+1$ in K. Write $v_{i}=x_{i}+y_{i} \mathbf{i}$, where $x_{i}, y_{i} \in F$. Let $\mathcal{C}_{\alpha}=\mathcal{C}_{\alpha}(V)$ be the $[q+2,3]$-linear code over $\mathbb{F}_{q^{2}}$ with generator matrix

$$
G=\left[\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & \ldots & x_{q+1} & 0 \\
y_{1} & y_{2} & y_{3} & \ldots & y_{q+1} & 0 \\
1 & 1 & 1 & \ldots & 1 & \alpha
\end{array}\right]
$$

Theorem

For $\alpha^{q+1} \neq 1$, the code $\mathcal{C}_{\alpha}(V)$ is a Hermitian $L C D$ code.

Corollary

Let \mathcal{O} be an oval of $q+1$ points in K with nucleus at 0 , $\alpha^{q+1} \neq 1$. Then $\mathcal{C}_{\alpha}(\mathcal{O})$ is a Hermitian LCD MDS code with parameters $[q+2,3, q]$.

KM-arcs and codes

In the projective plane $P G(2, q)$, a $K M$-arc of type t is a set H of $q+t$ points meeting every line in 0,2 or t points.
(Korchmáros \& Mazzocca (1990): $(q+t)$-arcs of type ($0,2, t)$)
(Gács, Weiner, De Boeck, Van de Voorde, ...)
If H is a KM-arc of type t in $P G(2, q), 2<t<q$, then
(1) q is even and t is a divisor of q;
(2) each point of H is on exactly one t-secant
(3) there are $\frac{q}{t}+1$ different t-secants to H, and they are concurrent at a unique point called the t-nucleus of H;

KM-arcs and codes

Definition

Let $t \geq 2$. A set H of $q+t$ points in $K=A G(2, q)$ is called a star-set if all points of H belong to a union of $\frac{q}{t}+1$ lines concurrent at 0 , and each line contains t points of H.

$$
E:=\left\{\sum_{j=0}^{m-1} 2^{j} x_{j}>0 \mid x_{j} \in\{0,1, q\}\right\} .
$$

Theorem

Let H be a star-set. Then H is a KM-arc of type t with t-nucleus at 0 if and only if $\pi_{e}(H)=0$ for all $e \in E$.

KM-arcs and codes

Theorem

Let H be a KM-arc of type $t>2$ with points in K and nucleus at 0 . Then the associated code C is a three-weight $[q+t, 3, q]$-code with weight enumerator

$$
A(z)=1+X z^{q}+Y z^{q+t-2}+Z z^{q+t}
$$

where

$$
\begin{aligned}
& X=\frac{(q-1)(q+t)}{t} \\
& Y=\frac{q(q-1)(q+t)}{2}
\end{aligned}
$$

and

$$
Z=\frac{q(q-1)\left(q t-t^{2}+2 t-2\right)}{2 t}
$$

The dual distance of C is 3 .

Thank you for your attention!

