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HTTP - General reminder

● HTTP : Hyper Text Transfer Protocol
– Dedicated to the Web (origin : CERN, 1990)

– RFC 2616 (HTTP 1.1), RFC 7540 (HTTP 2.0)

– Client / server mode
● No server→client notifications (but extensions)

– Standard port : 80
● Why is port 80 important ?
● Massive adoption, first for Web sites
● Then for applications
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HTTP - General reminder

● Stateless protocol
– What does it mean ?

● Warning : states do exist, on both client and server sides

– Light transaction management
● No information kept between 2 exchanges
● Allows the HTTP server to scale better

– No memory space to allocate for sessions etc.

– Requires a mechanism to manage sessions
● cookie, Id in URL, hidden form field...
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HTTP - History

● HTTP 0.9 : first version
– Only one method : GET

– No headers

– One request = one TCP connection

● HTTP 1.0 : improvements (1)
– Headers ("meta" information)

– Use of caches

– Authentication methods...
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HTTP - History

● HTTP 1.1 : improvements (2)
– Default persistent connection mode

● Several HTTP transactions (with ressources) for one TCP 
connection

● The connection is maintained as long as the server or 
client do not decide to close it (with connection: close)

– Virtual servers
● Host directive in the query is necessary
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HTTP - History

● HTTP 2.0 : principles
– Based on the SPDY protocol (Google)

– RFC 7540 (may 2015)

– Same syntax as HTTP 1.1 (methods, status codes, 
headers...)

– Additions
● Push of necessary resources from server
● Request multiplexing
● Header compression
● Security layer (TLS) mandatory de facto
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Request format

● HTTP commands
– Methods : GET, POST, HEAD, PUT, DELETE, TRACE, OPTIONS, 

CONNECT

– URL from server root

– HTTP Version

● Headers (set of lines)
– Header name : value

● One empty line
● Contents (can be empty)

– Parameters to be processed by the server
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GET method

● Standard method to ask for a representation of a resource
– Can deliver a file, an image...

– Can activate a program by transmitting data

● The body of the request is always empty
● Parameters are added after the resource name

– Transmitting data in the URL after a « ? »

– Fields separate by a « & »

● GET /index.php?email=toto@site.fr&pass=toto&s=login HTTP/1.1
● Comments

– All HTTP request are as secure as sending a postcard

– Some security can be reached through HTTPS

– All the data is full text in the URL, not encrypted

– URL has a limited size of 4Ko
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HEAD Method

● Similar to GET
– Body of request always empty

– Retrieve only the headers

● Useful for getting
– Last modification date (caches, JavaScript)

– Size (estimating time of reception of document)

– type (content negociation, see later)

– Get some information about the server

● Warning
– Servers do not necessarily give that information
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POST method

● Transmitting data in the request body
● Data is also full text

POST /directory/index.php HTTP/1.1
User-Agent: Mozilla/5.0 (compatible;MSIE 6.0;Windows NT 5.1)
Host: localhost
Accept: */*
Content-type: application/x-www-form-urlencoded
Content-length: 36

email=toto@site.fr&pass=toto&s=login
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Some request headers

● Client identity
– From : email address of client

– Host : server, mandatory since HTTP 1.1

– Referer : URL the client comes from

– User-Agent

● Client preferences
– Accept : list of accepted MIME types

– Accept-Encoding : compress, gzip...

– Accept-Langage

– Accept-Charset
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Some request headers

● Objective
– Do not send an object that is already in the client cache

● Problem
– Objects in cache can be obsolete

● Solution
– Client specifies the date of the cached copy in the HTTP 

request

– If-modified-since : date

– Server sends an empty reply if the cached version is up to date
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Some request headers

● Information for the server
– Autorization (username:passwd, base64 encoded)

– Cookie

● Reply condition
– If-Modified-Since : useful for caches

– If-Unmodified-Since

– If-Match (Etag)
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Response format

● Response type
– HTTP version

– Response code

– Code description

● Headers (set of lines)
– Header name : header value

● Empty line
● Possibly contents

– Encoded according to the specified MIME type
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Response codes

● Objective
– Give request result : success or failure

– In case of failure, the contenu of the response must always describe the reason

– Ex : file not found, access forbidden

● Code classes
– 100-199 : information

– 200-299 : success

– 300-399 : redirection

– 400-499 : failure due to client

– 500-599 : failure due to server

● More information
– http://www.codeshttp.com/

HTTP/1.1 200 OK
HTTP/1.1 304 Not Modified
HTTP/1.1 403 Forbidden
HTTP/1.1 404 Not Found
HTTP/1.1 500 Internal Server error

http://www.codeshttp.com/
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Some response headers

● Document content
– Content-Type : MIME type of document

– Content-Length : indicate loading progression

– Content-Encoding, Content-Location, Content-Langage

● The document itself
– Last-Modified (self explanatory)

– Allow : authorized methods

– Expires : expiration date of the document

● General headers
– Date : request date

– Server : server type
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A typical transaction (1)

● Client request: client => server
– 1. Requesting the test.html document

– 2. Sending header information: inform the server
● configuration
● Accepted documents

– 3. empty line (end of header)

– 4. contents (empty in this example)

User-Agent: Mozilla/5.0 (compatible;MSIE 6.0;Windows NT 5.1)
Host: www.upr.si
Accept: image/gif, image/jpeg

GET /~mydirectory/test.html HTTP/1.1
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A typical transaction (2)

● Server response: server → client
– 5. code for request state

– 6. sending header information : inform the client
● Server configuration
● document asked

● 3. empty line (end of header)
● 4. contents if request was successful

HTTP/1.1 200 OK

Date: Tue, 30 Sep 2008 06:11:28 GMT
Server: Apache/1.3.34 (Debian) PHP/5.2.1
Last-Modified: Tue, 30 Sep 2008 06:11:14 GMT
ETag: "600593b3-61-48e1c302"
Accept-Ranges: bytes
Content-Length: 97
Content-Type: text/html; charset=iso-8859-1
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Cookies

● Remember HTTP is stateless protocol
– Needs for a means to deal with sessions → cookies

● Cookie
– URL-encoded string of characters of 4ko max stored on client hard drive

– Information associated to a set of URLs, used for all requests to any of them

● Cookies allow
– To propagate access code: avoid authentication at each request

– Facilitate access to databases on the server

– Gives statistics to the server : visited page count, etc.

● Side note
– Cookies are not the only way to manage session
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Install a cookie on the client

● « Set-Cookie » directive in header of HTTP response (sent 
during first connection)

– name=value : cookie content, without any space, semi-colon or 
comma (only mandatory field)

– expires : become invalid after that date

– path=/pub : cookie is valid for all request under that path (/pub)

– domain : domain name for which cookie is valid

– secure : cookie is valid only for secure connection

Set-Cookie: name=value; expires=date; path=my_path;
domain=domain_name; secure
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Client-side Cookie Usage

● Before each request the client (browser) checks for a 
corresponding cookie

● If found, it uses the Cookie directive in the HTTP header

● The server can insert several Set-Cookie directives
● In the first cookie specification :

– A client can store a maximum of 300 cookies

– A maximum of 20 cookies per domain is allowed

– Maximum size of a cookie is 4Ko

– Meaning max. 15 domains for a size of ~1,2Mo

Cookie: name1=value1; name2=value2; ...
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Chunk Transfert (HTTP/1.1)

● A server response can be sent in several chunks
– Sometimes the server may not know the total size of the response

● Each chunk is made of one line
– Size of the chunk in hexadecimal

– data

● After the chunks, one line
– 0 (zero)

– Eventually additional headers

Transfer-Encoding: Chunked
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Resource Encoding

● Problem description
– A Web server can serve different types of resources

● text, Web pages, images, documents, executable files...

● Each type of resource is encoded in a different way
● A client must know the resource type to be able to process it

– View in the browser, use of plugin, external app

● Solution (HTTP & Internet in general)
– MIME : Multi-purpose Internet Mail Extensions

– Recognized in HTTP : since v1.0
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Resource Encoding

● MIME types : a composition
– General type : text, image, audio, video, application...

– Sub-type : depends on general type

– Examples : image/gif, image/jpeg, application/pdf, 
application/rtf, text/plain, text/html...

– In constant evolution

● MIME types : use
– Server sets a Content-type header

● Ex : Content-Type: text/html; charset=UTF-8

– Client associates each MIME type to a specific processing
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Character Encoding

● Reminder : character encoding
– Principle : assign an integer to each character of a text

– No confusion between character encoding (charset) and type (MIME) of file

● Problem description
– Different character sets

● ANSI, Occidental Europe, simplified Chinese, etc.

● Different encoding norms
– Depend mostly of OSes and their configuration

● ASCII, Windows-1252, ISO Latin 1, Unicode 8, 16 or 32...

– Transmission through the Web : multi-platform
● Independent from the OS and from client or server configuration
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Character Encoding

● Encoding of characters used in a resource
– Considered as a subpart of resource encoding

● Related to the MIME type of the resource
● Related to the language of the resource

– Indicated in HTTP headers of responses
● Content-Language: en, fr
● Content-Type: text/html; charset=ISO-8859-1
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Encoding of request parameters

● Formating : URL-encoded
– For client to encode data in URL (GET method)

– URL syntax (RFC 2396)
● Beginning of parameters indicated by « ? »
● Field name and value separated by « = »
● Field separation: « & », spaces in a field value: « + »
● Reserved characters: ; / ? : @ & = + $ ,
● Non-alphanumeric characters replaced by %xx
● (where xx = hex. ASCII code of character)

– Example : name1=value1&name2=value2&...

– Fields with multiple values (selection lists)
● list-name=value1&list-name=value2&...
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Server-side Encoding

● Operation
–  The MIME type is set from file extension (/etc/mime.types)

– Encoding is set after negotiating with the client (mod_negotiation)

– http://httpd.apache.org/docs/2.0/content-negotiation.html

– It is possible to set a particular encoding for parts of a site with 
.htaccess files

● Modules
– Apache : mod_mime

● http://httpd.apache.org/docs/2.0/mod/mod_mime.html

– nginx : ngx_http_charset_module
● http://nginx.org/en/docs/http/ngx_http_charset_module.html
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Comments on Encoding

● In a browser
– The request specifies what encodings are known by the client

● Accept, Accept-Language, Accept-Charset, Accept-Encoding

● Like other HTTP headers, encoding can be specified in the 
HTML code
– <meta http-equiv="Content-Type" content="text/html; 

charset=ISO-8859-1"/>

● In the response, if a HTTP header and a meta element are 
contradictory, priority is given to the server header

● Small exercise : try to discover UPR configuration
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