
 1

The HTTP protocol

Michael Mrissa
michael.mrissa@upr.si

Univerza na Primorskem

 2

Acknowledgments

● Lionel Médini
● Olivier Glück
● Emmanuel Coquery
● Pierre-Antoine Champin

 3

HTTP - General reminder

● HTTP : Hyper Text Transfer Protocol
– Dedicated to the Web (origin : CERN, 1990)

– RFC 2616 (HTTP 1.1), RFC 7540 (HTTP 2.0)

– Client / server mode
● No server→client notifications (but extensions)

– Standard port : 80
● Why is port 80 important ?
● Massive adoption, first for Web sites
● Then for applications

 4

HTTP - General reminder

● Stateless protocol
– What does it mean ?

● Warning : states do exist, on both client and server sides

– Light transaction management
● No information kept between 2 exchanges
● Allows the HTTP server to scale better

– No memory space to allocate for sessions etc.

– Requires a mechanism to manage sessions
● cookie, Id in URL, hidden form field...

 5

HTTP - History

● HTTP 0.9 : first version
– Only one method : GET

– No headers

– One request = one TCP connection

● HTTP 1.0 : improvements (1)
– Headers ("meta" information)

– Use of caches

– Authentication methods...

 6

HTTP - History

● HTTP 1.1 : improvements (2)
– Default persistent connection mode

● Several HTTP transactions (with ressources) for one TCP
connection

● The connection is maintained as long as the server or
client do not decide to close it (with connection: close)

– Virtual servers
● Host directive in the query is necessary

 7

HTTP - History

● HTTP 2.0 : principles
– Based on the SPDY protocol (Google)

– RFC 7540 (may 2015)

– Same syntax as HTTP 1.1 (methods, status codes,
headers...)

– Additions
● Push of necessary resources from server
● Request multiplexing
● Header compression
● Security layer (TLS) mandatory de facto

 8

Request format

● HTTP commands
– Methods : GET, POST, HEAD, PUT, DELETE, TRACE, OPTIONS,

CONNECT

– URL from server root

– HTTP Version

● Headers (set of lines)
– Header name : value

● One empty line
● Contents (can be empty)

– Parameters to be processed by the server

 9

GET method

● Standard method to ask for a representation of a resource
– Can deliver a file, an image...

– Can activate a program by transmitting data

● The body of the request is always empty
● Parameters are added after the resource name

– Transmitting data in the URL after a « ? »

– Fields separate by a « & »

● GET /index.php?email=toto@site.fr&pass=toto&s=login HTTP/1.1
● Comments

– All HTTP request are as secure as sending a postcard

– Some security can be reached through HTTPS

– All the data is full text in the URL, not encrypted

– URL has a limited size of 4Ko

 10

HEAD Method

● Similar to GET
– Body of request always empty

– Retrieve only the headers

● Useful for getting
– Last modification date (caches, JavaScript)

– Size (estimating time of reception of document)

– type (content negociation, see later)

– Get some information about the server

● Warning
– Servers do not necessarily give that information

 11

POST method

● Transmitting data in the request body
● Data is also full text

POST /directory/index.php HTTP/1.1
User-Agent: Mozilla/5.0 (compatible;MSIE 6.0;Windows NT 5.1)
Host: localhost
Accept: */*
Content-type: application/x-www-form-urlencoded
Content-length: 36

email=toto@site.fr&pass=toto&s=login

 12

Some request headers

● Client identity
– From : email address of client

– Host : server, mandatory since HTTP 1.1

– Referer : URL the client comes from

– User-Agent

● Client preferences
– Accept : list of accepted MIME types

– Accept-Encoding : compress, gzip...

– Accept-Langage

– Accept-Charset

 13

Some request headers

● Objective
– Do not send an object that is already in the client cache

● Problem
– Objects in cache can be obsolete

● Solution
– Client specifies the date of the cached copy in the HTTP

request

– If-modified-since : date

– Server sends an empty reply if the cached version is up to date

 14

Some request headers

● Information for the server
– Autorization (username:passwd, base64 encoded)

– Cookie

● Reply condition
– If-Modified-Since : useful for caches

– If-Unmodified-Since

– If-Match (Etag)

 15

Response format

● Response type
– HTTP version

– Response code

– Code description

● Headers (set of lines)
– Header name : header value

● Empty line
● Possibly contents

– Encoded according to the specified MIME type

 16

Response codes

● Objective
– Give request result : success or failure

– In case of failure, the contenu of the response must always describe the reason

– Ex : file not found, access forbidden

● Code classes
– 100-199 : information

– 200-299 : success

– 300-399 : redirection

– 400-499 : failure due to client

– 500-599 : failure due to server

● More information
– http://www.codeshttp.com/

HTTP/1.1 200 OK
HTTP/1.1 304 Not Modified
HTTP/1.1 403 Forbidden
HTTP/1.1 404 Not Found
HTTP/1.1 500 Internal Server error

http://www.codeshttp.com/

 17

Some response headers

● Document content
– Content-Type : MIME type of document

– Content-Length : indicate loading progression

– Content-Encoding, Content-Location, Content-Langage

● The document itself
– Last-Modified (self explanatory)

– Allow : authorized methods

– Expires : expiration date of the document

● General headers
– Date : request date

– Server : server type

 18

A typical transaction (1)

● Client request: client => server
– 1. Requesting the test.html document

– 2. Sending header information: inform the server
● configuration
● Accepted documents

– 3. empty line (end of header)

– 4. contents (empty in this example)

User-Agent: Mozilla/5.0 (compatible;MSIE 6.0;Windows NT 5.1)
Host: www.upr.si
Accept: image/gif, image/jpeg

GET /~mydirectory/test.html HTTP/1.1

 19

A typical transaction (2)

● Server response: server → client
– 5. code for request state

– 6. sending header information : inform the client
● Server configuration
● document asked

● 3. empty line (end of header)
● 4. contents if request was successful

HTTP/1.1 200 OK

Date: Tue, 30 Sep 2008 06:11:28 GMT
Server: Apache/1.3.34 (Debian) PHP/5.2.1
Last-Modified: Tue, 30 Sep 2008 06:11:14 GMT
ETag: "600593b3-61-48e1c302"
Accept-Ranges: bytes
Content-Length: 97
Content-Type: text/html; charset=iso-8859-1

 20

Cookies

● Remember HTTP is stateless protocol
– Needs for a means to deal with sessions → cookies

● Cookie
– URL-encoded string of characters of 4ko max stored on client hard drive

– Information associated to a set of URLs, used for all requests to any of them

● Cookies allow
– To propagate access code: avoid authentication at each request

– Facilitate access to databases on the server

– Gives statistics to the server : visited page count, etc.

● Side note
– Cookies are not the only way to manage session

 21

Install a cookie on the client

● « Set-Cookie » directive in header of HTTP response (sent
during first connection)

– name=value : cookie content, without any space, semi-colon or
comma (only mandatory field)

– expires : become invalid after that date

– path=/pub : cookie is valid for all request under that path (/pub)

– domain : domain name for which cookie is valid

– secure : cookie is valid only for secure connection

Set-Cookie: name=value; expires=date; path=my_path;
domain=domain_name; secure

 22

Client-side Cookie Usage

● Before each request the client (browser) checks for a
corresponding cookie

● If found, it uses the Cookie directive in the HTTP header

● The server can insert several Set-Cookie directives
● In the first cookie specification :

– A client can store a maximum of 300 cookies

– A maximum of 20 cookies per domain is allowed

– Maximum size of a cookie is 4Ko

– Meaning max. 15 domains for a size of ~1,2Mo

Cookie: name1=value1; name2=value2; ...

 23

Chunk Transfert (HTTP/1.1)

● A server response can be sent in several chunks
– Sometimes the server may not know the total size of the response

● Each chunk is made of one line
– Size of the chunk in hexadecimal

– data

● After the chunks, one line
– 0 (zero)

– Eventually additional headers

Transfer-Encoding: Chunked

 24

Resource Encoding

● Problem description
– A Web server can serve different types of resources

● text, Web pages, images, documents, executable files...

● Each type of resource is encoded in a different way
● A client must know the resource type to be able to process it

– View in the browser, use of plugin, external app

● Solution (HTTP & Internet in general)
– MIME : Multi-purpose Internet Mail Extensions

– Recognized in HTTP : since v1.0

 25

Resource Encoding

● MIME types : a composition
– General type : text, image, audio, video, application...

– Sub-type : depends on general type

– Examples : image/gif, image/jpeg, application/pdf,
application/rtf, text/plain, text/html...

– In constant evolution

● MIME types : use
– Server sets a Content-type header

● Ex : Content-Type: text/html; charset=UTF-8

– Client associates each MIME type to a specific processing

 26

Character Encoding

● Reminder : character encoding
– Principle : assign an integer to each character of a text

– No confusion between character encoding (charset) and type (MIME) of file

● Problem description
– Different character sets

● ANSI, Occidental Europe, simplified Chinese, etc.

● Different encoding norms
– Depend mostly of OSes and their configuration

● ASCII, Windows-1252, ISO Latin 1, Unicode 8, 16 or 32...

– Transmission through the Web : multi-platform
● Independent from the OS and from client or server configuration

 27

Character Encoding

● Encoding of characters used in a resource
– Considered as a subpart of resource encoding

● Related to the MIME type of the resource
● Related to the language of the resource

– Indicated in HTTP headers of responses
● Content-Language: en, fr
● Content-Type: text/html; charset=ISO-8859-1

 28

Encoding of request parameters

● Formating : URL-encoded
– For client to encode data in URL (GET method)

– URL syntax (RFC 2396)
● Beginning of parameters indicated by « ? »
● Field name and value separated by « = »
● Field separation: « & », spaces in a field value: « + »
● Reserved characters: ; / ? : @ & = + $,
● Non-alphanumeric characters replaced by %xx
● (where xx = hex. ASCII code of character)

– Example : name1=value1&name2=value2&...

– Fields with multiple values (selection lists)
● list-name=value1&list-name=value2&...

 29

Server-side Encoding

● Operation
– The MIME type is set from file extension (/etc/mime.types)

– Encoding is set after negotiating with the client (mod_negotiation)

– http://httpd.apache.org/docs/2.0/content-negotiation.html

– It is possible to set a particular encoding for parts of a site with
.htaccess files

● Modules
– Apache : mod_mime

● http://httpd.apache.org/docs/2.0/mod/mod_mime.html

– nginx : ngx_http_charset_module
● http://nginx.org/en/docs/http/ngx_http_charset_module.html

 30

Comments on Encoding

● In a browser
– The request specifies what encodings are known by the client

● Accept, Accept-Language, Accept-Charset, Accept-Encoding

● Like other HTTP headers, encoding can be specified in the
HTML code
– <meta http-equiv="Content-Type" content="text/html;

charset=ISO-8859-1"/>

● In the response, if a HTTP header and a meta element are
contradictory, priority is given to the server header

● Small exercise : try to discover UPR configuration

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30

