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Abstract. We will give an introduction to Homology Theory un-
derstandable to a student who has taken Linear Algebra. We will
give basic examples using simple row reduction to compute ho-
mologies. Our purpose here is not to show anything new but to
show undergraduate students that homology computations can be
done using simple techniques they learned in their Linear Algebra
course and to generate further interest in their study of the subject.

1. Introduction

Homology is a mathematical method for defining holes in a shape.
To compute a homology, we begin with a graph containing v vertices
and x edges. We give the edges a forward orientation for convenience,
as it makes it easier to label the signed incidence matrix. A signed
incidence matrix, D1, is a matrix such that D1

ij = 1 if edge xj leaves
vertex vi, −1 if edge xj enters vertex vi, and 0 otherwise, with each
column representing an edge and each row representing a vertex. The
reader can skip ahead to Section 3 to see examples of this matrix.

The important idea here is that a cycle in a graph gives a linear
dependency relation in the incidence matrix D1. This means that the
number of cycles in the graph is given by the number of linear depen-
dencies in the incidence matrix.

A much more advanced explanation of this information is available in
a standard graduate textbook on Algebraic Topology, such as in Allen
Hatcher’s book [2].

2. Background linear algebra

We give in this section a reminder of some of the Linear Algebra
necessary to compute homologies. Readers who do not want a review
may feel free to skip over this section and continue on to Section 3.
Those who would like to study more Linear Algebra should reference
their favorite text. There are also plenty of free texts and courses
offered online.
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We begin with one of the most important theorems in Linear Algebra,
the Rank-Nullity Theorem [3].

Let A be a matrix.

(1) The dimension of the column space of A is called the rank of A
and is denoted rank(A).

(2) The dimension of the null space of A is called the nullity of A
and is denoted null(A).

Theorem 1 (Rank-Nullity Theorem). If A is any m× n matrix, then

rank(A) + null(A) = n.

This theorem can be applied to linear maps as well. A linear map, or
linear transformation, is a mapping T : Rn −→ Rm that preserves the
operations of addition and scalar multiplication.

For example, say we have vectors
⇀
a ,

⇀

b ∈ Rn, a scalar c, a transfor-
mation T . Then,

T (
⇀
a +

⇀

b ) = T (
⇀
a) + T (

⇀

b ) and

T (c
⇀
a) = cT (

⇀
a).

To apply this to matrices, we take the identity matrix In,

⇀
e1

⇀
e2 . . .

⇀
en

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


The vectors

{
⇀
e1,

⇀
e2, . . .

⇀
en

}
are something called the standard basis

for Rn. Being a basis means that the vectors must span Rn and they
must be linearly independent.

Next, we multiply a vector
⇀
x by our standard basis, so

⇀
x = x1

⇀
e1 +x2

⇀
e2 + . . . + xn

⇀
en .

A linear transformation, T , of
⇀
x,

T (
⇀
x) = T (x1

⇀
e1 +x2

⇀
e2 + . . . + xn

⇀
en)

= T (x1
⇀
e1) + T (x2

⇀
e2) + . . . T (xn

⇀
en)

= x1T (
⇀
e1) + x2T (

⇀
e2) + . . . xnT (

⇀
en).
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Figure 3.1. A simple triangle graph

If we put this in matrix format, we have

T (
⇀
x) =

T (
⇀
e1) T (

⇀
e2) . . . T (

⇀
en)



x1

x2
...
xn

 .

All linear transformations can be represented in this way.

Corollary 2 (Rank-Nullity for Linear Maps). Let V and W be vector
spaces over some field, and let T : V −→ W be a linear map. Then
the rank of T is the dimension of the image of T and the nullity of T
is the dimension of the kernel of T , so we have

dim(Im(T )) + dim(ker(T )) = dim(V ).

3. Graphs and homology

We will begin by giving some example graphs and looking at how
to set up the signed incidence matrices. We will then row reduce the
matrices and find the ranks and nullities before we actually move on
to computing the homologies.

Example 3 (Triangle Example). We’ll start by giving an example
of the signed incidence matrix and how to set it up using the graph
pictured in Figure 3.1. We set up D1 as we described. So we have,

D1 =
v1
v2
v3

a1 a2 a3 1 0 −1
−1 1 0
0 −1 1


Notice that the −1 in the first row, final column represents the final
edge re-entering the starting vertex. Next, we row reduce this matrix
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Figure 3.2. A disjoint graph

and count the linearly independent columns, or pivots. This gives,

v1
v2
v3

a1 a2 a31 0 −1
0 1 −1
0 0 0


Since we have 2 pivot columns, we can say that

rank(D1) = 2.

Using the Rank-Nullity Theorem (1), we know then that

null(D1) = 1.

Example 4 (Disjoint Example). Next, we give an example of the
signed incidence matrix of a disjoint graph, pictured in Figure 3.2.

D1 =

v1
v2
v3
v4
v5
v6

a1 a2 a3 a4 a5
1 0 −1 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 0 1 0
0 0 0 −1 1
0 0 0 0 −1
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Notice here that graph being disjoint gives us a block matrix with two
submatrices. Row reducing, we have

v1
v2
v3
v4
v5
v6

a1 a2 a3 a4 a5
1 0 −1 0 0
0 1 −1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


In this case, we have 4 pivot columns, so

rank(D1) = 4.

By the Rank-Nullity Theorem (1), this gives

null(D1) = 1.

The nullities, or linearly dependent columns, of our incidence matri-
ces tell us about the number of cycles in each graph. We see that in
each case, our matrices tell us that we have 1 cycle, and we can confirm
this by looking at our figures. Notice also that #vertices − rank(D1)
gives the number of components of each example graph.

These incidence matrices are linear transformations (defined in Sec-
tion 2) between the edge space(or C1) to the vertex space(or C0). In
other words, it maps each edge to the vertices that are incident, or
attached, to it. The edge space and vertex space are vector spaces
defined in terms of the edge and vector sets. We call this the map of
boundary 1, ∂1, or the one-dimensional boundary. In basic terms this
boundary refers to the cycle itself. We write,

∂1 : C1 −→ C0.

Boundary maps are explained in more detail in Section 4 but for now,
we carry on.

To compute our homologies, we utilize our corollary of the Rank-
Nullity Theorem (2) which can be seen in Section 2. In our case, V
would be our edge space, C1, W would be our vertex space, C0, and
the map T would be our boundary map ∂1. Using this corollary, we
are able to compute the dimension of our homology, H̃i. Once again,
more complete reasoning for this is given in Section 4.

dim(H̃i) = dim(ker ∂i)− dim(Im ∂i+1)

Returning to Example 3, we can now complete our computation for
H̃1.
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When we left off, we had the rank and nullity of our incidence matrix.
We now know that the rank is the dimension of the image of ∂1 and
the nullity is the dimension of the kernel of ∂1. So we have,

dim(Im ∂1) = 2 and

dim(ker ∂1) = 1

Now we require dim(Im ∂2) to complete our computation. In our cur-
rent examples, since neither are 2-dimensional, this will have to be 0.
(We will have an example later on where we compute H̃1 of the Mobius
Strip and this will not be the case.) So now we have,

dim(Im ∂2) = 0.

Using our definition for the dimension of H̃i, we have

dim(H̃1) = dim(ker ∂1)− dim(Im ∂2), so

dim(H̃1) = 1− 0 = 1.

Thus the dimension of our H̃1 is 1.

We now return to Example 4 to see whether there is any difference.
Once again, we already have our rank and nullity, so

dim(Im ∂1) = 4 and

dim(ker ∂1) = 1.

Our graph is still not 2-dimensional, and so

dim(Im ∂2) = 0 and so

dim(H̃1) = 1− 0 = 1.

As we stated in the introduction, homology defines holes in a shape.
In the case of H̃1, this refers to the number of cycles in our graphs. Had
the second component in our disjoint graph been a cycle, the dimension
of H̃1 would have been 2 rather than 1.

Another important type of graph is a tree, which is a connected graph
containing no cycles. That is, there is no place in the graph where any
edge returns to a previous vertex. Also, every tree containing n vertices
will have n−1 edges. An example of this type of graph is given in Figure
3.3.

Lemma 5. Every tree has a vertex of degree 1.

The degree of a vertex is the number of edges which are incident to
that vertex. What this theorem is telling us is that no matter how
large or how small a tree is, it will always contain at least one vertex
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Figure 3.3. A tree graph

which is only attached to a single edge. This comes as a result of trees
containing no cycles.

Example 6 (Tree Example). We give an example of this type of graph
and will once again compute H̃1.

We begin by setting up the signed incidence matrix. We have,

D1 =

v1
v2
v3
v4
v5
v6

a1 a2 a3 a4 a5
1 1 0 1 0
−1 0 1 0 0
0 −1 0 0 1
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1


Row reducing this, we are left with

D1 =

v1
v2
v3
v4
v5
v6

a1 a2 a3 a4 a5
1 1 0 1 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0


This gives

rank(D1) = dim(Im ∂1) = 5 and

null(D1) = dim(ker ∂1) = 0

Recall that we said that the nullity tells us about the number of cycles
in the graph. Since a tree has no cycles, the nullity ends up being 0.
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Next we need dim(Im ∂2), which is again 0 in this 1-dimensional
graph, so

dim(Im ∂2) = 0.

Now we complete the computation.

dim(H̃1) = dim(ker ∂1)− dim(Im ∂2) = 0− 0 = 0.

This tells us that the tree has H̃1 = 0, which makes sense, as tree
graphs do not have any cycles. Of course, this also tells us something
about trees in general.

Theorem 7. If a graph T is a tree, then H̃1 = 0.

Proof. Let D1 be the incidence matrix representing any tree T . Since
T is a tree, if D1 contains n columns, then D1 must contain n + 1
rows and each column will have only one 1 and one −1 in some row
beneath it. When D1 is row reduced, there will be exactly n linearly
independent columns. That is, rank(D1) = n.

Adding a new branch to this tree equates to adding one new edge
connecting to a new vertex. In D1, this means adding one new column
and row. In the new column, since the new vertex has only one edge
attached, this gives a −1 in the row representing that edge and a 1 in
the row representing the vertex that we branched from. Row reducing
D1, this new column is still linearly independent.

Because each column in D1 is linearly independent, the final row
will always contain only 0s after row reduction. This means that the
number of linearly independent columns will always be equal to the
total number of columns in D1. That is,

dim(Im ∂1) = dim(D1).

By the Rank-Nullity Theorem (2),

dim(ker ∂1) = 0 and so

dim(H̃1) = 0.

�

In order to compute H̃0 of these graphs, we’ll also need some infor-
mation about the zero-dimensional boundary (∂0). Boundary 0 maps
the vertex space into our field R. We think of this 1-dimensional vector
space as representing the empty set, and call it C−1. So we have,

∂0 : C0 −→ C−1.

Again, this is explained in further detail in Section 4, but for now
we compute H̃0 for our previous examples.
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Returning first to Example 3, we recall that

dim(Im ∂1) = 2.

To get the dim(ker ∂0), we can simply count the number of vertices
in our graph, and subtract by one. Then

dim(ker ∂0) = 3− 1 = 2, so

dim(H̃0) = 2− 2 = 0.

So we see that H̃0 = 0. Before we find out what this means, we take
a look now at Example 4 to see whether there is a difference.

Recall that
dim(Im ∂1) = 4.

Again we count our total vertices and subtract by one, so

dim(ker ∂0) = 6− 1 = 5 so,

dim(H̃0) = 5− 4 = 1.

We might now be asking ourselves: “Why is there a difference be-
tween H̃0 of the disjoint graph and the non-disjoint graph?”

This comes as a result of what H̃0 actually measures. We stated
before that homology is a method of defining “holes” in a shape. In the
case of H̃0 these holes refer to connectedness. In other words, a “hole”
in 0 dimensions is just a gap between components, such as in the graph
in Example 4. If we had added another disjoint piece to this graph, we
would have had H̃0 = 2 and so on as more are added. In Example 3,
H̃0 would always be 0 because there is only a single connected piece,
so there would be no holes to find. The same is true of Example 6.

In fact, these ideas yield important theorems in homology.

Theorem 8 (Cycle Graph Theorem). Let G be a cycle graph. Then

H̃0 = 0.

Lemma 9 (Zero-Homology of a Tree). Let a graph T be a tree. Then

H̃0 = 0.

Proof. We give a brief proof. Of course, the total number of vertices
is equal to the number of rows in our matrix. That is, n + 1. This
means that dim(ker ∂0) = n, which is the total number of columns, or
dim(V ). Thus,

dim(ker ∂0) = dim(V ) = dim(Im ∂1) and so

dim(H̃0) = dim(ker ∂0) − dim(Im ∂1) = 0, so

H̃0 = 0.
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�

Theorem 10 (Connectivity Theorem). Let G be a connected graph.
Then

H̃0 = 0.

Proof. Note that every connected graph contains a spanning tree.[1]
A spanning tree in a graph G is a subgraph of G that includes all
the vertices of G and is also a tree. We know that for any tree, we
have H̃0 = 0 and if we have v vertices, we have v − 1 edges in the
tree which gives a matrix with v rows and v − 1 columns. Adding
any of the original edges back into the spanning tree means adding a
column but no new row since our spanning tree included all vertices.
This ultimately means that the number of linearly dependent columns,
that is, dim(ker ∂1) will increase but the number of linearly independent
columns, or dim(Im ∂1) will stay the same. Since our number of vertices
remains the same as well, dim(ker ∂0) does not change either. So, just
as in our spanning tree,

dim(ker ∂0) = dim(Im ∂1), so

H̃0 = 0.

�

Theorem 10 tells us about any connected graph. That is, regardless
of whether the graph is a tree, a cycle graph, or anything in between.
As long as there only one component in the graph, H̃0 = 0.

Theorem 11 (Disjoint Graph Theorem). Let G be a graph. Then H̃0 is
equivalent to one less than the number of connected components. That
is,

H̃0 = n− 1

where n is the total number of components in the graph.

4. Boundary maps and chain complexes

We now provide a deeper explanation on boundaries and their asso-
ciation with chain complexes. As we stated in Section 3, we begin with
our boundary map,

∂1 : C1 −→ C0

which maps the edge space into the vertex space. But what does this
mean?
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Example (3 continued). Looking at our first example with edges
a1, a2, and a3 and vertices v1, v2, and v3, our map of ∂1 would be

∂1 : a1 −→ v2 − v1

a2 −→ v3 − v2

a3 −→ v1 − v3

We see that if we were to combine our 3 edges, we end up with 0,

(v2 − v1) + (v3 − v2) + (v1 − v3) = 0.

Next, we take a look at our map of ∂0,

∂0 : C0 −→ C−1

which maps the vertex space into the field R, or the 1-dimensional
vector space representing the empty set.

We look again to our first example with vertices v1, v2, and v3. After
row-reducing, we were left with

v1
v2
v3

a1 a2 a31 0 −1
0 1 −1
0 0 0

 .

This tells us that,

v1 = v3 and

v2 = v3 so,

v1 = v2 = v3.

Then, our map of ∂0 can be written,

∂0 : v1 −→ 1

v2 −→ 1

v3 −→ 1.

We can combine our boundary map for ∂0 with our map for ∂1 to
get,

C1
∂1−→ C0

∂0−→ C−1
∂−1−→ 0

where 0 is the trivial vector space.
This is something called a chain complex, or a sequence of vector

spaces Ci and maps, or functions, ∂i such that

∂i(∂i+1(x)) = 0 for all x ∈ Ci+1.
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Figure 5.1. The Mobius Strip (figure due to Weisstein [4])

So the image of ∂i+1 is contained in the kernel of ∂i. That is,

Im(∂i+1) ⊆ ker(∂i).

The homology of the chain complex is another sequence of vector
spaces,

H̃i(C) = ker(∂i)/ Im(∂i+1) with

dim(H̃i) = dim(ker ∂i)− dim(Im ∂i+1).

We can, of course, add on more boundary maps to our chain complex.
In the next section, we will be working with ∂2, with the map

∂2 : C2 −→ C1.

This maps the triangle space (C2) into our edge space (C1). This
extends our chain complex,

C2
∂2−→ C1

∂1−→ C0
∂0−→ C−1

∂−1−→ 0.

5. A 2-dimensional example

In the Section 3, we mentioned that dim(Im ∂2) would have to be 0
in the graphs we were using. This is not necessarily always the case.
We come now to the famous Mobius Strip and will compute its H̃1.
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Figure 5.2. Triangulation of the Mobius Strip

The Mobius Strip is a surface with one continuous side formed by
joining the ends of a rectangular strip after twisting one side 180 de-
grees.

To compute the homology, we first provide a triangulation (Figure
5.2). Notice that the first edge on the triangulation is the same as the
final edge. It is simply reversed so that when the two are connected,
they form the Mobius Strip.

We begin now in the same way as the first examples, with the signed
incidence matrix between the vertices and edges for this graph.

D1 =

v1
v2
v3
v4
v5

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
1 0 −1 0 0 0 0 1 1 0
−1 −1 0 0 1 0 0 0 0 1
0 1 1 0 0 0 −1 0 0 0
0 0 0 1 −1 −1 0 0 −1 0
0 0 0 −1 0 1 1 −1 0 −1


Once more, we row reduce and find our rank and nullity.

D1 =

v1
v2
v3
v4
v5

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
1 0 −1 0 0 0 0 1 1 0
0 1 1 0 −1 0 0 −1 −1 −1
0 0 0 0 1 0 −1 1 1 1
0 0 0 1 −1 −1 0 0 −1 0
0 0 0 0 1 0 −1 1 1 1


This gives

rank(D1) = 4

null(D1) = 6.

Next, we need dim(Im ∂2). Luckily for us, this time we have a method
to find it. To compute this, we create a new signed incidence matrix,
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this time between the edges and triangles in the graph rather than
vertices and edges. This gives,

D2 =

a1
a2
a3
a4
a5
a6
a7
a8
a9
a10

t1 t2 t3 t4 t5

1 0 0 0 1
−1 1 0 0 0
1 0 0 0 0
0 −1 1 0 0
0 1 0 0 0
0 0 −1 1 0
0 0 1 0 0
0 0 0 −1 −1
0 0 0 1 0
0 0 0 0 1


.

Also luckily, this still only requires us to use a simple row reduction
procedure. So we have,

D2 =

a1
a2
a3
a4
a5
a6
a7
a8
a9
a10

t1 t2 t3 t4 t5

1 0 0 0 1
0 1 0 0 1
0 0 0 0 −1
0 0 1 0 1
0 0 0 0 −1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


.

Now we see that,

dim(Im ∂2) = 5 so,

dim(H̃1) = 6− 5 = 1.

This tells us that the Mobius Strip has one 1-dimensional hole, or
cycle. We should remember not to let the cycles in the triangulation
confuse us, as these triangle are filled in, whereas in our earlier exam-
ples, the triangles were empty.

We can also see immediately here that dim(H̃2) is going to be 0.
Since dim(Im ∂2) = 5 = dim(D2), it follows that dim(ker ∂2) must be
0.

It is possible to compute even higher dimensional homologies for
objects such as the sphere or the torus. This is left as an exercise for
the reader.
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