
Advances in Computational Mathematics manuscript No.
(will be inserted by the editor)

Parametric curves with Pythagorean binormal
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Abstract In this paper, a class of rational spatial curves that have a rational binormal is
introduced. Such curves (called PB curves) play an important role in the derivation of ra-
tional rotation-minimizing conformal frames. The PB curve construction proposed is based
upon the dual curve representation and the Euler-Rodrigues frame obtained from quaternion
polynomials. The construction significantly simplifies if the curve is a polynomial one. Fur-
ther, polynomial PB curves of the degree ≥ 7 and rational PB curves of the degree ≥ 6 that
possess rational rotation-minimizing conformal frames are derived, and it is shown that no
lower degree curves with such a property exist.

Keywords Pythagorean-hodograph · Pythagorean-binormal · rational curve · dual
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1 Introduction

Orthonormal frames of spatial parametric curves find their use in quite a few practical appli-
cations, such as the computer animation, the motion planning, the swept surface construc-
tion, etc. One of such frames is the well known Frenet frame (t,n, b), where t is the unit
length tangent, n the principal normal, and b = t×n the binormal. Every orthonormal
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frame (f1, f2, f3) is accompanied by the angular velocity vector field ω, such that

f ′
i = ω×f i, i = 1, 2, 3.

If ω additionally satisfies ω · f ℓ = 0 for some ℓ ∈ {1, 2, 3}, then the frame is called
rotation-minimizing with respect to f ℓ. In case of the Frenet frame, the angular velocity
vector field is equal to ω = κb+ τt, where κ and τ are the curvature and the torsion of the
curve. Since ω · n = 0, there is no instantaneous rotation of b and t about n, so the Frenet
frame is rotation-minimizing with respect to n. Orthonormal frames of a spatial curve r
with

f1 = t =
r′

∥r′∥
are called adapted frames. In most but not all applications it is preferable to work with
adapted frames which are rotation-minimizing with respect to the tangent, i.e., rotation-
minimizing adapted (RMA) frames. However, in practical computer aided design applica-
tions it is an imperative to deal with rationally represented objects only. So in the past years,
a lot of the research has been devoted to the construction of rational RMA frames (RRMA
frames) (see e.g., [5], [6], [7], [11], [13], [14], [15], [22], [23]). For such frames it is neces-
sary that a curve r is a Pythagorean-hodograph (PH) curve. Pythagorean-hodograph curves
are characterized by the property that their unit length tangent is rational. They were first
introduced in [12], and since then very well investigated (see [2], [3], [4], [17], [18], [19],
[20], [24], [25], and the references therein). But clearly, the PH property alone does not
ensure the existence of a RRMA frame and a construction of curves which possess such a
frame is a difficult task since nonlinear constraints are involved.

Recently, a new class of orthonormal frames called the rotation-minimizing conformal
(RMC) frames has been introduced in [8]. Such frames are needed in aerodynamics to con-
struct “yaw-free” rigid body motions along a curved path, i.e., motions that have no instan-
taneous rotation about the binormal b. An orthonormal frame (f1, f2, f3) of a spatial curve
r is conformal if

f3 = b =
r′×r′′

∥r′×r′′∥ ,

and the remaining two vectors f1 and f2 span the osculating plane. Furthermore, it is a
RMC frame if additionally ω · b = 0. A necessary condition for a curve to have a ratio-
nal rotation-minimizing conformal (RRMC) frame is that its binormal b is rational. This
certainly is true if the curve has a rational Frenet frame. Such a curve is called a double
PH (DPH) curve (see e.g., [9], [10]). In [8] the existence of polynomial curves possessing
RRMC frame has been studied, and DPH curves as first candidates have been considered.
It was shown that no cubic or quintic DPH curves having RRMC frame exist. Moreover, at
least two important open problems were exposed. The first one is the existence of RRMC
frames on curves of degree 7 or higher. The second question is whether there exist curves
which are not DPH curves, and possess RRMC frame. In this paper the positive answers to
both of the questions are given. Namely, a new class of rational parametric curves, called PB
curves, that have a rational binormal b is defined and the construction is provided based on
the dual representation of spatial parametric curves (see [21], [26]). This approach enables
us to avoid dealing with nonlinear constraints that characterize such curves. Furthermore, it
is shown that polynomial PB curves can be obtained by the integration of a particular hodo-
graph defined by the preimage quaternion curve. The same holds true also for PH curves,
only that the preimage map is different. Therefore, most of the results known for PH curves
and the corresponding rational adapted frames can be applied to rational conformal frames
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of PB curves. In particular, the Euler-Rodrigues frame (E-R frame) that has been introduced
in [1] can be assigned as a conformal frame to the derived PB curve. Following the con-
struction of a RRMA frame of a PH curve, we show that a RRMC frame can be obtained
from the E-R frame by rotating the two vectors in the osculating plane. By using [5], the
construction of polynomial PB curves of degree seven that possess RRMC frames is pro-
posed. Furthermore it is shown that polynomial PB curves of degree < 7 derived from a
quadratic quaternion polynomial exist, but it is proven that such curves can not possess a
RRMC frame. This extends the result obtained in [8] for DPH curves since DPH curves are
a subset of PB curves.

The paper is organized as follows. In the next section the dual construction of spatial ra-
tional curves is shortly reviewed and it is applied to PB curves in Section 3. The examples of
rational PB curves derived from quaternion polynomials are given in Section 4. Polynomial
PB curves are considered in Section 5 with the emphasis on low degree curves. Section 6
deals with conformal frames of PB curves and provides the construction of RRMC frames.

2 Dual representation of spatial rational curves

In [16] and [26] it was shown how spatial parametric curves can be constructed from a
one parametric family of osculating planes based on geometric foundations. In [21] a com-
pletely algebraic construction was derived and a dual representation of spatial curves was
incorporated. In this section the main results from [21] are reviewed.

Let r : [α, β] → R3 be a smooth regular parametric curve such that the Frenet frame
(t,n, b),

t =
1

∥r′∥r
′, b =

1

∥r′×r′′∥r
′×r′′, n = b×t,

is well defined on the parameter interval [α, β]. The basis for dual construction is the fact
that at every parameter value t ∈ [α, β] the point r(t) is the unique solution of a linear
system

b(t) · (p−r(t)) = 0, n(t) · (p−r(t)) = 0, t(t) · (p−r(t)) = 0, p ∈ R3, t ∈ [α, β],
(1)

which represents the intersection of the osculating, the rectifying and the normal plane at
the value t. In [21] it was shown that under additional condition that the torsion τ does not
vanish on [α, β], equations (1) are equivalent to

u(t) ·p−f(t) = 0, u′(t) ·p−f ′(t) = 0, u′′(t) ·p−f ′′(t) = 0, p ∈ R3, t ∈ [α, β],
(2)

where
u := ϕ b, f := ϕ b · r, (3)

and ϕ is any zero free function from C 2([α, β]). The first equation in (2), which represents
the osculating plane, determines the corresponding curve uniquely. Its coefficients are called
dual coordinates of the parametric curve r and are denoted by

L := (−f ;u) :=
(
−f ; (u1, u2, u3)T

)
:= (−f, u1, u2, u3)T .

The dual coordinates L are clearly homogeneous, i.e., L ∼ ζL for any smooth function ζ
that does not vanish on [α, β]. If the original curve r is rewritten in a homogeneous form
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too,

P := (P0, P1, P2, P3)
T ∼ (1; r) , r =

1

P0
(P1, P2, P3)

T , P0 ̸= 0, (4)

then both representations are connected as

P ∼ L ∧ L′ ∧ L′′, L ∼ P ∧ P ′ ∧ P ′′, (5)

where . ∧ . ∧ . denotes the Grassmann wedge product between vectors in R4, defined as

v1 ∧ v2 ∧ v3 :=
(
(−1)i detV [i]

)4
i=1

, vj ∈ R4,

where V = (v1, v2, v3) ∈ R4×3 and V [i] ∈ R3×3 is a submatrix of V with i-th row of the
original matrix omitted (see [21, Thm.1]).

From (4) and (5) it is clear that a polynomial dual form L defines a rational curve r
and vice versa. A degree of a polynomial homogeneous representation is defined as a maxi-
mal degree of polynomials involved, under the condition that the polynomials are relatively
prime. A homogeneous form with relatively prime components is called a primitive form.
Rational curves with polynomial dual form L of degree m are called class m curves. Quite
clearly deg r = degP provided P is primitive, but a connection between the degree and the
class of a curve r is not that straightforward and it is treated in [21]. In particular, it is shown
that a dual form L of degree m imply a point representation P = L ∧ L′ ∧ L′′ of degree
3m− 6 in general. Thus a switch from a known dual representation L to a point representa-
tion P might increase the complexity of the curve representation significantly. But, a Beziér
dual representation that has been introduced in [26], allows one to do the computations in
an efficient and stable way by applying the de Casteljau algorithm to dual coordinates.

Dual coordinates turned out to be particularly useful when dealing with rational PH
curves. In this paper we will show how to apply dual construction to obtain another practi-
cally important class of curves, i.e., curves that have rational unit binormals.

3 Rational curves with pythagorean binormal

Definition 1 Rational (polynomial) spatial curve r : [α, β] → R3 is a Pythagorean-
binormal (PB) curve if ∥∥r′×r′′

∥∥ = σ (6)

for some rational (polynomial) function σ.

The algebraic characterization of a PB curve is easy to formulate. Suppose that r is a poly-
nomial curve with components being polynomials of the degree n. Then r′×r′′ is in general
of the degree 2(n−2) (see [21, Thm. 3.]), so σ must be a polynomial of the degree 2(n−2)

too. Condition
∥∥r′×r′′

∥∥2 = σ2 gives 4(n− 2)+ 1 polynomial equations for 2(n− 2)+ 1
unknown coefficients of σ and 3(n + 1) unknown coefficients of r. The choice of the free
σ coefficient is obvious, i.e., σ(0) =

∥∥r′(0)×r′′(0)
∥∥, and it is a linear task to express the

rest of the σ coefficients from

dℓ

dtℓ
σ2(t)

∣∣
t=0

=
dℓ

dtℓ

(∥∥r′(t)×r′′(t)
∥∥2) ∣∣

t=0
, ℓ = 1, 2, . . . , 2(n− 2),
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by the coefficients of r. So one is left with 2(n − 2) equations that the coefficients of r
should satisfy. Since 3(n+ 1)− 2(n− 2) = n+ 7, the family of polynomial PB curves of
the degree n is (n+7)-parametric. As an alternative, one may avoid the use of σ completely
by simply applying a proper set of linear functionals that annihilates both sides of (6) ([20]).

A similar approach works for the rational case too. Let r = 1
qp be a rational curve

of the degree n with the numerator p and with the denominator q. Then r depends on
3(n+ 1) + n− 1 = 4n+ 2 free coefficients. Further we obtain

r′×r′′ = − q′

q3
p×p′′ +

q′′

q3
p× p′ +

1

q2
p′×p′′.

One needs to consider the PB property of the polynomial numerator part q3 r′×r′′ only.
The degree of q3 r′×r′′ equals 3(n − 2), so the corresponding σ should be of the same
degree. Following the steps of the polynomial case we finally observe that the number of
free parameters in the rational case equals

(3(n+ 1) + n− 1)− ((6(n− 2) + 1)− (3(n− 2) + 1)) = n+ 8.

Even though the algebraic approach to PB curves outlined is precise, it may lack the
practical functionality even for modest degrees n. But if we take a tiny step back from
the generality, the PB curve construction turns out as a simple task. Indeed, if we express
the curve by its dual form, described in Section 2, we only have to assure that the field of
binormals is chosen as

b =
1

∥u∥u,

where the norm ∥u∥ is a polynomial. The following theorem gives the basic properties of
rational PB curves obtained by the dual construction.

Theorem 1 Suppose that u : R → R3 is a polynomial curve, such that its norm ∥u∥ is
polynomial too. For any polynomial f , the dual form L := (−f ;u) defines a rational PB
curve r with the binormal b = 1

∥u∥u and the denominator of r being equal to

λ := det
(
u,u′,u′′) . (7)

Moreover, the hodograph of r is of the form

r′ = ψ u× u′, (8)

where

ψ =
det
(
L,L′,L′′,L′′′)

λ2
, (9)

and r′×r′′ = ψ2λu.

Proof Let P = (P0, P1, P2, P3)
T = L ∧ L′ ∧ L′′ and r = 1

P0
(P1, P2, P3)

T . From the
definition of the wedge product it is clear that the denominator P0 is equal to λ. If we define

R :=
1

λ
P = (1; r) ∼ P ,
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then

R′ =
(
0; r′

)
=

1

λ
P ′ − λ′

λ2
P =

1

λ
L ∧ L′ ∧ L′′′ − λ′

λ2
L ∧ L′ ∧ L′′ =

= L ∧ L′ ∧
(
1

λ
L′′
)′
.

Therefrom it follows that

R′ · L = 0 = r′ · u, R′ · L′ = 0 = r′ · u′,

which shows that r′ is orthogonal to u and u′. Thus

r′ = ψu×u′ (10)

for some function ψ. Since(
0;u×u′) = L ∧ L′ ∧

(
1; (0, 0, 0)T

)
,

the equation (10) can be written also as R′ = ψL ∧ L′ ∧
(
1; (0, 0, 0)T

)
. If we multiply it

by L′′, we obtain(
L ∧ L′ ∧

(
1

λ
L′′
)′)

· L′′ = ψ
(
L ∧ L′ ∧

(
1; (0, 0, 0)T

))
· L′′.

The left hand side is equal to

− 1

λ
det
(
L,L′,L′′,L′′′)

and the right hand side evaluates to −λψ, which confirms (9). With the help of the cross
product identity

(a×b)×(a×c) = det(a, b, c)a, a, b, c ∈ R3,

we derive

r′×r′′ = ψ
(
u×u′)×(ψ′ (u×u′)+ ψ

(
u×u′′)) =

= ψ2 (u×u′)×(u×u′′) = ψ2λu,

which completes the proof. ⊓⊔

The next theorem reveals when a rational PB curve reduces to a polynomial one.

Theorem 2 Suppose that the assumptions of Theorem 1 hold. Then the PB curve r deter-
mined by the dual form L = (−f ;u) is a polynomial of the form r =

∫
p iff the polynomial

f equals

f = u ·
∫

p, (11)

where p is a polynomial field, orthogonal to u and u′.
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Proof If L determines a polynomial PB curve r =
∫
p then it follows from (8) that p must

be orthogonal to u and u′. Furthermore, by (3) f should be of the form (11).
To prove the theorem in the other direction let us assume that (11) holds where p =

(p1, p2, p3) is orthogonal to u and u′. Then

f ′ = u′ ·
∫

p, f ′′ = u′′ ·
∫

p,

and the homogeneous form evaluates to

P = L ∧ L′ ∧ L′′ =

(
λ, λ

∫
p1, λ

∫
p2, λ

∫
p3

)T

∼
(
1;

∫
p

)
with λ defined in (7). Thus by (4), r =

∫
p is clearly a polynomial curve, and it is the PB

one by the construction. This concludes the proof. ⊓⊔

A rational unit vector field of binormals can be constructed by using the stereographic pro-
jection (e.g. [16]). The other standard way is the quaternion approach. The latter will be
used in the paper.

Space of quaternions H is a 4–dimensional vector space with the standard basis {1, i, j,k},

1 =
(
1, (0, 0, 0)T

)
, i =

(
0, (1, 0, 0)T

)
, j =

(
0, (0, 1, 0)T

)
, k =

(
0, (0, 0, 1)T

)
.

If we write

A := (a0,a) :=
(
a0, (a1, a2, a3)

T
)
, B := (b0, b) :=

(
b0, (b1, b2, b3)

T
)
,

then

A+ B = (a0 + b0,a+ b), AB = (a0b0 − a · b, a0b+ b0a+ a× b).

Equipped with the quaternion operations sum and product H becomes an algebra. The first
component a0 of the quaternion A is called the scalar part, and the remaining three compo-
nents form the vector part of the quaternion A, vec(A) := (a1, a2, a3)

T . For a given A the
components will be denoted also as

(A)1 := a0, (A)i := a1, (A)j := a2, (A)k := a3.

Quaternions with a zero scalar part are called pure quaternions. As usually, they are identi-
fied with vectors in R3,

A = (0,a) ≡ a.

By A* := (a0,−a) we denote the conjugate of A = (a0,a), ∥A∥ =
√
AA* is its norm,

and H[t] is the ring of polynomials over H. Any nontrivial quaternion polynomial A ∈
H[t] induces three rational unit vector fields ei = ei(A), i = 1, 2, 3, determined as pure
quaternions

e1 :=
1

∥A∥2
A iA*, e2 :=

1

∥A∥2
A jA*, e3 :=

1

∥A∥2
AkA*. (12)

They form an orthonormal frame (ei)
3
i=1, called the Euler-Rodrigues frame (E-R frame).

The angular velocity vector field ω, given by e′i = ω × ei, is in the E-R frame coordinate
system equal to

ω = ω1e1 + ω2e2 + ω3e3,
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where

ω1 = e3 · e′2 = −e2 · e′3, ω2 = e1 · e′3 = −e3 · e′1, ω3 = e2 · e′1 = −e1 · e′2. (13)

The speed of the E-R frame can be expressed as

e′1 = ω3e2 − ω2e3, e′2 = −ω3e1 + ω1e3, e′3 = ω2e1 − ω1e2. (14)

Furthermore, let us define

ρ := ∥A∥2 , hi := ρ ei, ν := (ν1, ν2, ν3)
T := ρ (ω1, ω2, ω3)

T . (15)

Note that hi and νi are the numerators of ei and ωi respectively. In terms of the quaternion
polynomial A the coefficients ν read

(ν1, ν2, ν3)
T = 2 vec

(
A*A′

)
. (16)

To construct a PB curve, we choose the binormal b to be equal to e1. More precisely, if
u in Theorem 1 is chosen as

u = gh, h := h1, (17)

then the dual form
L := (−f ; gh) (18)

defines a rational PB curve r for any polynomials f and g. To obtain a primitive dual form
L we must choose f and g such that gcd (f, g) = 1. However, this does not assure that
the components of L are relatively prime too. In [4] it was shown that there might exist
a nonconstant factor ϑ, such that h = ϑhR, gcd (hR) = 1, even if the components of a
quaternion polynomial A are relatively prime. In that case one replaces L by

(−fϑ; gh) ∼ (−f ; ghR) =: LR,

and LR is a primitive dual form for any relatively prime polynomials f and g. Note that by
[4] such a common factor ϑ can’t have real roots.

The hodograph of a PB curve derived from (18) follows from (8) as

r′ = ψ (gh)×(gh)′ = ψg2h×h′,

where ψ depends on the chosen functions f and g. Further, from (14) and (15) we conclude

h×h′ = ρ2e1×e′1 = ρ2 (ω2e2 + ω3e3) = ν2h2 + ν3h3,

what simplifies the hodograph to

r′ = ψg2 (ν2h2 + ν3h3) . (19)

The irregular points clearly arise from the zeros of a function ψ. But, the hodograph can
vanish also if the components of ν2h2 + ν3h3 have a common factor. The conditions, that
imply such a common factor in the case when the quaternion polynomial A is a linear or a
quadratic one, are examined in [21].



Parametric curves with Pythagorean binormal 9

4 Examples of rational PB curves

Let us first consider the PB curves generated by a linear quaternion polynomial

A(t) = A0B
1
0(t) +A1B

1
1(t), Ai =

(
ai,0, (ai,1, ai,2, ai,3)

T
)
, (20)

where

Bn
i (t) :=

(
n

i

)
ti(1− t)n−1, i = 0, 1, . . . , n,

are the Bernstein basis polynomials of the degree n. As it is shown in [21],

deg (νi) = 0, deg (hi) ≤ 2, i = 1, 2, 3.

The dual form (18) is thus of the degree m = max {2 + deg (g) , deg (f)}. Further, (19)
implies ∥∥r′∥∥2 = r′ · r′ = ψ2g4

(
ν22 + ν23

)
ρ2.

But ν22 + ν23 is a constant, so the curve r has a pythagorean hodograph, which proves the
following assertion.

Proposition 1 Rational PB curves derived from a linear quaternion polynomial (20) are
rational DPH curves for any polynomials f and g.

Since rational PH curves have already been thoroughly considered in [21], we skip the de-
tails here. The next case to be examined are PB curves generated by a quadratic quaternion
polynomial

A(t) = A0B
2
0(t) +A1B

1
2(t) +A2B

2
2(t), Ai =

(
ai,0, (ai,1, ai,2, ai,3)

T
)
. (21)

In this case
deg (νi) = 2, deg (hi) ≤ 4, i = 1, 2, 3,

and the dual form (18) is of the degree m = max {4 + deg (g) , deg (f)}. If we choose
g ≡ 1 and deg (f) ≤ 4 then the obtained rational PB curve is of the degree ≤ 6. As an
example let us choose

A0 =
(
1, (0, 0, 0)T

)
, A1 =

(
0, (2,−1, 1)T

)
, A2 =

(
0, (3, 3, 0)T

)
,

and f(t) = 2t3 + t4. From (12), (15) and (17) we compute

h(t) =

−27t4 + 16t3 + 14t2 − 4t+ 1
2t
(
−7t3 + 28t2 − 14t+ 2

)
−2t

(
3t3 − 2t2 + t− 2

)
 .

The evaluation of the wedge product P = (P0, P1, P2, P3)
T = L ∧ L′ ∧ L′′ gives the

homogeneous coordinates of the curve r = 1
P0

(P1, P2, P3)
T (see Fig. 1) as

P0(t) = 16
(
770t6 − 2334t5 + 1641t4 − 712t3 − 24t2 + 78t− 13

)
,

P1(t) = 16t3
(
35t3 + 102t2 − 39t− 26

)
,

(22)
P2(t) = 8t

(
91t5 − 258t4 − 12t3 − 28t2 + 3t+ 6

)
,

P3(t) = −16t
(
392t5 − 231t4 + 84t3 − 14t2 − 18t+ 3

)
.
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The function ψ computed by (9) equals

ψ(t) =
3
(
763t4 − 70t3 − 102t2 + 26t+ 13

)
4 (−770t6 + 2334t5 − 1641t4 + 712t3 + 24t2 − 78t+ 13)2

.

Since ψ has no real zeros and the components of ν2h2+ν3h3 do not have a common factor,
the curve r is regular. The denominator of ψ vanishes at parameter values

t ∈ {−0.299505, 2.27122, 0.241973± 0.0839458 i, 0.287754± 0.543649 i},

that corresponds to singular points of r.

x

y

z

Fig. 1 The rational PB curve of degree 6 defined by (22) on the parameter domain [0, 1].

As the example shows, a quadratic quaternion polynomial gives rational PB curves of
degree 6, provided deg (g) = 0 and deg (f) ≤ 4. In general, if polynomials g and f satisfy
deg (g) = 0 and deg (f) ≤ 2k, then a quaternion polynomial of degree k generates rational
PB curves of the class m = 2k, i.e., PB curves of the degree ≤ 3(2k) − 6 = 6(k − 1). If
the degree of f or g is increased, the class of a curve is increased too.

5 Polynomial PB curves

In the beginning of Section 3 it was observed that there is a small distinction between a
rational PB curve and a polynomial one of the same degree as far as the number of degrees
of freedom is concerned. So one is tempted to study the polynomial case in particular since
rationals might not offer enough additional flexibility w.r.t. the polynomial ones. Theorem 2
provides a shortcut to polynomial PB curves, and together with the relation (19) implies the
following observation.
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Proposition 2 Suppose that A ∈ H[t] is a given quaternion polynomial which determines
the E-R frame (12), and the corresponding (13) and (15). Then r =

∫
p is a polynomial PB

curve for any rational function τ , for which the field p,

p = τ (ν2h2 + ν3h3) = 2τ

((
A*A′

)
j
A jA* +

(
A*A′

)
k
AkA*

)
, (23)

results polynomial.

The last equality in (23) follows from (16). The simplest function τ in (23) is a constant,
and the degree of ν2h2 + ν3h3 is 4k − 2 in general where k is the degree of A. This
yields degree 4k − 1 polynomial PB curves. If τ is a polynomial of the degree ≥ 1, its
real zeroes contribute to the set of irregular points of the curve r what one avoids usually
if possible. If the components of ν2h2 + ν3h3 have common factors then τ could also be
rational with the denominator part which consists of these common factors. Such a choice
removes irregular points of the curve (except at infinity), and it decreases the degree of r
too. Note that this degree may be lowered also by decreasing the degree of ν2h2 + ν3h3.
In [21, Sec. 6], a comprehensive analysis of conditions imposed on quadratic quaternion
polynomials A that decrease the degree of p is outlined. Rather than to repeat them in the
full generality, we apply the outcome provided there to generate examples of polynomial
PB curves of the degrees 6, 5, and 4. This answers a query posted in [8] too: there exist
polynomial PB curves, even of small degrees ≥ 4.

An example of a PB curve of the degree 6. The quaternion polynomial

A =
(
t2 − t+ 5, (t+ 2, t+ 2, t+ 2)T

)
generates the hodograph direction

ν2h2 + ν3h3 = 4

 2(t− 4)t
(1− t)t

(
t3 + 2t2 + 2t+ 6

)
t5 + 4t4 − 4t3 − 10t2 + 2t+ 10

 ,

which is of the degree 5 only.The choice τ = 1
4 in (23) determines the polynomial PB curve

of the degree 6,

r6(t) =
1

30

 20(t− 6)t2

−t2
(
5t4 + 6t3 + 40t− 90

)
t
(
5t5 + 24t4 − 30t3 − 100t2 + 30t+ 300

)
+ r6(0),

with the rational binormal

b6(t) =
1

t4 + 2t3 − 2t2 − 8t+ 10

−t4 − 2t3 + 2t2 + 8t− 6
2
(
t2 + 2t− 4

)
2t2

 .

An example of a PB curve of the degree 5. Let the (linearly dependent) quaternion polyno-
mial coefficients be given as

A0 =
(
5, (2, 2, 2)T

)
, A1 =

1

2

(
9, (5, 5, 5)T

)
, A2 =

(
5, (3, 3, 3)T

)
.
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Then

ν2h2 + ν3h3 = −2
(
t2 + 4t− 7

) 4(t+ 2)2

((t− 2)t+ 3)2(
t2 + 7

)2
 ,

and hence the choice

τ = − 3

40 (t2 + 4t− 7)

reduces the degree of the hodograph direction to 4. The curve reads

r5(t) =
1

100

 20t
(
t2 + 6t+ 12

)
t
(
3t4 − 15t3 + 50t2 − 90t+ 135

)
t
(
3t4 + 70t2 + 735

)
+ r5(0),

and its rational binormal is given as

b5(t) =
1

t4 − 2t3 + 14t2 + 2t+ 37
.

 (
t2 + 7

) (
t2 − 2t+ 3

)
2(t+ 2)

(
t2 + 7

)
−2(t+ 2)

(
t2 − 2t+ 3

)
 .

An example of a PB curve of the degree 4. The quaternion polynomial

A =
(
t2 − 5, (−6t, 8, 4)T

)
yields the degree 5 hodograph direction, but with a common quadratic divisor,

ν2h2 + ν3h3 = 16
(
t2 + 4

) 120
−2t3 − 9t2 + 24t− 48
−t3 + 18t2 + 12t+ 96

 .

So the choice

τ =
1

300 (t2 + 4)

gives

r4(t) =
1

75

 480t
−2t

(
t3 + 6t2 − 24t+ 96

)
−t
(
t3 − 24t2 − 24t− 384

)
+ r4(0),

and the rational binormal

b4(t) =
1

(t2 + 4) (t2 + 24)

 t4 + 28t2 − 64
8
(
t2 − 12t− 4

)
−16(t− 1)(t+ 4)

 .

All three example curves are shown in Fig. 2.
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Fig. 2 The polynomial PB curves r6 (left), r5 (middle), and r4 (right) on [−2, 2], with r6(0) = r5(0) =

r4(0) = (0, 0, 0)T , and the corresponding binormal fields b6, b5, and b4.

6 Rational rotation-minimizing conformal frames

A necessary condition for a spatial curve r to possess a rational conformal frame is that r is
a PB curve. For any PB curve derived from a quaternion polynomial A by a dual construc-
tion the associated E-R frame has the property of being conformal and rational. Moreover,
for any quaternion polynomial Q =

(
q0, (q1, 0, 0)

T
)

the E-R frame obtained from a prod-
uct AQ is also a conformal frame of a curve r. Note that the same holds true for PH curves
and the associated adapted frames. In both cases the rational rotation-minimizing frames
could be constructed from the E-R frame, where e1 is taken as the unit binormal/tangent
vector. Furthermore, conditions for a curve to possess a rational rotation-minimizing con-
formal/adapted frame depend only on a chosen quaternion polynomial A and not on the way
the curve is derived from. Therefore all known results for RRMA frames on PH curves can
be used also for RRMC frames on PB curves.

The analysis of RRMA frames is usually done by using a Hopf map representation of a
PH curve, but all the results can be reformulated to the quaternion setting in a quite simple
way. Some of the important results known for RRMA frames are summarized and applied
to RRMC frames in the next two propositions. In the first one, sufficient and necessary
conditions for the existence of a RRMC/RRMA frame are stated. The second proposition
reveals the connection between the coefficients of a quadratic quaternion A that defines a
curve which possesses a RRMC/RRMA frame. Proofs and more details can be found, e.g.,
in [5], [13] and [15].

Proposition 3 Let A be a quaternion polynomial which defines the binormal/tangent and
the E-R frame of a PB/PH curve. The curve possesses a RRMC/RRMA frame iff there exists
a quaternion polynomial Q :=

(
q0, (q1, 0, 0)

T
)
, where q0 and q1 are relatively prime, such

that (
A∗A′

∥A∥2

)
i

=

(
Q∗Q′

∥Q∥2

)
i

.

Proposition 4 A PB/PH curve generated from a quadratic quaternion polynomial A =
A0B

2
0+A1B

2
1+A2B

2
2 has a RRMC/RRMA frame iff the quaternion coefficients A0,A1,A2
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satisfy
vec
(
A2 iA*

0

)
= A1 iA*

1. (24)

Moreover, the RRMC/RRMA frame vectors can be determined as ei(B), i = 1, 2, 3, where

B := AQ∗, (25)

with

q0 := ∥A0∥2B2
0 +

(
A∗

0A1

)
1
B2

1 + ∥A1∥2B2
2 ,

(26)
q1 :=

(
A∗

0

(
A1B

2
1 +A2B

2
2

))
i
.

Using Proposition 2 and Proposition 4 one can easily construct polynomial PB curves
of degree seven that possess RRMC frames. As an example let the quaternion polynomial
A be defined by (21) with

A0 =
(
1, (0, 0, 0)T

)
, A1 =

(
0, (2,−1, 1)T

)
, A2 =

(
2, (1,−4,−, 4)T

)
, (27)

which generates the hodograph direction

ν2h2 + ν3h3 = 4

 16t2
(
3t4 − 45t3 + 39t2 − 11t+ 3

)
548t6 − 564t5 + 270t4 − 200t3 + 72t2 − 6t− 1
296t6 − 612t5 + 102t4 − 48t3 + 42t2 − 18t+ 1

 .

The choice τ = 35
4 in (23) determines the polynomial PB curve of the degree 7,

r(t) =

 4t3
(
60t4 − 1050t3 + 1092t2 − 385t+ 140

)
5t
(
548t6 − 658t5 + 378t4 − 350t3 + 168t2 − 21t− 7

)
t
(
1480t6 − 3570t5 + 714t4 − 420t3 + 490t2 − 315t+ 35

)
+ r(0), (28)

shown in Fig. 3, with the rational binormal

b(t) =
1

58t4 − 52t3 + 34t2 − 4t+ 1

22t4 + 20t3 − 18t2 + 4t− 1
4t
(
6t3 − 8t2 + 9t− 1

)
4t
(
12t3 − 14t2 + 3t+ 1

)
 .

Since the coefficients (27) fulfil the condition (24), the obtained polynomial PB curve (28)
possesses a RRMC frame. More precisely, the E-R frame ei(B), i = 1, 2, 3, of the quater-
nion polynomial B, determined by (25), (26) and (27) defines the degree eight RRMC frame
of the curve (28). Let us illustrate the obtained results on a ruled surface, defined as

S(t, ξ) := r(t) + ξe3(B(t)), (29)

where r is given in (28). Tangent planes of the surface coincide with the osculating planes
along the curve r. Moreover, such a surface is in [8] called a rotation-minimizing ruled
surface, since the pitch (a measure of the variation of the tangent plane along each ruling)
is the smallest possible among all ruled surfaces determined by r and an osculating-plane
vector. Note that the same holds true if e2(B) or any vector of a fixed orientation relative to
e2(B) and e3(B) is taken instead of e3(B) in (29). Since r is a polynomial curve, S is a
rational surface. The curve (28) together with the rational rotation-minimizing ruled surface
S is shown in Fig. 3.
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z

Fig. 3 The curve (28) and a rational rotation-minimizing ruled surface given in (29) for t ∈ [0, 0.15] and
ξ ∈ [0, 1].

In a similar way rational PB curves of degree 6 that possess RRMC frames can be
constructed. One only needs to assure that a quadratic quaternion polynomial that defines
a dual form satisfies (24). In view of Section 5 one is therefore tempted to look also for
polynomial PB curves of degrees ≤ 6 generated by a quadratic quaternion polynomial which
possess a RRMC frame. Unfortunately, the following assertion wipes this possibility out.

Theorem 3 There are no polynomial curves of the degree ≤ 6 generated by a quadratic
quaternion polynomial which are accompanied by the corresponding RRMC frame.

Proof The existence of the RRMC frame depends on the curve generating quaternion poly-
nomial A ∈ H[t] only. The qualifying relation (24) stays the same if A is multiplied by
a constant nontrivial quaternion. So we may assume that the leading coefficient of A =
A0B

2
0 + A1B

2
1 + A2B

2
2 is equal to 1, A2 = 1 − A0 + 2A1. It is simpler to study A

in new variables Ci :=
(
c0,i, (c1,i, c2,i, c3,i)

T
)
, i = 0, 1, the coefficients of the quater-

nion polynomial in the standard basis. Note that C0 = A0, C1 = 2 (A1 −A0), and
A = C0 + C1t+ 1t2. In variables ci,j the relation (24) turns out as

c0,0 −
1

4

(
c20,1 + c21,1 − c22,1 − c23,1

)
= 0,

c3,0 −
1

2
(c1,1c2,1 + c0,1c3,1) = 0, (30)

−c2,0 +
1

2
(c0,1c2,1 − c1,1c3,1) = 0.

Let us express c0,0, c3,0, and c2,0 from (30). The leading part of the hodograph direction
ν2h2 + ν3h3 in the remaining variables ci,j reads−6c1,1

(
c22,1 + c23,1

)
t4 − 8 (c1,0 + c0,1c1,1)

(
c22,1 + c23,1

)
t3 + . . .

−2c2,1t
6 + 6 (c1,1c3,1 − c0,1c2,1) t

5 + . . .
−2c3,1t

6 − 6 (c1,1c2,1 + c0,1c3,1) t
5 + . . .

 . (31)
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There is no way to lower the degree of ν2h2 + ν3h3 here. Namely, from (31) we observe
that in this case one should have c2,1 = c3,1 = 0, and further from (30)

c0,0 =
1

4

(
c20,1 + c21,1

)
, c2,0 = c3,0 = 0.

But then A =
(

1
4

(
(c0,1 + 2t) 2 + c21,1

)
, (c1,1t+ c1,0, 0, 0)

T
)

and e1 = (1, 0, 0)T , so
ν2h2 + ν3h3 vanishes identically. Suppose now that c2,1 ̸= 0, c3,1 ̸= 0. The only way
to lower the degree of the hodograph is to assure that the components (31) have a common
polynomial divisor. But then the Gröbner basis of the ideal spanned by the components (31)
should vanish at zeros of this polynomial too. The first polynomial of the Gröbner basis with
respect to the variable t is constant, i.e.,(

c22,1 + c23,1

)(
4c21,0 − 4c0,1c1,1c1,0 + c21,1

(
c20,1 + c21,1 + c22,1 + c23,1

))2
·(

16c21,0 − 16c0,1c1,1c1,0 + 4c20,1c
2
1,1 +

(
2c21,1 + c22,1 + c23,1

)2)2

.

Since c2,1 ̸= 0, c3,1 ̸= 0, it can vanish only if

c1,0 =
1

2

(
c0,1c1,1 ±

√
−c21,1

(
c21,1 + c22,1 + c23,1

))
,

or
c1,0 =

1

2
c0,1c1,1 ±

1

4

√
−
(
2c21,1 + c22,1 + c23,1

)2
,

what it is clearly not possible since the coefficients ci,j are real unless c1,1 = c1,0 = 0. In
this case,

ν2h2 + ν3h3 = − 1

32

(
4t2 + 4c0,1t+ c20,1 + c22,1 + c23,1

)3 0
c2,1
c3,1


and the curve r is reparameterized line in the y− z plane, with a trivial binormal (0, 0, 0)T .
The proof is completed. ⊓⊔

Similar negative result on the existence of RRMC frames on DPH curves of degree < 7
has already been proven in [8]. Theorem 3 extends this result to a wider class of PB curves.

7 Closure

Recently, the rotation-minimizing conformal frames of spatial curves have been introduced
in [8] and it was shown that polynomial DPH curves of degree < 7 can not possess ra-
tional rotation-minimizing conformal frames. In this paper a new class of curves having
a pythagorean binormal have been introduced which gives the answer to the first question
given in [8]: are there curves that are not DPH and have a rational unit binormal. A proposed
dual construction leads to rational PB curves of the degree 6 and polynomial PB curves of
the degree 7 having the RRMC frames and gives a positive answer to another question ex-
posed in [8]: do curves of degree ≥ 6 having a RRMC frame exist.
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