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Abstract

Interpolation by rational spline motions is an important issue in robotics and related fields.
In this paper a new approach to rational spline motion design is described by using tech-
niques of geometric interpolation. This enables us to reduce the discrepancy in the number
of degrees of freedom of the trajectory of the origin and of the rotational part of the motion.
A general approach to geometric interpolation by rational spline motions is presented and
two particularly important cases are analyzed, i.e., geometric continuous quartic rational
motions and second order geometrically continuous rational spline motions of degree six.
In both cases sufficient conditions on the given Hermite data are found which guarantee
the uniqueness of the solution. If the given data do not fulfill the solvability conditions,
a method to perturb them slightly is described. Numerical examples are presented which
confirm the theoretical results and provide an evidence that the obtained motions have nice
shapes.
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1 Introduction

Rational spline motions are motions of a rigid body with the property that each
point travels along a trajectory which is a rational spline curve of a certain degree.
The study of these motions can be traced back to classical texts in kinematical ge-
ometry [1]. For example, rational motions of degree two were analyzed thoroughly
by G. Darboux in the 19th century (see e.g. [1], [2]). More recently, rational spline
motions have found numerous applications in robotics, computer graphics and re-
lated fields [3,4].

Given a sequence of positions of a rigid body, a rational spline motion that matches
these data can be found by suitable interpolation algorithms. For instance, such
algorithms can be derived by generalizing known techniques for curve design to
the case of motions. Standard algorithms, such as C1 Hermite interpolation [5],
however, lead to rational motions of a relatively high polynomial degree. This is
due to the discrepancy in the number of degrees of freedom that are present in the
rotational and the translational part of a rational motion.

Rational motions of lower degree can be obtained by using geometric interpola-
tion techniques. A first attempt was presented in [6], based on Bennett biarcs on
Study’s quadric, which give rational motions of degree 4. As an advantage of this
method, collision detection between fixed and moving polyhedra can be performed
by analyzing certain polynomials of degree 4. As a disadvantage, however, this
method generates motions of constant chirality only. Another method, which uses
more general rational motions of degree 4 to overcome this limitation (but leading
to slightly more involved collision tests) is described in [7] (see also Section 5).

More generally, geometric interpolation techniques have the potential to produce
rational spline motions of the lowest possible degree needed to match certain data
(e.g., Hermite-type boundary data). As an example, it was shown in [8] that a pla-
nar cubic can (under some reasonable restrictions) interpolate six geometric data,
i.e., two boundary points together with two tangent directions and two curvature
vectors. As a consequence, the approximation order is six, in comparison to the
standard fourth order cubic approximation. Later, several other geometric interpo-
lation schemes using polynomial curves also in higher dimensional spaces were
developed (see [9], [10] and [11], e.g., and references therein). In addition, using
geometric interpolation yields an automatically chosen parameterization. This is
an important advantage in practice, since in classical interpolation methods, the pa-
rameterization should be chosen by an experienced designer and even this does not
provide satisfactory motions in general.

In this paper we consider a generalization of the approach used in [7]. Geomet-
ric interpolation by parabolic splines was used there to construct G1 quartic ratio-
nal spline motions. Although the results are promising, the main drawback of this
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method is the lowest possible degree of smoothness which might be insufficient in
robotics and related fields. In order to obtain spline motions with continuous sec-
ond order derivatives (after a suitable reparameterization) one has to consider G2

continuity. We do the first obvious generalization by considering cubic geometric
interpolation, which leads to G2 rational spline motions of degree six. In addition,
we derive a new G1 quartic rational spline motion, for which examples show better
shapes in comparison with the results of [7].

The paper is organized as follows. In the next section rational motions are pre-
sented. In Section 3, geometric continuity for motions is explained and a general
approach to Gk continuous Hermite spline motions is described. General interpola-
tion problem by Gk continuous Hermite spline motions is stated in Section 4. Sec-
tion 5 deals with G1 Hermite interpolation by rational quartic spline motions, and
Section 6 considers the main problem of the paper, cubic G2 Hermite interpolation
by rational spline motions of degree six. A brief explanation how the translational
part could be obtained is given in Section 7. In the next section some numerical
examples are given and the paper is concluded with Section 9 that summarizes the
main results of the paper and identifies possible future investigations.

2 Rational motions

A motion of a rigid body can be described by the trajectory c = (c1, c2, c3)> of
the origin of the moving system and by the 3 × 3 rotation matrix R. By using
quaternions Q = (q0, q1, q2, q3) ∈ H, the rotation matrixR can be represented as

R =
1

q2
0 + q2

1 + q2
2 + q2

3


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 .

Note that all nonzero quaternions λQ (λ ∈ R, λ 6= 0) lying on the same line
passing through the origin represent the same rotation. This equivalence relation
defines a 3-dimensional projective space, described by homogeneous quaternion
coordinates. The bijective mapping between this space and the space of rotations is
called the kinematic mapping (see [1]).

The trajectory of an arbitrary point p̂ of the moving system is

p(t) = c(t) +R(t) p̂. (1)

Here p̂ is expressed in a fixed local coordinate system of the original body position.
In particular we are interested in rational spline motions which are obtained by
choosing rational spline (i.e., piecewise rational) functions qi and ci representing
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the coordinates of the quaternion and of the trajectory of the origin.
Rational motions can be classified by the degree of the curves involved, which is
called the degree of the motion. In particular, by considering quadratic or cubic
polynomial splines qi, one obtains rational spherical spline motion of degree four
or six, respectively. In order for the motion (1) to be of degree four or six, the
functions ci should be chosen as

ci =
wi
r
, with r = q2

0 + q2
1 + q2

2 + q2
3, i = 1, 2, 3, (2)

where w := (w1, w2, w3) is a parametric polynomial spline of degree ≤ 4 or ≤ 6,
respectively.

3 Geometric continuity for motions

Spline motions (i.e., motions that are obtained by composing several pieces of ratio-
nal motions) are useful for interpolation of a sequence of given positions. In order
to obtain a globally smooth motion we need to study conditions that guarantee a
smooth join between neighbouring segments. This problem leads to the concept of
geometric continuity, which is well understood in curve design [12,13]. The gener-
alization to motions is straightforward: a spline motion is said to be Gk smooth, if
all point trajectories generated by it are Gk smooth spline curves. Here we present
geometric continuity conditions for quaternion curves that imply geometric conti-
nuity of motions.

The trajectories

p : [t0, t1]→ R3, p(t) = c(t) +R(t) p̂,

p̃ : [s0, s1]→ R3, p̃(s) = c̃(s) + R̃(s) p̂,

of an arbitrary point p̂ join with a geometric continuity of order k (or shortly with
Gk continuity) at the common point p(τ) = p̃(σ) iff there exists a regular reparam-
eterization ϕ : [t0, t1]→ [s0, s1], such that

ϕ′ > 0, ϕ(τ) = σ,

and
djp(t)

dtj

∣∣∣
t=τ

=
dj (p̃ ◦ ϕ) (t)

dtj

∣∣∣
t=τ
, j = 0, 1, . . . , k,

or equivalently

djc(t)

dtj

∣∣∣
t=τ

=
dj (c̃ ◦ ϕ) (t)

dtj

∣∣∣
t=τ
, (3)

djR(t)

dtj

∣∣∣
t=τ

=
dj
(
R̃ ◦ ϕ

)
(t)

dtj

∣∣∣
t=τ
. (4)
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Suppose that the rotations are represented by quaternion curves q and q̃. Then the
spherical motions given by R and R̃ join with G0 continuity at the common point
iff

q(τ) = λ(τ)q̃(ϕ(τ)),

where λ : [t0, t1] → R is a zero free scalar function, arising from the equivalence
relation in the 3-dimensional projective space. Thus, the geometric continuity con-
ditions are the same as the ones for rational curves which are expressed in homo-
geneous coordinates.

Consequently, the Gk continuity conditions (4) are equivalent to

djq(t)

dtj

∣∣∣
t=τ

=
dj

dtj
(λ(t)q̃(ϕ(t)))

∣∣∣
t=τ
, j = 1, 2, . . . , k. (5)

By using Faà di Bruno’s formula, the conditions (5) can be written as

djq(t)

dtj

∣∣∣
t=τ

=
j∑
`=1

(
j

`

)
λ(`−j)(τ)

∑̀
i=1

q̃(i)(ϕ(τ))B`,i
(
ϕ′(τ), ϕ′′(τ), . . . , ϕ(`−i+1)(τ)

)
, (6)

where B`,i are Bell polynomials ([14]),

B`,i(x1, x2, . . . , x`−i+1)

=
∑ `!

j1!j2! · · · j`−i+1!

(
x1

1!

)j1 (x2

2!

)j2
· · ·

(
x`−i+1

(`− i+ 1)!

)j`−i+1

,

where the sum is taken over all sequences j1, j2, . . . , j`−i+1 of non-negative integers
such that

`−i+1∑
k=1

jk = i,
`−i+1∑
k=1

kjk = `.

In practice, G1 and G2 continuity are most frequently used. The G1 continuity
condition at t = τ simplifies (6) to

q′(τ) = λ′(τ)q̃(ϕ(τ)) + λ(τ)ϕ′(τ)q̃ ′(ϕ(τ)),

and G2 additionally requires

q′′(τ) = λ′′(τ)q̃(ϕ(τ)) + 2λ′(τ)ϕ′(τ)q̃ ′(ϕ(τ))+

λ(τ)ϕ′(τ)2q̃′′(ϕ(τ)) + λ(τ)ϕ′′(τ)q̃ ′(ϕ(τ)).

The reparameterization ϕ and the scaling function λ give the additional freedom
that the geometric interpolation schemes have towards the standard parametric (C)
interpolation. The free parameters (derivatives of λ and ϕ) will now be used to
decrease the degree of a quaternion curve in the rotational part of the motion.
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4 Interpolation by Gk continuous Hermite spline motions

A standard interpolation problem in motion design is to find a rational spline motion
that interpolates a sequence of given positions Posi, i = 0, 1, . . . , N , of a rigid
body. Every position Posi is described by the position Ci of the center and by the
associated rotation matrix Ri. The rotations are represented by unit quaternions
Qi ∈ H, ‖Qi‖ = 1. This normalization still leaves two possible representatives for
each rotation. In order to obtain good results the quaternions should be chosen in
such a way that two neighbouring quaternions lie on the same hemisphere, i.e.,

〈Qi,Qi+1〉 > 0, i = 0, 1, . . . , N − 1,

where 〈·, ·〉 is the standard inner product in R4. Every position Posi can thus be
identified with the pair {Ci,Qi}, which will be denoted as {Ci,Qi} ∼ Posi.

The construction of the motion consists of two parts, the translational and the rota-
tional one. The rotational part of the motion is obtained by applying the kinematical
mapping to a polynomial (spline) quaternion curve of degree n, and the obtained
motion is of degree 2n, provided that the translational part is of degree≤ 2n. Since
the degree of the motion is twice the degree of the corresponding quaternion curve,
the degree of the latter should be as low as possible. This can be achieved by using
geometric interpolation schemes.

The task is to construct a Gk continuous rational spline motion p : [0, N ]→ R3 of
degree 2n with integer knots [0, 1, . . . , N ] that interpolates the positions Posi, i =
0, 1, . . . , N. More precisely, the spline motion is composed of rational motions pi :
[i, i+ 1]→ R3, i = 0, 1, . . . , N − 1, of degree 2n between two adjacent positions,
such that pi and pi+1 are Gk continuous at the common knot i + 1. Let ci : [i, i +
1] → R3 denote the translational part of pi and let qi : [i, i + 1] → H be the
quaternion polynomial of degree n that defines the rotational part. The interpolation
conditions can be written as

ci(i) = Ci, ci(i+ 1) = Ci+1,

qi(i) = Qi, qi(i+ 1) = Qi+1,
i = 0, 1, . . . , N − 1,

where we have assumed that the quaternion curves are written in the standard form,
i.e.,

‖qi(i)‖ = ‖qi(i+ 1)‖ = 1, i = 0, 1, . . . , N − 1. (7)

This assumption is similar to assuming the standard form of a Bézier rational curve,
i.e., normalized weights at the first and the last control point which can always be
obtained by a bilinear reparameterization (see [15], e.g.).

Clearly, only the positions Posi are not enough to determine the motion for k > 0
and n ≥ 1, and additional data are required. In order for the spline to be G1 con-
tinuous we prescribe at each knot i also a unit tangent vector ti that determines
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the derivative direction for the motion of the origin, and a unit quaternion U i that
corresponds to the Euler velocity quaternion for the rotational part. For k ≥ 2 we
assume that at each knot i also curvature vectors t

(j)
i ∈ R3 and curvature quater-

nions U (j)
i ∈ H, j = 2, 3, . . . , k, are prescribed. All these additional data may be

specified by the user or they can be estimated from the positions Posi (see [5] and
[16], e.g.).

Since the construction of p is local, it is enough to study only one segment of the
spline. Thus let N = 1 and let us consider the spherical motion first. The equations
for geometric interpolation of tangent and curvature vectors at parameters t = 0
and t = 1 are derived from (5). Namely, the curve q must satisfy

q(i) = λiQi, (8)

q′(i) = λ
(1)
i Qi + λiϕ

(1)
i U i, (9)

q′′(i) = λ
(2)
i Qi + 2λ

(1)
i ϕ

(1)
i U i + λiϕ

(2)
i U i + λi

(
ϕ

(1)
i

)2
U

(2)
i , (10)

q(j)(i) =
j∑
`=1

(
j

`

)
λ

(`−j)
i

∑̀
r=1

U
(r)
i B`,i

(
ϕ

(1)
i , ϕ

(2)
i , . . . , ϕ

(`−r+1)
i

)
, j ≤ k, (11)

for i = 0, 1. The condition (7) implies

λ0 = λ1 = 1, (12)

and the remaining free parameters
(
λ

(j)
i

)k
j=1

, i = 0, 1, correspond to the derivatives

of the scalar function λ at t = 0 and t = 1. Similarly,
(
ϕ

(j)
i

)k
j=1

are free parameters
that represent the derivatives of the reparameterization ϕ at t = 0 and t = 1. In
order for the reparameterization to be regular, the relations

ϕ
(1)
0 > 0, ϕ

(1)
1 > 0,

must be satisfied. The additional 4k parameters of freedom can be used to decrease
the degree of the motion. These parameters together with 4(n + 1) unknown co-
efficients of q are determined from 8(k + 1) equations (8)–(11). The numbers of
equations and unknowns are equal iff

8(k + 1) = 4k + 4(n+ 1),

which leads us to the following conjecture.

Conjecture 1 A spherical rational motion of degree 2n = 2k + 2 (n > 1) can
geometrically interpolate the rotation, the velocity and k−1 curvature quaternions
at each knot i ∈ {0, 1}. The approximation order is 2n.

Note that the assumption n > 1 is needed, since the conjecture is not true for
quadratic quaternion curves as we shall see in the next section.
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A similar conjecture was stated for geometric interpolation by parametric polyno-
mial curves (see [17]) and it turned out as a difficult and still unsolved problem in
general. As expected from the curve case, the equations involved in rational motion
design are highly nonlinear, which makes the analysis difficult. As the first step,
we will consider G1 and G2 rational motions generated by parabolic and cubic
quaternion curves.

5 G1 Hermite interpolation by motions based on parabolic quaternion curves

With respect to Conjecture 1, the first case to be considered isG1 parabolic interpo-
lation. Let Q0 and Q1 be two given quaternions and U 0, U 1 given velocity quater-
nions at Q0, Q1, respectively. We would like to construct a parabolic quaternion
interpolant q : [0, 1] → H, but if the data U 0,Q1 −Q0 and U 1 are linearly inde-
pendent, this can not be achieved, since parabolas are always planar curves. Perhaps
the most appropriate remedy is to insert an additional quaternion QA and to try to
construct two parabolic quaternion curves q0 : [0, 1] → H and q1 : [0, 1] → H,
such that q0 interpolates Q0, QA and U 0, q1 interpolates QA, Q1 and U 1, and
parabolic interpolants join with the G1 continuity at the quaternion QA.

Clearly, curves q0 and q1 can be written in the Bernstein-Bézier form as

q0(t) = Q0B
2
0(t) + B0B

2
1(t) + QAB

2
2(t),

(13)
q1(t) = QAB

2
0(t) + B1B

2
1(t) + Q1B

2
2(t),

where B0 and B1 are two unknown control quaternions yet to be determined, and
Bn
j (t) :=

(
n
j

)
tj(1− t)n−j are the Bernstein basis polynomials of degree n.

By (9) and (12), the G1 interpolation conditions can be written as

q′i(i) = λ
(1)
i Qi + ϕ

(1)
i U i, i = 0, 1, q′0(1) = λ

(1)
A QA + ϕ

(1)
A q′1(0),

where the parameters λ(1)
0 , λ

(1)
1 and λ

(1)
A have to be positive. By using the basic

properties of Bézier curves

q′0(0) = 2(B0 −Q0), q′0(1) = 2(QA −B1),

q′1(0) = 2(B1 −QA), q′1(1) = 2(Q1 −B1),

we obtain

B0 = Q0 +
1

2

(
λ

(1)
0 Q0 + ϕ

(1)
0 U 0

)
, (14)

B1 = Q1 −
1

2

(
λ

(1)
1 Q1 + ϕ

(1)
1 U 1

)
, (15)

2(QA −B0) = λ
(1)
A QA + 2ϕ

(1)
A (B1 −QA). (16)
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By inserting (14) and (15) into (16) we obtain a system of 4 scalar equations for
6 unknowns λ(1)

0 , λ
(1)
1 , λ

(1)
A , ϕ

(1)
0 , ϕ

(1)
1 and ϕ(1)

A . It can be written in the matrix form
Ax = a, where

A :=
(
Q0 QA Q1 U 1

)
, a := ϕ

(1)
0 U 0, and x :=



−2− λ(1)
0

2− λ(1)
A + 2ϕ

(1)
A

ϕ
(1)
A

(
λ

(1)
1 − 2

)
ϕ

(1)
A ϕ

(1)
1


.

Let us denote

Di :=
detA(i)(U 0)

detA
, i = 1, 2, 3, 4,

where A(i)(U) denotes the matrix A with the i-th column replaced by the quater-
nion U . By the Cramer’s rule we can express unknowns λ(1)

0 , λ
(1)
1 , λ

(1)
A and ϕ(1)

A in
terms of ϕ(1)

0 and ϕ(1)
1 as

λ
(1)
0 = −2− ϕ(1)

0 D1, λ
(1)
1 = 2 + ϕ

(1)
1

D3

D4

,

(17)

λ
(1)
A = 2 + 2

ϕ
(1)
0

ϕ
(1)
1

D4 − ϕ(1)
0 D2, ϕ

(1)
A =

ϕ
(1)
0

ϕ
(1)
1

D4.

By choosing any ϕ(1)
0 > 0 and ϕ(1)

1 > 0, the only solvability condition which has
to be fulfilled is

D4 > 0. (18)
Let us summarize the discussion in the following theorem.

Theorem 2 Let Qi,U i, i = 0, 1, and QA be given data such that A is nonsingular
and D4 > 0. Then there exists a two-parametric family of G1 continuous pairs of
parabolic quaternion curves q0 := q0

(
t;ϕ

(1)
0 , ϕ

(1)
1

)
and q1 := q1

(
t;ϕ

(1)
0 , ϕ

(1)
1

)
,

defined by (13), (14), (15) and (17).

Note that ϕ(1)
i affects only qi, i = 0, 1. In Fig. 1 the trajectories of a spherical part of

a particular point for different choices of free parameters ϕ(1)
0 and ϕ(1)

1 are shown.

Remark 3 The proposed scheme generalizes the one presented in [7]. The analysis
here is done directly in the quaternion space, while in [7] a projection of the data
to a particular three-dimensional subspace has been applied and ϕ(1)

0 , ϕ(1)
1 have

been selected in advance and not left as degrees of freedom.

If D4 < 0 in Theorem 2, we have to replace the inserted quaternion QA, given by
the user, by another quaternion. One possible way, which guarantees (18), would
be to take

QA := r(t∗), (19)
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Fig. 1. The trajectories of a particular point for parameters ϕ
(1)
0 , ϕ

(1)
1 ∈ { 1

10 ,
1
2 , 1, 5, 50}

(lighter curves correspond to higher parameter values).

where t∗ is any parameter from (0, 1) and r is the cubic quaternion curve, interpo-
lating Q0,Q1,U 0 and U 1 in the C1 sense,

r := r(. ;Q0,Q1,U 0,U 1) = Q0B
3
0+
(
Q0 +

1

3
U 0

)
B3

1+
(
Q1 −

1

3
U 1

)
B3

2+Q1B
3
3 .

(20)
Application of (19) and (20) gives

D4 =
− det

(
Q0 B3

2(t∗)U 1 Q1 U 0

)
det

(
Q0 B3

1(t∗)U 0 Q1 U 1

) =
t∗

(1− t∗)
> 0.

Remark 4 The shape parameter t∗ is usually chosen in such a way that ‖QA −
r(t∗)‖ = mint∈(0,1) ‖QA − r(t)‖.

6 G2 Hermite interpolation by motions based on cubic quaternion curves

The second and perhaps the most important case is the cubic G2 interpolation. Let
Qj be given quaternions and U j , V j := U

(2)
j be given velocity and curvature

quaternions at positions Qj , j = 0, 1. Our goal is to find a cubic quaternion inter-
polant q : [0, 1]→ H,

q(t) =
3∑
j=0

BjB
3
j (t). (21)

The interpolant q will be G2 continuous if the relations (8), (9) and (10) together
with (12) are satisfied. By using some basic properties of Bézier curves, one obtains

B0 = Q0, B3 = Q1,

3 ∆B2i = λ
(1)
i Qi + ϕ

(1)
i U i, i = 0, 1, (22)

6 ∆2Bi = λ
(2)
i Qi +

(
2λ

(1)
i ϕ

(1)
i + ϕ

(2)
i

)
U i +

(
ϕ

(1)
i

)2
V i, i = 0, 1,

where ∆(.)i := (.)i+1 − (.)i, ∆2(.)i := ∆(∆(.)i) are forward differences.
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Equations (22) form a system of 24 nonlinear equations for the unknown control
quaternions Bj , j = 0, 1, 2, 3, and unknown scalar parameters

ϕ
(1)
i , ϕ

(2)
i , λ

(1)
i , λ

(2)
i , i = 0, 1. (23)

In addition, the unknowns ϕ(1)
0 and ϕ(1)

1 have to be positive. By a straightforward
substitution, we reduce the system (22) to a system of 8 nonlinear equations(

2 (−1)i

3
λ

(1)
i +

1

6
λ

(2)
i + 1

)
Qi +

(
(−1)i

3
λ

(1)
1−i − 1

)
Q1−i+

(24)(
2 (−1)i

3
ϕ

(1)
i +

1

3
λ

(1)
i ϕ

(1)
i +

1

6
ϕ

(2)
i

)
U i +

(−1)i

3
ϕ

(1)
1−iU 1−i +

1

6

(
ϕ

(1)
i

)2
V i = 0,

where i = 0, 1, for parameters (23). Similarly as in the G1 case, the system (24)
can be written in the matrix form as

Ai xi = ai, i = 0, 1, (25)

where

Ai :=
(
Qi Q1−i U i V i

)
, ai :=

(−1)1−iϕ
(1)
1−i

3
U 1−i,

and

xi :=



2 (−1)i

3
λ

(1)
i + 1

6
λ

(2)
i + 1

(−1)i

3
λ

(1)
1−i − 1

2 (−1)i

3
ϕ

(1)
i + 1

3
λ

(1)
i ϕ

(1)
i + 1

6
ϕ

(2)
i

1
6

(
ϕ

(1)
i

)2


.

Here we assume that A0 and A1 are nonsingular matrices. Let us define

Di,j :=
detA

(j)
i (U 1−i)

detAi
, j = 1, 2, 3, 4, i = 0, 1.

By applying the Cramer’s rule, the system (25) simplifies to

2 (−1)i

3
λ

(1)
i +

1

6
λ

(2)
i + 1 =

(−1)1−i

3
ϕ

(1)
1−iDi,1,

(−1)i

3
λ

(1)
1−i − 1 =

(−1)1−i

3
ϕ

(1)
1−iDi,2,

(26)
2 (−1)i

3
ϕ

(1)
i +

1

3
λ

(1)
i ϕ

(1)
i +

1

6
ϕ

(2)
i =

(−1)1−i

3
ϕ

(1)
1−iDi,3,

1

6

(
ϕ

(1)
i

)2
=

(−1)1−i

3
ϕ

(1)
1−iDi,4,

where i = 0, 1. The system (26) has 3 nontrivial solutions, but only one of them is

11



real:

ϕ
(1)
i = 2 (−1)i 3

√
D2
i,4 |D1−i,4| sign(D1−i,4),

ϕ
(2)
i = 4 3

√
|D0,4D1,4| sign(D0,4D1,4)

·
(

3

√
|Di,4| sign(Di,4) + 3

√
|D1−i,4| sign(D1−i,4) (Di,3 + 2Di,4D1−i,2)

)
,
(27)

λ
(1)
i = (−1)1−i

(
3 + 2D1−i,2

3

√
D2
i,4|D1−i,4| sign(D1−i,4)

)
,

λ
(2)
i = 2

(
3 + 4D1−i,2

3

√
D2
i,4|D1−i,4| sign(D1−i,4) + 2Di,1

3

√
D2

1−i,4|Di,4| sign(Di,4)
)
,

where i = 0, 1. Since ϕ(1)
0 and ϕ(1)

1 have to be positive, the only solvability condi-
tions are D0,4 < 0 and D1,4 > 0. Let us summarize the obtained results.

Theorem 5 Let Qi,U i and V i, i = 0, 1, be given data such that A0 and A1 are
nonsingular andD0,4 < 0,D1,4 > 0. Then there exists a unique cubic interpolating
quaternion curve q, defined by (21) and (22), with

ϕ
(1)
i = 2 (−1)i 3

√
D2
i,4D1−i,4, λ

(1)
i = (−1)1−i

(
3 + 2D1−i,2

3

√
D2
i,4D1−i,4

)
,

for i = 0, 1.

If D0,4 > 0 or D1,4 < 0, the given set of data have to be perturbed in order to
guarantee the existence of theG2 interpolating cubic. But the change in data affects
non only one but two adjacent segments of the spline. Let Qi,U i,V i := U

(2)
i , i =

0, 1, 2, be given data on two neighbouring segments. The G2 continuity condition
at Q1 requires

DL
1,4 := DL

1,4(V 1) :=
det

(
Q1 Q0 U 1 U 0

)
det

(
Q1 Q0 U 1 V 1

) > 0,

(28)

DR
0,4 := DR

0,4(V 1) :=
det

(
Q1 Q2 U 1 U 2

)
det

(
Q1 Q2 U 1 V 1

) < 0,

where the notation (.)L and (.)R refers to the left and right segment, respectively.
It turns out that it is enough to modify V 1 only if (28) is not satisfied. Since V 1

is not involved in DL
0,4 and DR

1,4, this modification is local. If DL
1,4(V 1) < 0 and

DR
0,4(V 1) > 0, changing V 1 to −V 1 will clearly satisfy (28). The other two cases

are more involved. Suppose that Q0 6= Q2. Let

Π1 := det
(
Q1 Q0 U 1 X

)
= 0, Π2 := det

(
Q1 Q2 U 1 X

)
= 0

denote the hyperplanes in R4 passing through the common plane, determined by
Q1,U 1,0, and Q0,Q2, respectively. In order to satisfy (28), V 1 and U 0 have to lie

12



on the same side of Π1, while V 1 and U 2 have to be on the opposite sides of Π2.
Since Π1 and Π2 divide R4 into four subspaces and precisely one is the admissible
for V 1, an appropriate V 1 always exists, provided that Q0 6= Q2. One possible
way to determine it is the following. Recall (20) and let

V L
i := r′′(i;Q0,Q1,U 0,U 1) = 6(Q1−i −Qi) + 2(−1)i+1(U 1−i + 2U i),

V R
i := r′′(i;Q1,Q2,U 1,U 2) = 6(Q2−i −Q1+i) + 2(−1)i+1(U 2−i + 2U 1+i),

for i = 0, 1. Note that DL
1,4(V L

1 ) = 1
2

and DR
0,4(V R

0 ) = −1
2
. Suppose first that

DL
1,4(V 1) < 0 and DR

0,4(V 1) < 0. If DR
0,4(V L

1 ) < 0, then we can choose V L
1 for

the new V 1. Otherwise, we can connect given V 1 and V L
1 by a line segment. Let

us denote the intersections between the line segment and hyperplanes Π1, Π2 by
V Π1 , V Π2 , respectively, and let V Π :=

V Π1
+V Π2

2
. We have precisely two possi-

bilities: DL
1,4(V Π) and −DR

0,4(V Π) are both positive or both negative. In the first
(second) case, the new V 1 is chosen as V Π (−V Π), respectively. The symmet-
ric case DL

1,4(V 1) > 0 and DR
0,4(V 1) > 0 follows similarly by using V R

0 . Let us
summarize the obtained observations in a short remark.

Remark 6 Let Qi,U i,V i := U
(2)
i , i = 0, 1, 2, be given data on two neighbouring

segments and suppose that Q0 6= Q2. Then we can always modify V 1 such that G2

continuity condition at Q1 is fulfilled.

7 Construction of the translational part

According to (1) we are left to construct a trajectory of the origin c. By (2), poly-
nomials wi, i = 1, 2, 3, of degree at most 2n, have to be determined. From interpo-
lation conditions (3) polynomials wi of degree ≤ 4 or ≤ 6 for the G1 or G2 case
are not uniquely determined. Therefore we will restrict the degrees to 3 and 5.

The reparameterization ϕ, which has already been determined in the spherical part,
must now by (3) and (4) be used in the translational part of the motion. In partic-
ular, for the G2 interpolation, the polynomials wi are uniquely determined by the
following conditions:

w(i) = r(i)Ci,

w′(i) = ϕ
(1)
i r(i) ti + r′(i)Ci,

w′′(i) = (r(i)ϕ
(2)
i + 2ϕ

(1)
i r′(i)) ti +

((
ϕ

(1)
i

)2
r(i)

)
f i + r′′(i)Ci, i = 0, 1.

Note that parameters ϕ(1)
i and ϕ

(2)
i , i = 0, 1, are given by (27) and f i := t

(2)
i .

Polynomials w can thus be computed by the standard Newton interpolation scheme
componentwise, e.g.

13



8 Examples

Let us conclude the paper with some numerical examples. As the first one, let us
sample the positions from a smooth motion defined by the quaternion curve q̃,

q̃ =
q

‖q‖
, q(t) =

(
t, t+ cos

(
πt

4

)
, sin

(
πt

4

)
, cos

(
πt

10

))>
,

and by the trajectory of the center

c̃(t) = (3 log(t+ 1) cos(t), 3 log(t+ 1) sin(t), 3(t+ 1))> .

More precisely, let

Qi = q̃(ti), U i = q̃′(ti)/ ‖q̃′(ti)‖ , V i = q̃′′(ti), (29)
Ci = c̃(ti), ti = c̃′(ti)/ ‖c̃′(ti)‖ , f i = c̃′′(ti),

where ti = ih, i = 0, 1, . . . , N .

Fig. 2. Nine positions of a cuboid interpolated by a G1 continuous motion (left) and G2

continuous motion (right).

Fig. 2 shows the G1 spline motion (left) and G2 spline motion (right) of a cuboid
with h = 1 and N = 8. The interpolation positions are denoted by bold cuboids.
The free parameters in the G1 scheme are chosen as ϕ(1)

0 = ϕ
(1)
1 = 1 and every

second quaternion Q2i+1 is the additional one. This is perhaps the reason why the
motions look quite similar, which can be observed also from Fig. 3, where the G1

and G2 continuous trajectories of a particular cuboid point p̂ are shown. In Fig. 4
the curvature and the torsion of a trajectory of the point p̂ are shown for G2 mo-
tion. Figures confirm that G2 continuity implies the curvature continuity, but not

14



Fig. 3. The trajectory of a cuboid point of a G1 motion (gray curve) and of a G2 motion
(black curve).

2 4 6 8

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8

-0.1

0.1

0.2

0.3

Fig. 4. A Curvature plot (left) and a torsion plot (right) of a G2 trajectory of a cuboid point.

the torsion continuity. Furthermore, the parametric distances ([18]) between trajec-
tories of a point p̂ of the original and the G2 spline motions for different values h
are shown in Table 1. The last column numerically confirms that the approximation
order is optimal, i.e. six.

Fig. 5 shows the spherical part of another G2 motion of a cuboid. In this case the
input data were only the unit quaternions Qi, given in (29), which correspond to
the rotations. The remaining data U i and V i were estimated by using local quartic
polynomials through five consecutive points. Quartic polynomials have been used
since symmetry is preferred and parabolic arcs cause singularities.

As a last example, let us compare the spherical parts of the G2 motion of degree 6

15



h Parametric distance Decay exponent

1 4.19949× 10−3 /

1
2 1.41924× 10−4 4.89

1
4 3.51037× 10−6 5.34

1
8 7.09768× 10−8 5.63

1
16 1.27319× 10−9 5.80

1
32 2.1373× 10−11 5.90

Table 1
The parametric distances between trajectories (of an arbitrary point p̂) of the original and
the G2 spline motions for different values h.

Fig. 5. Spherical part of a G2 rational motion of a cuboid with nine interpolated rotations
where the velocity and curvature quaternions were estimated by using local quartic poly-
nomials.

and the C2 motion of degree 10, which can be constructed using standard Hermite
interpolation techniques. In order to recognize some difference between both mo-
tions we interpolate only every second data in (29). Fig. 6 shows that both motions
are quite similar, but of course the degree of the geometrically continuous motion
is much smaller.

Fig. 6. Spherical parts of the C2 motion (left) and the G2 motion (right) for every second
data in (29).
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9 Conclusion

In the paper we have studied the problem of interpolation by rational spline mo-
tions. Instead of classical approach, where usually Ck continuous interpolants are
constructed, geometric interpolation schemes were introduced in order to reduce
the degree of the interpolating curves. As a consequence, Gk continuous interpo-
lating rational splines were obtained. A general theory of geometric interpolation
by rational spline motions was presented. The analysis concentrated on two (prac-
tically important) cases, i.e., G1 continuous quartic rational motions and G2 con-
tinuous rational spline motions of degree six. A detailed study of the solvability
conditions involving data quaternions was done. In some cases which do not guar-
antee a solution of the problem, some methods how to perturb given data in order
to assure the solvability were proposed. Several numerical examples were given
which confirm theoretical results.
The obtained interpolation schemes are of practical importance. They can be, e.g.,
used in robotics and related fields. The main advantage ofGk interpolation schemes
compared to classical Ck schemes is the reduction of the degree of the resulting ra-
tional spline interpolants. In particular, for the interpolation of positions, velocity
and curvature data (which is one of the classical problems in motion design) the
degree reduces from 10 to 6.
Although only Hermite case of interpolation has been studied, one could follow a
general theory also for the Lagrange case (or combination of Hermite and Lagrange
case). This would lead to new interpolation schemes, but usually also to more com-
plicated (nonlinear) systems of equations to be solved, definitely interesting enough
for some future work.
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