· R. T. Farouki, M. Knez, V. Vitrih, E. Žagar, Least–squares
approximation with planar Pythagorean–hodograph curves, submitted.
· M. Kapl, A. Kosmač, V. Vitrih,
A C^s-smooth mixed
degree and regularity isogeometric spline space over planar multi-patch domains, submitted.
· R. T. Farouki, M. Knez, V. Vitrih, E. Žagar, Application
of a metric for complex polynomials to bounded modification of planar Pythagorean–hodograph curves, Journal
of Computational and Applied Mathematics, 456 (2025),
no. 116235.
2024
· M. Kapl, A. Kosmač, V. Vitrih,
Isogeometric
collocation for solving the biharmonic equation over planar multi-patch domains,
Computer methods in applied mechanics and engineering, 424 (2024), pp. 1-17.
· A. Farahat, M. Kapl, A. Kosmač, V. Vitrih, A locally based construction of analysis-suitable G^1 multi-patch spline surfaces, Computers & mathematics with applications, 168 (2024), pp. 46-57.
· J. Grošelj, M. Kapl, M. Knez, T. Takacs, V. Vitrih, C^1-smooth isogeometric spline
functions of general degree over planar mixed meshes : the case of two
quadratic mesh elements, Applied mathematics and computation, 460 (2024), pp. 1-21.
2022
· M.
Kapl, V. Vitrih, C^1
isogeometric spline space for trilinearly parameterized multi-patch volumes, Computers & mathematics with
applications, 117 (2022),
pp. 53-68.
· R. T. Farouki, M. Knez, V. Vitrih, E. Žagar, On the construction of polynomial minimal surfaces with Pythagorean normals, Applied mathematics and computation, 435 (2022), pp. 1-12.
2021
· R. T. Farouki, M. Knez, V. Vitrih, E. Žagar, Spatial C^2 closed loops of prescribed arc length defined by
Pythagorean-hodograph curves, Applied Mathematics and Computation,
391 (2021), art. 125653.
· R. T. Farouki, M. Knez, V. Vitrih, E. Žagar, Planar
projections of spatial Pythagorean-hodograph curves, Computer
Aided Geometric Design, 91 (2021), art. 102049.
· M. Kapl, V. Vitrih, C^s-smooth
isogeometric spline spaces over planar multi-patch parameterizations, Advances in
computational mathematics, 47 (2021), pp. 1-34.
A Mathematica notebook used to verify one step in the proof of Theorem 2.
· K. Ferjančič, M. Knez, V. Vitrih, On C^2 rational motions of degree six, Journal of Computational and Applied Mathematics, 388 (2021), 113324.
2020
· J. Grošelj, M. Kapl, M. Knez, T. Takacs, V. Vitrih, A super-smooth C^1 spline space over mixed triangle and quadrilateral meshes, Computers & Mathematics with Applications, 80 (2020), pp. 2623-2643.
· M. Kapl, V. Vitrih, Isogeometric collocation on planar multi-patch domains, Computer methods in applied mechanics and engineering, 360 (2020), pp. 1-23.
2019
· M. Kapl, V. Vitrih, Solving the triharmonic equation over multi-patch planar domains using isogeometric analysis, Journal of Computational and Applied Mathematics, 358 (2019), pp. 385-404.
2018
· M. Kapl, V. Vitrih, Dimension and basis construction for C^2-smooth isogeometric spline spaces over bilinear-like G^2 two-patch parameterizations, Journal of Computational and Applied Mathematics, 335 (2018), pp. 289-311.
2017
· M. Kapl, V. Vitrih, Space of C^2 smooth geometrically continuous Isogeometric Functions on Two-Patch Geometries, Computers & Mathematics with Applications, 73 (2017), pp. 37-59.
· M. Kapl, V. Vitrih, Space of C^2 smooth geometrically continuous Isogeometric Functions on planar Multi-Patch Geometries: dimension and numerical experiments, to Computers & Mathematics with Applications, 73 (2017), pp. 2319-2338.
2016
· J. Kozak, M. Krajnc, V. Vitrih, A quaternion approach to polynomial PN surfaces, Computer Aided Geometric Design, 47 (2016), pp. 172-188.
· K. Ferjančič, M. Krajnc, V. Vitrih, Construction of G^3 rational motion of degree eight, Applied Mathematics and Computation, 272 (2016), pp. 127-138.
· J. Kozak, M. Krajnc, V. Vitrih, G^1 interpolation by rational cubic PH curves in R^3, Computer Aided Geometric Design, 42 (2016), pp. 7-22.
2015
· J. Kozak, M. Krajnc, V. Vitrih, Parametric curves with Pythagorean binormal, Advances in Computational Mathematics, 41 (2015), pp. 813-832.
· J. Kozak, M. Krajnc, M. Rogina, V. Vitrih, Pythagorean-hodograph Cycloidal curves, Journal of Numerical Mathematics, 23 (2015), pp. 345-360.
· M. Kapl, V. Vitrih, B. Juettler, K. Birner, Isogeometric Analysis with Geometrically Continuous Functions on Two-Patch Geometries, Computers & Mathematics with Applications, 70 (2015), pp. 1518–1538.
2014
· J. Kozak, M. Krajnc, V. Vitrih, Dual representation of spatial rational PH curves, Comput. Aided Geom. Des., 31 (2014), pp. 43–56.
· G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, Interpolation by G^2 quintic Pythagorean-hodograph curves in R^d, Numer. Math. Theor. Meth. Appl., 7 (2014), pp. 374–398 .
· B. Bastl, M. Bizzarri, M. Krajnc, M. Lavicka, K. Slaba, Z. Sir, V. Vitrih, E. Žagar, C^1 Hermite interpolation with spatial Pythagorean-hodograph cubic biarcs, J. Comput. Appl. Math., 257 (2014), pp. 65-78.
· M. Krajnc, K. Počkaj, V. Vitrih, Construction of low degree rational Lagrange motions, J. Comput. Appl. Math., 256 (2014), pp. 92-103.
2013
· G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, High order parametric polynomial approximation of conic sections, Constructive Approximation, 38 (2013), pp. 1-18.
· G. Jaklič, B. Juettler, M. Krajnc, V. Vitrih, E. Žagar, Hermite interpolation by rational G^k motions of low degree, J. Comput. Appl. Math., 240 (2013), pp. 20-30.
· M. Krajnc, V. Vitrih, Motion design with Euler-Rodrigues frames of quintic Pythagorean-hodograph curves, Mathematics and Computers in Simulation, 82 (2012), pp. 1696-1711.
· G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, An approach to geometric interpolation by Pythagorean-hodograph curves, Adv. Comput. Math., 37(2012), pp. 123-150.
· G. Jaklič, J. Kozak, V. Vitrih, E. Zagar, Lagrange geometric interpolation by rational spatial cubic Bezier curves, Comput. Aided Geom. Des., 29 (2012), pp. 175-188.
· G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, Hermite geometric interpolation by rational spatial cubic Bezier curves, SIAM J. Numer. Anal., 50 (2012), pp. 2695-2715.
· G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, High order parametric polynomial approximation of quadrics in R^d, Journal of Mathematical Analysis and Applications, 388 (2012), pp. 318-332.
· V. Vitrih, Lattices on simplicial partitions which are not simply connected, J. Comput. Appl. Math., 235 (2010), pp. 154--164.
· G. Jaklič, V. Vitrih, E. Žagar, Closed form formula for the number of restricted compositions, Bull. Aust. Math. Soc., 81 (2010), 289--297.
· G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, Lattices on simplicial partitions, J. Comput. Appl. Math., 233 (2010), pp. 1704-1715.
· G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, On Interpolation by Planar Cubic G2 Pythagorean-hodograph Spline Curves, Math. Comp., 79 (2010), pp. 305--326.
· J. Kozak, V. Vitrih, Newton-Cotes cubature rules over (d+1)-pencil lattices, J. Comput. Appl. Math., 231 (2009), pp. 392-402.
· V. Vitrih, Lattices on tetrahedral partitions, Annali dell'Universita di Ferrara, vol. 54, no. 2, 2008, pp.349--359.
· G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, Geometric Lagrange Interpolation by Planar Cubic Pythagorean-hodograph Curves, Computer Aided Geometric Design, vol. 25, no. 9, 2008, pp. 720--728.
· G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, Barycentric coordinates for Lagrange interpolation over lattices on a simplex, Numerical Algorithms 48, vol. 1--3 (2008), 93--104.
· G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, On geometric Lagrange interpolation by quadratic parametric patches, Computer Aided Geometric Design, vol. 25, no. 6, 2008, pp. 373--384.
· G. Jaklič, J. Kozak, M. Krajnc, V. Vitrih, E. Žagar, Three-pencil lattices on triangulations, Numerical Algorithms 45 (2007) 49--60.