
Lecture 13

Type system

Iztok Savnik, FAMNIT

May, 2024.

1

Literature

• John Mitchell, Concepts in Programming
Languages, Cambridge Univ Press, 2003
(Chapter 6)

• Michael L. Scott, Programming Language
Pragmatics (3rd ed.), Elsevier, 2009 (Chapter 7)

• Emmanuel Chailloux, Pascal Manoury, Bruno
Pagano, Developing Applications With Objective
Caml, O’REILLY & Associates, 2000

Outline

1. Introduction
2.Type equivalence and compatibility
3.Type inference

 Introduction

• At least three ways to think about types
• Denotational

– Type is simply a set of values
– Value has a given type if it belongs to the set

• Constructive
– Type is either one of a small collection of built-in types
– Created by applying a type constructor (record , array ,

set, etc.) to one or more simpler types

• Abstraction-based
– Type is a data structure
– Type is an interface consisting of a set of operations

with well-defined semantics

Why types?
• Naming and organizing concepts

– Structuring data
– Documenting data organization

• Consistent interpretation of data (bit sequences) in
computer memory
– Memory layout for accessing data

• Providing information to the compiler about data
manipulated by the program
– Ensuring the compatibility of operation operands

• Type inference, type-checking, type errors

– Dynamic binding an dynamic type checking
– Types and optimization
– Locating references for garbage collection

Why types?

There are two basic functions of types:
1.Types provide implicit context for many

operations, so that the programmer does not
have to specify that context explicitly
– a + b, new p, ...
– Choice of operation, sizes of structures, etc.

2.Types limit the set of operations that may be
performed in a semantically valid program
– Expressions and values with attached “meaning”
– Typing and then catching type errors significantly

improves code
– Catch nonsensical operation (1+”banana”)

Type systems

• A type system consists of:
1. A mechanism to define types and associate them with

certain language constructs
2. A set of rules for type equivalence, type compatibility,

and type inference
3. A type-checking algorithm

• Which constructs have types?
– Imperative language: those that have values

• named constants, variables, record fields, parameters,
subroutines, expressions

– Functional languages: any expression has a type
• Functions, values, expressions, statements, classes, modules

Two kinds of type systems

• Two lambda calculus with types:
– Implicit types, Curry Haskell
– Explicit types, Alonzo Church

• Implicit types
– Or, Curry type annotations
– Optional type annotations
– Type annotations are added where needed
– Types are derived from expressions
– Sophisticated type inference algorithms
– ML, Haskell, Ocaml

• Functional languages (not Lisp)

Two kinds of type systems

• Explicit types
– Or, Church type annotations
– Strict type annotations
– Language implementations include verification of types

of variables, expressions, etc.
– Types derived from expressions must be equivalent or

compatible to annotations
– Imperative languages usually use explicit type

annotations; also most of object-oriented languages
– Examples: Pascal, C, C++, Java, Scala

Type checking

• When an object of a certain type can be used in a
certain context?

• At this point the following three procedures are
needed to judge the position
– Type equivalence and/or compatibility
– Type inference

• At a minimum, the object can be used if its type
and the type expected by the context are
equivalent
– Compatibility is a looser relationship than equivalence
– Objects and contexts are often compatible even when

their types are different

Type checking

• Type compatibility is the one of most concern to
programmers
– Type compatibility can involve: type conversion (cast) and

coercion

• Type inference procedure computes type of an
expression constructed from simpler subexprs
– Given the types of the sub-expressions (and possibly the

type expected by the surrounding context), what is the
type of the expression as a whole?

• Type-checking procedure
– Given a program, checks all expressions that have types

by using type equivalence, compatibility and type inference

Type checking

• Type checking is the process of ensuring that a
program obeys the language’s type compatibility rules

• A language is strongly typed
– Prohibits the application of any operation to any object that is

not intended to support that operation

• A language is said to be statically typed
– Type checking is performed at compile time
– Compile-time type checking catches errors earlier then run-

time type checking
– In statically typed language usually some type checking is

done in run-time
– Pascal, C, C++, Java, Scala, C++

Type checking

• Dynamic (run-time) type checking
– Types are checked at run-time
– A form of late binding
– Tends to be found in languages that delay other issues

until run time as well
– Lisp, Smalltalk are dynamically typed
– Most scripting languages are dynamically typed
– Python, Ruby are also strongly typed

Type checking and polymorphism

• Polymorphism
– Single body of code works with objects of multiple types

• It may or may not imply the need for run-time type checking

• Dynamic typing
– Supports implicit parametric polymorphism

• Types can be thought of as implied (unspecified) parameters
• Types of arguments are checked in run-time

– Powerful and straightforward
• Operation implementation is selected at run-time

– Languages Lisp, Smalltalk, Script languages, etc.
– Significant run-time cost for type checking

Type checking and polymorphism

• Subtype polymorphism in OO languages
– Given a straightforward model of inheritance
– Type checking for subtype polymorphism can be

implemented entirely at compile time.

• Explicit parametric polymorphism
– A class is specified by using type parameters
– Generics in C++, Eiffel, Java, and C#
– Useful as a base class for the containers
– Compile-time static type checking suffices

• Similarly to subtype polymorphism

Type checking and polymorphism

• ML family
– Sophisticated system of type inference
– ML compiler infers for every expression a type

• With rare exceptions, the programmer need not specify the
types of objects explicitly

– Task of the compiler is to determine whether there
exists a consistent assignment of types to expressions

• This guarantees, statically, that no operation will be applied to
a value of an inappropriate type at run time

• Formalized as the problem of unification

– Implicit parametric polymorphism with static typing
• Computes the most general types
• Derives type variables if there is no other constraints

Outline

1. Introduction
2.Type equivalence and compatibility
3.Type inference

 Type equivalence

• Two principal ways of defining type equivalence
• Structural equivalence is based on content of type

definitions
– Two types are the same if they consist of the same

components
– Algol-68, Modula-3, C and ML

• Name equivalence is based on the lexical
occurrence of type definitions
– More popular approach in recent languages
– Java, C#, standard Pascal, and most Pascal

descendants, including Ada

Structural equivalence

• Exact definition varies from one
language to another
– ML says Ok; most languages say error

• Two types are structurally equivalent
– Replace any embedded type names

with their definitions, recursively
– Until nothing is left but type constructors,

field names, and built-in types
– Then, compare structures
– Problem is an inability to distinguish

between types that the programmer
may think of as distinct

type student = record

 name, address : string

 age : integer

type school = record

 name, address : string

 age : integer

x : student;

y : school;

...

x := y; /* ? */

/* Pascal */

type R2 = record

 a, b : integer

end;

/* same as? */

type R3 = record

 a : integer;

 b : integer

end;

/* what about this? */

type R4 = record

 b : integer;

 a : integer

end;

Name equivalence

• Assumption:
– If programmer writes two definitions

(for the same type) then they are meant
to represent different types

• Example:
– Variables x and y are of different type and (under name

equivalence) therefore we have type-checking error

• Name equality means that two type names are
considered equal in type checking only if they are
the same

type student = record

 name, address : string

 age : integer

type school = record

 name, address : string

 age : integer

x : student;

y : school;

...

x := y; /* ? */

Variants of name equivalence

• There are two variants of name equivalence
• The simplest of type definitions

• Here new_type is said to be an alias for old_type
– Should we treat them as two different names or the

names of the same type?

• Strong name equivalence
– Treat them strictly as different types

• Loose name equivalence
– Treat them as two names of the one type

TYPE stack_element = INTEGER; (* alias *)

TYPE new_type = old_type; /* Modula-2*/

TYPE celsius_temp = REAL;

 fahrenheit_temp = REAL;

VAR c : celsius_temp;

 f : fahrenheit_temp;

...

f := c; /* error? */

Type conversion (type cast)

• Explicit type conversion!
• There are many contexts in which values of a

specific type are expected
– We expect right-hand side to

have the same type as a
– The overloaded + symbol designates

either integer or floating-point addition
• both integers or both reals

– We expect the types of the arguments to match those
of the formal parameters

• Suppose in each of these cases that the types
(expected and provided) are exactly the same

a := expression

 a + b

foo(arg1, arg2, . . . , argN)

Type conversion (type cast)

• To use a value of one type in a context that
expects another we can use explicit type
conversion (or, type cast)
1.Types employ the same low-level representation, and

have the same set of values
• No code will need to be executed at run time

2.Types have different sets of values, but the intersecting
values are represented in the same way

• One type may be a subrange of the other
• Run-time check of exact types; can generate run-time error

3.Types have different low-level representations but there
is correspondence among the values

• integer ↔ floating-point

Example

/* Ada */

n : integer; -- assume 32 bits

r : real; -- assume IEEE double-precision

t : test_score; -- as in Example 7.9

c : celsius_temp; -- as in Example 7.20

...

t := test_score(n); -- run-time semantic check required

n := integer(t); -- no check req.; every test_score is an int

r := real(n); -- requires run-time conversion

n := integer(r); -- requires run-time conversion and check

n := integer(c); -- no run-time code required

c := celsius_temp(n); -- no run-time code required

type test_score = 0..100;

 workday = mon..fri;

type celsius_temp is new integer;

type fahrenheit_temp is new integer;

 Type Compatibility

• Most languages do not require equivalence of
types in every context

• Value’s type must be compatible with that of the
context in which it appears
– Left and right side of assignment statement
– Values used in arithmetic operations
– Actual parameter in function call

• The definition of type compatibility varies greatly
from language to language

• Language allows a value of one type to be used
in a context that expects another
– Language implements automatic, implicit conversion to

the expected type!
– Run-time code must perform a dynamic semantic

check, or convert between low-level representations

• OCaml provides explicit coercion
– Coercion operator “:>”
– Programmer has to take care of conversions

• Avoiding errors that are hard to find

– Base types and objects can be coerced
– Separate operations for separate types (+, +., ...)
– More in chapter on OO languages

Coercion

(name : sub type :> super type)

(name :> super type)

Coercion

• C++ provides an extremely rich, programmer-
extensible set of coercion rules
– Coercion code can be defined when new type is defined
– This makes C++ flexible
– One of the most difficult C++ features to understand and

use correctly
– Rules interact in complicated ways with the rules for

resolving overloading

Coercion in C

• C performs
quite a bit
of coercion

short int s;

unsigned long int l;

char c; /* may be signed or unsigned -- implementation-dependent */

float f; /* usually IEEE single-precision */

double d; /* usually IEEE double-precision */

...

s = l; /* l’s low-order bits are interpreted as a signed number. */

l = s; /* s is sign-extended to the longer length, then

 its bits are interpreted as an unsigned number. */

s = c; /* c is either sign-extended or zero-extended to s’s length;

 the result is then interpreted as a signed number. */

f = l; /* l is converted to floating-point. Since f has fewer

 significant bits, some precision may be lost. */

d = f; /* f is converted to the longer format; no precision lost. */

f = d; /* d is converted to the shorter format; precision may be lost.

 If d’s value cannot be represented in single-precision, the

 result is undefined, but NOT a dynamic semantic error. */

Coercion in Fortran

• Fortran allows arrays and records to be
intermixed if their types have the same shape

• Two arrays are of the same shape
– The same number of dimensions, elements and the

same shape of element type

• Two records have the same shape
– The same number of fields, and the fields are of the

same shape
– Field names do not matter, nor do the actual high and

low bounds of array dimensions

Trends in coercion use

• Modern compiled languages display a trend toward
static typing and away from type coercion

• Some language designers argue that coercions are
a natural way in which to support abstraction and
extensibility
– It is easier to use new types together with existing ones
– This is especially true for scripting languages

Outline

1. Introduction
2.Type equivalence and compatibility
3.Type inference

 Type inference

• Type inference is used for type-checking
– The process of determining the types of expressions

based on the known types
– Inferred types are compared to types expected in a

given context

• There are two general approaches to type
inference:
1) Type inference algorithms is based on typing rules that

 derive concrete (ground) types
• Pascal, Java, C, C++,

2) Type inference algorithms based on typing rules that
 derive parametrized types

• ML, Ocaml, Haskell

Type inference based on rules

• Type of an expression is inferred by means of typing
rules

• During compilation expression is parsed into abstract
syntax tree (AST)
– AST is used to attach the type to each of sub-expressions

• Check the lecture on Compilers and interpreters

• Types are computed bottom-up
– A type of an expression is computed from types of its sub-

expressions
• Atomic types are either specified or can be determined from values

– Typing rules act as patterns that match given syntactic
constructions

Typing rules

• Typing rules concern judgments of the form
 Γ ⊦ e : T
– where Γ is a context, which contains e.g. typings of

identifiers
– The judgment says: in the environment Γ, expression e

has type T

• Judgments are used in typing rules of the form
 J1 J2 ... Jn

 J

– Ji are called premises, J is called conclusion and C
condition

C

Typing rules

• Example rule:
– If x and y have

type int then x+y
has type int

• Context Γ is written in the form
 Γ = x1:T1,x2:T2...,xn:Tn

• Judgement form for typing is generalized to
 Γ ⊦ e:T

• To add a new variable to the context Γ, we write
 Γ, x : T

Γ = x:int, y:int

 Γ ⊦ x:int Γ ⊦ y:int

 Γ ⊦ x + y : int

Example

• Type checking rules for arithmetic expressions

• Derivation of judgment: Γ=x : int,y : int => x + 12 * y : int

 Γ ⊦ e1 : int Γ ⊦ e2 : int Γ ⊦ e1 : int Γ ⊦ e2 : int

 Γ ⊦ e1 + e2 : int Γ ⊦ e1 * e2 : int

 x : T ∈ Γ

 Γ ⊦ x : T Γ ⊦ i : int i is an integer literal

 Γ ⊦ 12 : int Γ ⊦ y : int

 Γ ⊦ x : int Γ ⊦ 12 * y : int

 Γ ⊦ x + 12 * y : int

Typing functions

• Type of function with one parameter is written
 f : T1→ T2

• The typing rule for
function says: if x has
type T1 and f has
type T1→ T2, then f(x) has type T2

• Typing rule for functions with more than one
parameters (one parameter seen as tuple)
 f : T1*...*Tn→ T

 Γ ⊦ x:T1 Γ ⊦ f : T1→ T2

 Γ ⊦ f(x) :T2

Typed λ-calculus

 x:T ∈ Γ
 Γ ⊦ x:T (axiom)

 Γ ⊦ M : (σ→τ) Γ ⊦ N : σ
 Γ ⊦ (M N) : τ (→-elimination)

 Γ, x : σ ⊦ M : τ
 Γ ⊦ (λx.M) : (σ→τ) (→-introduction)

Type inference in ML

• ML type inference algorithm derives most general
parametrized type of expression
– H. Curry, R. Feys, R. Hindley, R. Milner

• Hindley-Milner type system

– Type inference can be applied to a variety of
programming languages

• ML type inference supports polymorphism
– Type variables are used as place-holders for types that

are not known

• Algorithm will be presented by examples

Example 1

• Type of 2 is int
• Operator + is

overloaded but since we have one integer, then it
must have type int→(int→int)

• Therefore, x must be of type int
• Putting this together we get that f1 is of type

int→int

– fun f1(x) = x + 2;

val f1 = fn : int → int

Example 2

• Type of 0 is int
• The type of

function h result is not known, therefore we write 'a
• Since the result of h is an argument of g then the

domain of g is 'a
• Also the type of g is not known so we take 'b
• Since type of g result is 'b then also result of f2 is of

type 'b
• We get the type ('a→'b)*(int→'a)→'b

– fun f2(g,h) = g(h(0));

val f2 = fn : (’a → ’b) * (int → ’a) → ’b

Type-Inference Algorithm

1.Assign a type to the expression and each
subexpression

● For any compound expression or variable, use a type
variable

2.Generate a set of constraints on types, using the
parse tree of the expression

3.Solve these constraints by means of unification,
which is a substitution-based algorithm for solving
systems of equations

Example 3 – fun g(x) = 5 + x;

val g = fn : int → int

(1)Function Application: If the type of f is a, the type of e is b,

and the type of f(e) is c, then we must have a = b→c.

Lambda Abstraction: If the type of x is a, the type of e is b,

and the type of λx.e is c, then we have c = a → b.

(2) We get constraints:

Subexpression (+5): int → (int → int) = int → t

Subexpression (+5) x: t = u → s

Subexpression λx.((+5)x): r = u → s

(3) Solve equations

t=int→int, u=int, s=int, r=int→int

Example 4

(2) Generate constraints:

t=u→s

r=t*u→s

(3) Solve constraints:

r=(u→s)*u→s

r=('a→'b)*'a→'b

– fun apply(f,x) = f(x);

val apply = fn : (’a → ’b) * ’a → ’b

(1)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

