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 Introduction

• At least three ways to think about types
• Denotational

– Type is simply a set of values
– Value has a given type if it belongs to the set

• Constructive 
– Type is either one of a small collection of built-in types
– Created by applying a type constructor ( record , array , 

set, etc.) to one or more simpler types

• Abstraction-based
– Type is a data structure
– Type is an interface consisting of a set of operations 

with well-defined semantics



Why types?
• Naming and organizing concepts

– Structuring data
– Documenting data organization

• Consistent interpretation of data (bit sequences) in 
computer memory
– Memory layout for accessing data

• Providing information to the compiler about data 
manipulated by the program
– Ensuring the compatibility of operation operands

• Type inference, type-checking, type errors

– Dynamic binding an dynamic type checking
– Types and optimization
– Locating references for garbage collection



Why types?

There are two basic functions of types:
1.Types provide implicit context for many 

operations, so that the programmer does not 
have to specify that context explicitly
– a + b, new p, ...
– Choice of operation, sizes of structures, etc. 

2.Types limit the set of operations that may be 
performed in a semantically valid program
– Expressions and values with attached “meaning”
– Typing and then catching type errors significantly 

improves code
– Catch nonsensical operation (1+”banana”)



Type systems

• A type system consists of:
1. A mechanism to define types and associate them with 

certain language constructs
2.  A set of rules for type equivalence, type compatibility, 

and type inference
3.  A type-checking algorithm

• Which constructs have types?
– Imperative language: those that have values

• named constants, variables, record fields, parameters, 
subroutines, expressions

– Functional languages: any expression has a type
• Functions, values, expressions, statements, classes, modules



Two kinds of type systems

• Two lambda calculus with types:
– Implicit types, Curry Haskell
– Explicit types, Alonzo Church

• Implicit types 
– Or, Curry type annotations
– Optional type annotations
– Type annotations are added where needed
– Types are derived from expressions
– Sophisticated type inference algorithms
– ML, Haskell, Ocaml

• Functional languages (not Lisp)



Two kinds of type systems

• Explicit types 
– Or, Church type annotations
– Strict type annotations
– Language implementations include verification of types 

of variables, expressions, etc.
– Types derived from expressions must be equivalent or 

compatible to annotations
– Imperative languages usually use explicit type 

annotations; also most of object-oriented languages
– Examples: Pascal, C, C++, Java, Scala



Type checking

• When an object of a certain type can be used in a 
certain context?

• At this point the following three procedures are 
needed to judge the position
– Type equivalence and/or compatibility
– Type inference

• At a minimum, the object can be used if its type 
and the type expected by the context are 
equivalent
– Compatibility is a looser relationship than equivalence 
– Objects and contexts are often compatible even when 

their types are different



Type checking

• Type compatibility is the one of most concern to 
programmers
– Type compatibility can involve: type conversion (cast) and 

coercion

• Type inference procedure computes type of an 
expression constructed from simpler subexprs
– Given the types of the sub-expressions (and possibly the 

type expected by the surrounding context), what is the 
type of the expression as a whole?

• Type-checking procedure
– Given a program, checks all expressions that have types 

by using type equivalence, compatibility and type inference



Type checking

• Type checking is the process of ensuring that a 
program obeys the language’s type compatibility rules

• A language is strongly typed 
– Prohibits the application of any operation to any object that is 

not intended to support that operation

• A language is said to be statically typed 
– Type checking is performed at compile time
– Compile-time type checking catches errors earlier then run-

time type checking
– In statically typed language usually some type checking is 

done in run-time
– Pascal, C, C++, Java, Scala, C++



Type checking

• Dynamic (run-time) type checking 
– Types are checked at run-time
– A form of late binding
– Tends to be found in languages that delay other issues 

until run time as well
– Lisp, Smalltalk are dynamically typed
– Most scripting languages are dynamically typed
– Python, Ruby are also strongly typed



Type checking and polymorphism

• Polymorphism
– Single body of code works with objects of multiple types

• It may or may not imply the need for run-time type checking

• Dynamic typing 
– Supports implicit parametric polymorphism

• Types can be thought of as implied (unspecified) parameters
• Types of arguments are checked in run-time

– Powerful and straightforward
• Operation implementation is selected at run-time

– Languages Lisp, Smalltalk, Script languages, etc. 
– Significant run-time cost for type checking



Type checking and polymorphism

• Subtype polymorphism in OO languages
– Given a straightforward model of inheritance 
– Type checking for subtype polymorphism can be 

implemented entirely at compile time.

• Explicit parametric polymorphism
– A class is specified by using type parameters
– Generics in C++, Eiffel, Java, and C#
– Useful as a base class for the containers 
– Compile-time static type checking suffices 

• Similarly to subtype polymorphism



Type checking and polymorphism

• ML family
– Sophisticated system of type inference 
– ML compiler infers for every expression a type 

• With rare exceptions, the programmer need not specify the 
types of objects explicitly

– Task of the compiler is to determine whether there 
exists a consistent assignment of types to expressions

• This guarantees, statically, that no operation will  be applied to 
a value of an inappropriate type at run time

• Formalized as the problem of unification

– Implicit parametric polymorphism with static typing
• Computes the most general types 
• Derives type variables if there is no other constraints
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 Type equivalence

• Two principal ways of defining type equivalence
• Structural equivalence is based on content of type 

definitions 
– Two types are the same if they consist of the same 

components
– Algol-68, Modula-3, C and ML

• Name equivalence is based on the lexical 
occurrence of type definitions
– More popular approach in recent languages
– Java, C#, standard Pascal, and most Pascal 

descendants, including Ada



Structural equivalence

• Exact definition varies from one 
language to another
– ML says Ok; most languages say error

• Two types are structurally equivalent
– Replace any embedded type names                          

with their definitions, recursively
– Until nothing is left but type constructors,                 

field names, and built-in types                                 
– Then, compare structures
– Problem is an inability to distinguish                   

between types that the programmer                             
may think of as distinct

type student = record

   name, address : string

   age : integer

type school = record

   name, address : string

   age : integer

x : student;

y : school;

...

x := y;   /* ? */

/* Pascal */

type R2 = record

   a, b : integer

end;

/* same as? */

type R3 = record

   a : integer;

   b : integer

end;

/* what about this? */

type R4 = record

   b : integer;

   a : integer

end;



Name equivalence

• Assumption: 
– If programmer writes two definitions 

(for the same type) then they are meant 
to represent different types

• Example:
– Variables x and y are of different type and (under name 

equivalence) therefore we have type-checking error

• Name equality means that two type names are 
considered equal in type checking only if they are 
the same

type student = record

   name, address : string

   age : integer

type school = record

   name, address : string

   age : integer

x : student;

y : school;

...

x := y;   /* ? */



Variants of name equivalence

• There are two variants of name equivalence
• The simplest of type definitions

• Here new_type is said to be an alias for old_type
– Should we treat them as two different names or the 

names of the same type? 

• Strong name equivalence
– Treat them strictly as different types

• Loose name equivalence 
– Treat them as two names of the one type

TYPE stack_element = INTEGER;  (* alias *)

TYPE new_type = old_type;    /* Modula-2*/

TYPE celsius_temp = REAL;

        fahrenheit_temp = REAL;

VAR c : celsius_temp;

        f : fahrenheit_temp;

...

f := c;  /* error? */



Type conversion (type cast)

• Explicit type conversion! 
• There are many contexts in which values of a 

specific type are expected
– We expect right-hand side to 

have the same type as a 
– The overloaded + symbol designates 

either integer or floating-point addition
• both integers or both reals

– We expect the types of the arguments to match those 
of the formal parameters

• Suppose in each of these cases that the types 
(expected and provided) are exactly the same

a := expression

  a + b

foo(arg1, arg2, . . . , argN)



Type conversion (type cast)

• To use a value of one type in a context that 
expects another we can use explicit type 
conversion (or, type cast )
1.Types employ the same low-level representation, and 

have the same set of values
• No code will need to be executed at run time

2.Types have different sets of values, but the intersecting 
values are represented in the same way

• One type may be a subrange of the other
• Run-time check of exact types; can generate run-time error

3.Types have different low-level representations but there 
is correspondence among the values

• integer ↔ floating-point



Example

/* Ada */

n : integer;                     -- assume 32 bits

r : real;                           -- assume IEEE double-precision

t : test_score;                 -- as in Example 7.9

c : celsius_temp;            -- as in Example 7.20

...

t := test_score(n);          -- run-time semantic check required

n := integer(t);               -- no check req.; every test_score is an int

r := real(n);                    -- requires run-time conversion

n := integer(r);               -- requires run-time conversion and check

n := integer(c);              -- no run-time code required

c := celsius_temp(n);     -- no run-time code required

type test_score = 0..100;

        workday = mon..fri;

type celsius_temp is new integer;

type fahrenheit_temp is new integer;



 Type Compatibility

• Most languages do not require equivalence of 
types in every context

• Value’s type must be compatible with that of the 
context in which it appears
– Left and right side of assignment statement
– Values used in arithmetic operations
– Actual parameter in function call

• The definition of type compatibility varies greatly 
from language to language



• Language allows a value of one type to be used 
in a context that expects another
– Language implements automatic, implicit conversion to 

the expected type!
– Run-time code must perform a dynamic semantic 

check, or convert between low-level representations

• OCaml provides explicit coercion
– Coercion operator “:>” 
– Programmer has to take care of conversions

• Avoiding errors that are hard to find

– Base types and objects can be coerced 
– Separate operations for separate types (+, +., ...) 
– More in chapter on OO languages

Coercion

(name : sub type :> super type )

(name :> super type )



Coercion

• C++ provides an extremely rich, programmer- 
extensible set of coercion rules
– Coercion code can be defined when new type is defined
– This makes C++ flexible 
– One of the most difficult C++ features to understand and 

use correctly
– Rules interact in complicated ways with the rules for 

resolving overloading 



Coercion in C

• C performs 
quite a bit 
of coercion

short int s;

unsigned long int l;

char c;     /* may be signed or unsigned -- implementation-dependent */

float f;      /* usually IEEE single-precision */

double d;  /* usually IEEE double-precision */

...

s = l; /* l’s low-order bits are interpreted as a signed number. */

l = s; /* s is sign-extended to the longer length, then

             its bits are interpreted as an unsigned number. */

s = c; /* c is either sign-extended or zero-extended to s’s length;

             the result is then interpreted as a signed number. */

f = l;   /* l is converted to floating-point. Since f has fewer

               significant bits, some precision may be lost. */

d = f;  /* f is converted to the longer format; no precision lost. */

f = d;  /* d is converted to the shorter format; precision may be lost.

               If d’s value cannot be represented in single-precision, the

               result is undefined, but NOT a dynamic semantic error. */



Coercion in Fortran

• Fortran allows arrays and records to be 
intermixed if their types have the same shape

• Two arrays are of the same shape
– The same number of dimensions, elements and the 

same shape of element type

• Two records have the same shape
– The same number of fields, and the fields are of the 

same shape
– Field names do not matter, nor do the actual high and 

low bounds of array dimensions



Trends in coercion use

• Modern compiled languages display a trend toward 
static typing and away from type coercion

• Some language designers argue that coercions are 
a natural way in which to support abstraction and 
extensibility
– It is easier to use new types together with existing ones
– This is especially true for scripting languages
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 Type inference 

• Type inference is used for type-checking 
– The process of determining the types of expressions 

based on the known types
– Inferred types are compared to types expected in a 

given context

• There are two general approaches to type 
inference:
1) Type inference algorithms is based on typing rules that   

 derive concrete (ground) types
• Pascal, Java, C, C++, 

2) Type inference algorithms based on typing rules that      
 derive parametrized types

• ML, Ocaml, Haskell



Type inference based on rules

• Type of an expression is inferred by means of typing 
rules

• During compilation expression is parsed into abstract 
syntax tree (AST) 
– AST is used to attach the type to each of sub-expressions

• Check the lecture on Compilers and interpreters

• Types are computed bottom-up 
– A type of an expression is computed from types of its sub-

expressions
• Atomic types are either specified or can be determined from values

– Typing rules act as patterns that match given syntactic 
constructions 



Typing rules

• Typing rules concern judgments of the form 
                            Γ ⊦ e : T
– where Γ is a context, which contains e.g. typings of 

identifiers 
– The judgment says: in the environment Γ, expression e 

has type T

• Judgments are used in typing rules of the form
                                J1  J2   ... Jn

                                                          J

– Ji are called premises, J is called conclusion and C 
condition

C



Typing rules

• Example rule:
– If x and y have 

type int then x+y 
has type int

• Context Γ is written in the form
                Γ =  x1:T1,x2:T2...,xn:Tn

• Judgement form for typing is generalized to
                            Γ  ⊦ e:T

• To add a new variable to the context Γ, we write
                             Γ, x : T

Γ = x:int, y:int

  Γ ⊦ x:int     Γ  ⊦ y:int

     Γ ⊦ x + y : int



Example

• Type checking rules for arithmetic expressions

• Derivation of judgment: Γ=x : int,y : int  =>  x + 12 * y : int

 

  Γ  ⊦ e1 : int    Γ ⊦ e2 : int           Γ  ⊦ e1 : int     Γ ⊦ e2 : int

          Γ  ⊦ e1 + e2 : int                      Γ ⊦ e1 * e2 : int

  

          x : T ∈ Γ                             

          Γ  ⊦ x : T             Γ  ⊦ i : int  i is an integer literal  

                           Γ ⊦ 12 : int     Γ ⊦ y : int

       Γ ⊦ x : int           Γ ⊦ 12 * y : int

                   Γ ⊦ x + 12 * y : int



Typing functions

• Type of function with one parameter is written 
                        f : T1→ T2

• The typing rule for                                                 
function says: if x has                                         
type T1 and f has                                                      
type T1→ T2, then f(x) has type T2

• Typing rule for functions with more than one 
parameters (one parameter seen as tuple)
                       f : T1*...*Tn→ T

       Γ ⊦ x:T1     Γ  ⊦ f : T1→ T2

                Γ  ⊦ f(x) :T2



Typed λ-calculus

                   x:T ∈ Γ
                   Γ ⊦ x:T  (axiom)

      Γ ⊦ M : (σ→τ )    Γ ⊦ N : σ
                 Γ ⊦ (M N ) : τ         (→-elimination)

            Γ, x : σ ⊦ M : τ
         Γ ⊦ (λx.M ) : (σ→τ ) (→-introduction)



Type inference in ML

• ML type inference algorithm derives most general 
parametrized type of expression
– H. Curry, R. Feys, R. Hindley, R. Milner 

• Hindley-Milner type system

– Type inference can be applied to a variety of 
programming languages

• ML type inference supports polymorphism
– Type variables are used as place-holders for types that 

are not known

• Algorithm will be presented by examples



Example 1

• Type of 2 is int
• Operator + is 

overloaded but since we have one integer, then it 
must have type int→(int→int)

• Therefore, x must be of type int
• Putting this together we get that f1 is of type 

int→int

– fun f1(x) = x + 2;

val f1 = fn : int → int



Example 2

• Type of 0 is int
• The type of 

function h result is not known, therefore we write 'a 
• Since the result of h is an argument of g then the 

domain of g is 'a
• Also the type of g is not known so we take 'b
• Since type of g result is 'b then also result of f2 is of 

type 'b
• We get the type ('a→'b)*(int→'a)→'b

– fun f2(g,h) = g(h(0));

val f2 = fn : (’a → ’b) * (int → ’a) → ’b



Type-Inference Algorithm

1.Assign a type to the expression and each 
subexpression

● For any compound expression or variable, use a type 
variable

2.Generate a set of constraints on types, using the 
parse tree of the expression

3.Solve these constraints by means of unification, 
which is a substitution-based algorithm for solving 
systems of equations



Example 3 – fun g(x) = 5 + x;

val g = fn : int → int

(1)Function Application: If the type of f is a, the type of e is b, 

and the type of f(e) is c, then we must have a = b→c.

Lambda Abstraction: If the type of x is a, the type of e is b, 

and the type of λx.e is c, then we have c = a → b.

(2) We get constraints:

Subexpression (+5):  int → (int → int) = int → t

Subexpression (+5) x:   t = u → s

Subexpression λx.((+5)x):   r = u → s

(3) Solve equations

t=int→int,  u=int,  s=int,  r=int→int



Example 4

(2) Generate constraints:

t=u→s

r=t*u→s

(3) Solve constraints:

r=(u→s)*u→s

r=('a→'b)*'a→'b

– fun apply(f,x) = f(x);

val apply = fn : (’a → ’b) * ’a → ’b

(1)
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