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Data abstraction
• Data abstraction

– Enforces a clear separation between the abstract 
properties and the concrete details of a data type

– Information hiding, representation independence, 
encapsulation, interface/implementation, …

• With development of complicated computer apps, 
data abstraction has become essential to sw eng.
– It reduces conceptual load by minimizing the amount of 

detail that the programmer must think about at one time
– Fault containment by preventing the programmer from 

using a program component in inappropriate ways
– Provides a degree of independence among program 

components that can be easily separated by functionality



Data abstraction and encapsulation

• Class/object abstraction 
– Creates a simplified view of modeled class/object 
– Focusing attention to the most important features
– Omitting the representation and implementation details 
– Data is hidden in object  
– External observer (of class) needs to see only abstract 

view of class and its instances, i.e., class interface 
– Interface consists of well-defined methods that 

manipulate instances of class
• Classes/objects encapsulate internal structure 

and behavior of object



Object-oriented model

• An object responds to a set of operations on 
some hidden data
– Object representation abstracts away all details about 

the implementation of object
– All interactions with an object occur by means of  

messages or member-function calls
• Objects are grouped into classes that serve as 

object prototypes 
– Classes are sets of their instances (denotational view)
– As prototypes, classes stand for types comprised of 

method signatures and data members
– Classes inherit properties of their super-classes



Example: int_stack

• Stack of integers
– Ocaml implementation
– Stack is represented by list 

• Encapsulation
– Representation of stack                                                 

and its implementation can                                      
change

– Interface (abstraction)                                                 
stays the same

# class int_stack =
    object
      val mutable l = ([] : int list)
      method push x = l <- x::l
      method pop = match l with 
                                  [] -> raise Empty | 
                                  a::l' -> l <- l'; a
      method clear = l <- []
      method length = List.length l
    end;;
# let is = new int_stack;;
val is : int_stack = <obj>
# is#push 1; is#push 2; 
   is#push 3; is#push 4;;
- : unit = ()
# is#length;;
- : int = 4
# is#pop;;
- : int = 4



History

• Simula, 1960, Norwegian Computing Center
– The first object-oriented language
– It included everything recent OO languages have 
– Object/classes, inheritance, subclasses, virtual procedures

• Smalltalk, 1970, Xerox PARC
– Dynamically typed object-oriented language
– Everything is object; still remains to be interesting design
– Object/classes, messages, subclasses, metaclasses
– Structural and computational reflection: can 

observe/influence its own structure and behaviour



Mature OO programming languages
• C++, 1983, Bjarne Stroustrup, Bell Labs

– Widely used statically typed object-oriented language
– Extension of the C language; standardized 2014
– Classes/objects, inheritance (multiple), polymorphism, 

templates, virtual function and classes, exceptions
– Compatibility with C

• Java, 1995, James Gosling, Sun Microsystems
– Concurrent, class-based, object-oriented
– Compiled to bytecode and run on any Java virtual machine 

(JVM)
– Single inheritance, abstract classes, interfaces, generics, 

introspection, file-system based modules
– Portability, reliability, safety, dynamic linking, threads, 

simplicity, efficiency
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Classes and objects

• Object model is close to simulation view to problem 
solving: make a simulation model of problem and 
run it
– Objects represent components of model 
– Objects are interconnected by possibly very complex 

static structures
– Object may ask other objects to run a task by sending it a 

message 
– Objects have behavior realized by communication with 

other interrelated objects 
– Abstractions used are much closer to human 

representation of problem 



Classes and objects

• Class can be viewed as prototype object from 
which its instances (elements of the class) are 
created 
– Class includes the definition of static structure and 

behavior of a prototype object 
– Behavior of class instances is implemented in methods 
– Methods use internal logic to communicate with other 

objects to solve the sub-problem 
– New classes can be constructed from existing classes 

• specialization and generalization 
• composition and decomposition 



Class definition in Ocaml
• Data members 

– Can have any type
– Value or mutable

• Methods
– Metods have parameters p1,...,pn

• Class can have parameters
#class point x_init =
   object 
     val mutable x = x_init
     method get_x = x
     method move d = x <- x + d
   end;;
class point :
  int ->
  object val mutable x : int method get_x : int method move : int -> unit end

val name = expr
val mutable name = expr
name <- expression

class name p1 ... pn = 
   object 
   ...
   instance variables 
   ...
   methods 
   ...
end 

method name p1 . . . pn = expr

Type!



Object creation

• Most languages have operator new()
– Ocaml does not have constructors as C++, Java
– Class parameters are accessible for the definition of 

class variables
– Class acts as generator i.e. function that creates 

objects
• Initialization of objects in Ocaml

– Code can be added before and after object creation
– Before: let statement can be put before object
– After: Ocaml uses special function as initializer 

• How is the initialization of objects done in Java?

# new point;;
- : int -> point = <fun>
# let p = new point 7;;
val p : point = <obj>



Example:
# class printable_point x_init =
   let origin = (x_init / 10) * 10 in
   object (self)
     val mutable x = origin
     method get_x = x
     method move d = x <- x + d
     method print = print_int self#get_x
     initializer print_string "new point at ";
                     self#print; print_newline()
   end;;
class printable_point :
  int ->
  object
    val mutable x : int
    method get_x : int
    method move : int -> unit
    method print : unit
  end
# let p = new printable_point 17;;
new point at 10 val p : printable_point = <obj>



Methods

• Sending a message
– o#message() (Ocaml)

– Function call in C++, Java, Ocaml, ...
– Actual messages in Smalltalk,                                                

Erlang, ...
– A method must be defined in a class
– Types of actual parameters must                                              

match type of formal parameters

# class point (x_init,y_init) = 
      object 
         val mutable x = x_init 
         val mutable y = y_init 
         method get_x = x 
         method get_y = y 
         method moveto (a,b) = x <- a ; y <- b 
         method rmoveto (dx,dy) = x <- x + dx ; y <- y + dy 
         method to_string () = 
              "("^ (string_of_int x) ^ ", "^ (string_of_int y) ^")"
         method distance () = sqrt (float(x*x + y*y)) 
      end ;;

gp_list_node::remove();      // C++
super.remove();                  // Java
base.remove();                    // C#
super remove.                     // Smalltalk
[super remove]                   // Objective-C

# let p1 = new point (0,0);;
val p1 : point = <obj>
# let p2 = new point (3,4);;
val p2 : point = <obj>
# p1#get_x;; 
- : int = 0 
# p2#to_string () ;; 
- : string = "(3, 4)"
# if (p1#distance () ) = (p2#distance () ) 
   then print_string ("That's just chance\n") 
   else print_string ("We could bet on it\n");; 
We could bet on it 
- : unit = () 



Private methods
• Private and public methods

– Private methods are accessible from object only
• Example of                                                              

private methods
– Point remembers                                                 

previous position
– mem_pos()

# class point (x0,y0) = 
      object(self) 
        val mutable x = x0
        val mutable y = y0 
        val mutable old_x = x0 
        val mutable old_y = y0 
        method get_x = x 
        method get_y = y 
        method private mem_pos () = old_x <- x ; old_y <- y 
        method undo () = x <- old_x; y <- old_y 
        method moveto (x1, y1) = self#mem_pos (); x <- x1; y <- y1
        method rmoveto (dx, dy) = self#mem_pos (); x <- x+dx; y <- y+dy
        method to_string () = 
               "("^ (string_of_int x) ^ ","^ (string_of_int y) ^")"
        method distance () = sqrt (float(x*x + y*y)) 
    end ;; 

method private name = expr 

Ocaml



Structures of objects and aggregation

• An object can be a component of other object
– Class defines other classes as components
– Object includes references to other objects specifying a link 

among two or more objects 
• Aggregation is one of two important abstractions used 

in OO languages
– Aggregation (composition): “has-a” 
– Inheritance (specialization): “is-a”

• Example in Ocaml
– Class Picture includes an array of type Point
– to_string() calls methods to_string() of class Point



Example

# class picture n = 
      object 
        val mutable ind = 0 
        val tab = Array.create n (new point(0,0)) 
        method add p = tab.(ind)<-p ; ind <- ind + 1  
        method remove () = if (ind > 0) then ind <-ind-1 
        method to_string () = 
          let s = ref "["
          in for i=0 to ind-1 do 
                   s:= !s ^ " "^ tab.(i)#to_string () done ; 
              (!s) ^ "]"
      end ;; 

class picture : 
  int -> 
  object 
     val mutable ind : int 
     val tab : point array 
     method add : point -> unit 
     method remove : unit -> unit 
     method to_string : unit -> string 
  end 

Type

UML (Unified Modelling Language)
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Inheritance

• Inheritance realizes specialization abstraction
– Aristotel: genus and differentia specifica.
– Sub-class is a specialization of super-class
– Sub-class inherits all properties of super-class

• Ocaml syntax for definition of inheritance

– Parameters p1, ..., pn are constructor parameters of 
super-class

– Super-class part of object can be referenced inside the 
class definition using variable name2 

inherit name1 p1 . . . pn [ as name2 ] 



Example of sub-class 
# class colored_point (x,y) c = 
      object 
        inherit point (x,y) 
        val mutable c = c 
        method get_color = c 
        method set_color nc = c <- nc 
        method to_string () = "("^ (string_of_int x) ^ 
                              ","^ (string_of_int y) ^ ")"^ 
                              "["^ c ^ "]"
      end ;; 

class colored_point : 
  int * int -> 
  string -> 
  object 
     val mutable c : string 
     val mutable x : int 
     val mutable y : int 
     method distance : unit -> float 
     method get_color : string 
     method get_x : int 
     method get_y : int 
     method moveto : int * int -> unit 
     method rmoveto : int * int -> unit 
     method set_color : string -> unit 
     method to_string : unit -> string 
  end 

# let pc = new colored_point (2,3) "white";; 
val pc : colored_point = <obj> 
# pc#get_color;; 
- : string = "white"
# pc#get_x;; 
- : int = 2 
# pc#to_string () ;; 
- : string = "(2,3)[white] "
# pc#distance;; 
- : unit -> float = <fun> 

Type:



Method overriding  

• Method to_string() of class colored_point() 
overrides method to_string() of class point()
– Overriding method can be more specific then the 

overridden method
– Relationship between types of methods will be 

presented in section on types (of classes)
• Consequences of method overriding (through 

inheritance)
– Dynamic binding of method name to correct code

• Otherwise method code can be determined statically
– Multiple inheritance

• More than one methods of the same type can be inherited



References to self and super
• While defining methods it is useful to have access 

– to the object itself, as well as 
– to the part of object that is described by super-class

• Reference to object itself
– Keywords “self” in Smalltalk.  Java and C++ ? 
– Ocaml allows definition of custom name to self

• Reference to super-object
– Ocaml allows own definition of reference to super
– Access to variable in case it 

is overloaded by some other 
variable or parameter

– Calling object's own methods

super.remove();        // Java
base.remove();         // C#
super remove.           // Smalltalk
[super remove]          // Objective C



References to self and super
• Method to_string()

– Using to_string() of                                                      
super-class

– Using self to call                                                         
method get_color()

# class colored_point (x,y) c = 
     object (self) 
       inherit point (x,y) as super 
       val mutable c = c 
       method get_color = c 
       method set_color nc = c <- nc 
       method to_string () = super#to_string () ^ 
                             "["^ self#get_color ^ "]"
     end ;; 



Object initialization

• Instance of a specialized class C is initialized by 
– Code of initializer-s of all super-classes of C
– Initializer code of C

• Order of evaluation of initializer-s is from the most 
general towards more specific

• How is an object initialized in Java? C++?



Example of object initialization

# class point (x_init,y_init) = 
      object (self)
         val mutable x = x_init 
         val mutable y = y_init 
         method get_x = x 
         method get_y = y 
         method moveto (a,b) = x <- a ; y <- b 
         method rmoveto (dx,dy) = x <- x + dx ; y <- y + dy 
         method to_string () = 
            "(" ^ (string_of_int x) ^ "," ^ (string_of_int y) ^ ")"
         method distance () = sqrt (float(x*x + y*y)) 
         initializer 
            Printf.printf ">> Creation of point: %s\n" 
                               (self#to_string ()); 
      end ;;

# class verbose_point p = 
      object (self) 
         inherit point p as super
         method to_string () = "point=" ^ (super#to_string ()) ^ 
                   ",distance=" ^ string_of_float (self#distance ())      
         initializer 
            Printf.printf ">> Creation of verbose point: %s\n" 
                                (self#to_string ())
      end ;; 
# new verbose_point (1,1);;
>> Creation of point: (1,1)
>> Creation of verbose point: point=(1,1), distance=1.414213
- : verbose_point = <obj>



Multiple inheritance

• A concept modeled by a class may be a 
specialization of more than one concepts
– A class may have more than one base classes
– Some languages allow only single base class

• Java, C#, Ruby, ...
– Some language can use multiple base classes

• C++, Ocaml, Perl, ...

• Common conceptual mistake
– Car can be seen as a class that inherits from classes 

Wheels, Motor, etc. 
– Specialization should not be used to model 

composition, although it is technically possible



Name clashes

• Method m is defined in A, B and C.
– Method m is sent to instance of C.
– Which instance to choose? 

• Implicit resolution of name clashes
– Language resolves name conflicts with a set of rules
– Rules use syntactical order of superclass specification 

• Python, CLOS, Perl, …: 1st definition in sup-class hierarchy 
(recursive traversal)

• Ocaml: last definition in superclasses hierarchy (recursive 
traversal)

– Dylan, Python, Perl: C3 method resolution order 
[OPSLA,96]



Name clashes
• Explicit resolution of name clashes

– The programmer must explicitly                                        
resolve name conflicts in the code in                                    
some way (C++, Ocaml, Eiffel, Python)

– Method must be identified explicitly (unambiguously)
– Ocaml uses the name to refer to a super-class
– C++ uses the paths to the target class

• Example: D::B::m(), C::m()

• Disallow name clashes
– Programs are not allowed to contain name clashes

• Java, C#, Swift, Go, Scala… but Java 8 (diamond problem with 
interfaces)



C3 superclass linearization
• Defines the order in which a method is searched in 

the superclass hierarchy with multiple inheritance.
• C3 Method Resolution Order (MRO)

– Recursive method (similar to topological sorting?)
• Starts with the base (top) class; Descends level by level; Using 

linearizations of parents to compute linearizations of children; 
Nice merging algorithm (selects next class in ordering)  

– Used in: Dylan, Python, Perl, ...
• C3 superclass linearization results in three 

important properties:
– Consistent extended precedence graph,
– Preservation of local precedence order, and
– Fitting the monotonicity criterion



Example of multiple inheritance

# class colored_point (x,y) c = 
     object (self) 
       inherit point (x,y) as super 
       val mutable c = c 
       method get_color = c 
       method set_color nc = c <- nc 
       method to_string () = super#to_string () ^ 
                             "["^ self#get_color ^ "]"
     end ;; 

# class reference n d = 
      object 
        val mutable name = n
        val mutable descr = d  
        method to_string () = "{"^ name ^ "}"
      end ;; 

# class reference_point (x,y) c n d = 
     object (self) 
       inherit colored_point (x,y) c as cp 
       inherit reference n d as ref
     end ;; 
# let rp1 = new reference_point (1,1) "red" "r1" 
"reference point";;
val rp1 : reference_point = <obj>
# rp1#get_x;;
- : int = 1
# rp1#to_string ();;
- : string = "{r1}"

Why?



Example of multiple inheritance
# class reference_point (x,y) c n d = 
     object (self) 
       inherit colored_point (x,y) c as cp 
       inherit reference n d as ref
       method to_string () = cp#to_string () ^ ref#to_string ()
     end ;; 
# let rp1 = new reference_point (1,1) "red" "rp1" "reference point";;
val rp1 : reference_point = <obj>
# rp1#to_string ();;
- : string = "(1, 1)[red]{rp1}"



C++ example of multiple inheritance
class C : public A, public B   //C is derived from classes A and B
{
        public:
        void sum()
        {
            cout << "Sum = " << x + y;
        }
};

int main()
{
         C obj1; //object of derived class C
         obj1.getx();
         obj1.gety();
         obj1.sum();
         return 0;
}       //end of program

// multiple inheritance.cpp
#include 
using namespace std;
class A
{
        public:
        int x;
        void getx()
    {
            cout << "enter value of x: "; cin >> x;
    }
};
class B
{
        public:
        int y;
        void gety()
        {
            cout << "enter value of y: "; cin >> y;
        }
};

enter value of x: 5
enter value of y: 4
Sum = 9



Diamond problem
●  Problem with multiple inheritance

1) Name clashes
2) Multiple copies of object A part

• Name clashes
– There are more than one solutions to name clashes 
– See few slides back…

• Multiple copies of A
– D inherits from B and C
– B and C inherit data members and methods from A
– Instance of D includes two copies of data members 

from A
– Solutions?



Diamond problem
• Description of problem

– Multiple instances of object D part
– Since A and B inherit from D                                          

they both include instance of D
– What to do?

• No proper solution!
– Two copies of D may work well 

• Naming problem appears
• C++ and Ocaml can follow each inheritance path separately 

– Put one copy of D in C instance
• C++ virtual base classes  
• A and B instances refer to the same D part
• Also a problem if A and B treat D part differently
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Method binding

• When and how is method bound to its code?  
• Dynamic and static binding 

– Dynamic binding takes place in run-time
• Smalltalk, Objective-C, Ocaml, Python, Ruby (only), C++, C#, Go, 

Java, Eiffel (default); final classes can be optimized

– Static binding happens at compile time 
• Simula, C++, C#, Scala, Ada95 (default)

– Not exclusive; some PLs use both.
• Dynamic binding is more expensive than static.

– Appropriate method is searched (accessed) in the method 
lookup table (abbr. MLT)

• Smalltalk searches the table in run-time
• C++, Ocaml, ... computes an index at compile time; on method lookup 

method address is accessed from MLT..



Dynamic binding 

• Consequences of inheritance/type extension
– Derived class D has all the members—data and subroutines

—of its base class C
– Anything we might want to do to an object of class C we can 

also do to an object of class D

• When a message is sent to an object:
– Function code (or method) is determined by the way that 

the object is implemented.
– Object “chooses” how to respond to a message.
– Diff. objects may implement same operation differently.

• Very useful PL feature 
– Sending the same message to a collection of objs from 

different  classes.



Dynamic binding

• Classical example of the use of dynamic binding 
– We have a collection of objects of class C
– Collection can include also the instances of any class  

S such that S inherits from C
– The same method, for instance to_string(), is called for 

each of the objects from the collection 
• Example in Ocaml

– We have defined classes point, colored_point and verbose_point
– All of them have method to_string()



Example 1
# class picture n = 
      object 
        val mutable ind = 0 
        val tab = Array.create n (new point(0,0)) 
        method add p = tab.(ind)<-p ; ind <- ind + 1  
        method remove () = if (ind > 0) then ind <-ind-1 
        method to_string () = 
          let s = ref "["
          in for i=0 to ind-1 do s:= !s ^ " "^ tab.(i)#to_string () done ; 
              (!s) ^ "]"
      end ;; 

# let pic = new picture 3;
>> Creation of point: (0,0)
val pic : picture = <obj>
# pic#add (new point (1,1));
  pic#add ((new colored_point (2,2) "red") :> point);
  pic#add ((new verbose_point (3,3)) :> point);; 
- : unit = ()
# pic#to_string () ;; 
- : string = "[ (1,1) (2,2)[red] point=(3,3),distance=4.24264068712]"



Example 2

# let p1 = new colored_point (1,1) "Blue";; 
val p1 : colored_point = <obj> 
# p1#to_string () ;; 
- : string = "(1,1) [Blue] "
# let p2 = new colored_point_1 (1,1) "Blue";; 
val p2 : colored_point_1 = <obj> 
# p2#to_string () ;; 
- : string = "(1,1) [UNKNOWN] "

# class colored_point_1 coord c = 
     object 
       inherit colored_point coord c 
       val true_colors = ["white"; "black"; "red"; "green"; "blue"; "yellow"] 
       method get_color = if List.mem c true_colors then c else "UNKNOWN"
     end ;; 

# class colored_point (x,y) c = 
      object (self)
        inherit point (x,y) as super
        val mutable c = c 
        method get_color = c 
        method set_color nc = c <- nc 
        method to_string () = super#to_string () ^ 
                                            "["^ self#get_color ^ "]"
      end ;; 

Why?



Implementation of objects in Ocaml

• Each object is represented by two parts
• Variable part 

– Includes object variables as in the case of records
– Using reference or value model (some use both)

• Fixed part 
– Method lookup table (abbrev. MLT) stores methods that 

can be looked up dynamically
– All methods, including the inherited methods, are 

stored in a MLT (one) of a class 
– Fixed part is the same for all instances of some class
– There are different implementations of MLT (in diff PLs)



Method lookup (binding)

• Find a concrete method for a method call o.m(v1,v2,…) 
• Static method lookup

– Compiler can determine the method using the type of object.
• Dynamic method lookup 

– Code generated by the compiler must find the right method. 
– Object is represented by a record that contains the pointer to 

the method lookup table of parent class.
• References to newly defined methods are added
• Overriding ⇒ ref to the old method is replaced with new one 
• The same index maintained for the same method in all method 

lookup tables of classes from a family  (Ocaml)
– Pointer to the type descriptor can be added to method lookup 

table to be able to check the type in run-time



Implementation of objects in C++

• Example in C++
– Static and dynamic parts of objects
– C++ checks types statically 
– Dynamic binding allowed for virtual methods only



Implementation of objects in C++
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Subtypes

• Sub-typing is a relation on types that allows values 
of one type to be used in place of values of another. 
– Assuming that we are in a typed language,

• In Ocaml the type of class C is a record containing 
the types of all member functions of C
– The type of class Point

• Formally, type of class includes                              
only public functions

< distance : unit → float; get_x : int; get_y : int; 
   moveto : int * int → unit; rmoveto : int * int → unit; 
   to_string : unit → string >

class point :
   int * int ->
  object
      val mutable x : int
      val mutable y : int
      method distance : unit -> float
      method get_x : int
      method get_y : int
      method moveto : int * int -> unit
      method rmoveto : int * int -> unit
      method to_string : unit -> string
end



Subtypes

• Type is different concept to class
– Class is a factory, a prototype, that generates objects
– Type is conceptually one level higher entity than its 

instances
• The subtype relationship is defined among types 

of classes
– Type t’ is a subtype of t, denoted by t’ ≤ t, if and only if 

σi ≤ τi for i {1, . . . , n}∈
t =< m1 : τ1 ; . . . mn : τn > and 
t' =< m1 : σ1 ; . . . ; mn : σn ; mn+1 : σn+1 ;  . . . > 

– Type t' can have more components than t and types of 
common components must be in subtype relationship

In Ocaml class is function
that constructs objects 



Subtyping functions

• Function call
– If f : t → s, and if a : t' and t' ≤ t then (f a) is well typed, 

and has type s
– Intuitively, a function f expecting an argument of type t 

may safely receive an argument of a subtype t' of t
– Why? Instances of t' have either additional 

components, or, more specific components
• Function type

– Type t' → s' is a subtype of t → s, denoted by t'→s' ≤ 
t→s, if and only if s' ≤ s and t ≤ t'

– The relation s' ≤ s is called covariance, and the relation 
t ≤ t' is called contravariance. 

– Although surprising, relation can easily be justified



Covariance/contravariance
• Justification of covariance/contravariance

– Let f : t → s and f' : t'→ s'. 
– When the call of f can be replaced by a call of f' ?
– Argument of f can be used as the argument of f'             

if t ≤ t'. This is contravariance.
– Result of f' is acceptable in context of the result of f       

if s' ≤ s. This is covariance.  
– Therefore, we have t'→ s'  ≤ t → s iff t ≤ t' and s' ≤ s.



Subtyping methods
• Assume two classes c1 and c2 both have a method 

m and 
– Method m has type t1→ s1 in c1, and type t2→s2 in c2
– m(1) the method m of c1 and m(2) that of c2
– c2 ≤ c1 and t2→s2 ≤ t1→s1

• Let g : s1 → α, and g(o#m(x)) where o:c1 and x:t1

– g defines the context, i.e., type s1
– Other scenario: a = o#m(x) where a:s1 and x:t1

• Covariance
– Originally, o is an object of type c1 
– c2 ≤ c1 ⇒ it is legal to use an object o of type c2
– o#m(x) is m(2), which returns a value of type s2

– g expects an argument of type s1  ⇒ s2 ≤ s1 is OK



Subtyping methods
• Contravariance 

– Method m requires a parameter value of type t1

– We use o of type c2 ⇒ m(2) is invoked
– It expects an argument of type t2, so t1 ≤ t2 is OK

• Covariance/contravariance in PLs
– Some languages use invariance for parameters (C++,C#) 
– Java, C++, C# support covariant return type
– Contravariance of parameters used by Python (mypy) and Sather

• Scala use contravar. on collection types (set, array, ...)
– Contravariance seems unnecessary …

• employee#follow(employee) ≤ person#follow(person) ??
• The setup for methods is different to the setup for functions?

– Covariance among parameters seems reasonable
• Eiffel and Dart use this approach
• This is not type safe



Substitutivity

• The basic principle associated with subtyping is 
substitutivity
– We write A ≤ B to indicate that A is a subtype (sub-class) 

of B
– If A ≤ B then instance of A can appear in all contexts 

instance of B is expected
– Function f : B → C can be applied to any object of type A 

if A ≤ B.
– Instance of class A ≤ B can be assigned to variable of 

class B
– Collection of type B can include instances of type A ≤ B
– Etc.

Substitutivity



Type coercion in Ocaml
• Most object-oriented programming languages 

support substitutivity 
– Ocaml uses explicit type coercion <:

• Type coercion (upcast) :>
– Object of type colored_point                                                 

is treated as an instance if its                                               
superclass point

• It remains to be colored_point!
– After type coercion object still                                        

knows it is of original type!
• … and uses its methods!

(name : sub_type :> super_type)
(name :> super_type)

# let cp = new colored_point (1,1) 
"red";;
val cp : colored_point = <obj>
# let p = (cp :> point);;
val p : point = <obj>
# p#get_color ();;
Error: This expression has type point
It has no method get_color
# p#to_string ();;
- : string = "(1,1)[red]"



Upcast/downcast in Java

• Java and C++ use type casting
– (Implicit) upcast

• Assignment statement, or explicit upcast
• Can access overridden methods

– An explicit downcast type conversion
• An object has to be of the downcasted type to be able to 

downcast it !
CorrectLeads to exception

Apple apple = new Apple();
Fruit castedApple = apple;
Fruit castedApple = (Fruit)apple; 



Run-time (inclusion) polymorphism
• Dynamic binding and subtyping provide the means 

for expressing run-time polymorphism 
• Let C be a base class that includes subclasses Si

– Class C is the root of “family” of classes Si

– Subtyping (substitutivity) allows treating instances of type 
Si as instances of class C 

– Dynamic binding assures that given method name and an 
instance of Si, method will be linked to class Si 

• Run-time (inclusion) polymorphism
– Method m called for any instance o of some Si depends on 

the implementation of m in Si

– Sending the same message to objects of different 
“shapes” gives different responses.
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Abstract classes

• In many OO programs, it is useful to define general 
concepts as a root of some family of classes
– General concepts are implem. as abstract base classes

• They are not implemented themselves
– The only purpose of an abstract class is to serve as a 

base for other, concrete classes
• They are the generalizations of concrete classes from a family
• Examples: container, account, shape, or vehicle, etc.

• Abstract classes serve an organizational purpose
– They have no instances
– They define a common interface for the family



Abstract classes

• Abstract class includes virtual methods
– Virtual methods are solely defined by specifying their 

types (signatures)
– Class must be abstract if it includes one virtual method
– When a sub-class implements all virtual methods it 

becomes concrete
• Otherwise sub-class must be defined abstract

– Ocaml abstract classes 
• Multiple inheritance of                                  

abstract classes
– If multiple data members are defined then last 

definition is visible

class virtual name = object . . . end
method virtual name : type  



Example 

# class virtual printable () = 
       object(self) 
         method virtual to_string : unit -> string 
         method print () = print_string (self#to_string () ) 
       end ;; 
# class rectangle (p1,p2) = 
      object 
        inherit printable () 
        val llc = (p1 : point) 
        val urc = (p2 : point) 
        method to_string () = "["^llc#t_string ()^","^urc#to_string ()^"]"
      End ;;
# let r = new rectangle (new point (2,3), new point (4,5));; 
val r : rectangle = <obj> 
# r#print () ;; 
[(2,3),(4,5)]- : unit = () 

print () is implemented by 
using a method that is not yet 
implemented

abstract method in a base 
class provides a “hook” for 
dynamic method binding



Example 2 

# class virtual geometric_object () = 
    object 
      method virtual compute_area : unit -> float 
      method virtual compute_peri : unit -> float 
    end;; 
# class rectangle_2 (p2 :  point * point) = 
      object 
      inherit rectangle p2 
      inherit geometric_object () 
      method compute_area () = 
        float ( abs(urc#get_x - llc#get_x) * abs(urc#get_y - llc#get_y)) 
       method compute_peri () = 
        float ( (abs(urc#get_x - llc#get_x) + abs(urc#get_y - llc#get_y)) * 2) 
   end;; 

Multiple inheritance from 
abstract classes
Multiple inheritance from 
abstract classes
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Genericity 

• Generic programming
– Programs based on types that are specified later

• Forms of genericity
– Polymorphic functions, polymorphic types
– Parameterized classes, functors (param. modules)

• Evolved from type theory and study of 
polymorphic lambda calculus
– Approach is pioneered by ML (1972) 
– Definition of types, ADTs, classes including types as 

parameters



Parameterized classes

• Parametric polymorphism is extended to classes
– Ocaml defines it as extension of parametric types

• Type variables are used in the definition of class
– Syntax is close to definition of parametric types

• Used in many languages
– Templates in C++
– Generics in Java, C#, Go
– Genericity in Delphi, Haskell, Scala

class [’a,’b,...] name = object . . . end



Example
# class pair x0 y0 = 
      object 
        val x = x0 
        val y = y0 
        method fst = x 
        method snd = y 
      end ;; 
Characters 6-106: 
Some type variables are unbound in this type: 
  class pair : 
     'a -> 
     'b -> object val x : 'a val y : 'b method fst : 'a method snd : 'b end 
The method fst has type 'a where 'a is unbound 

# class ['a,'b] pair (x0:'a) (y0:'b) = 
      object 
        val x = x0 
        val y = y0 
        method fst = x 
        method snd = y 
      end ;; 
class ['a, 'b] pair : 
  'a -> 
  'b -> object val x : 'a val y : 'b method fst : 'a method snd : 'b end 

First approach:
don’t care about types.
Bad idea?

# let p = new pair 2 'X';; 
val p : (int, char) pair = <obj> 
# p#fst;; 
- : int = 2 
# let q = new pair 3.12 true;; 
val q : (float, bool) pair = <obj> 
# q#snd;; 
- : bool = true 

Correct definition.

Parameterized class 



Inheritance of parameterized 
classes # class ['a,'b] acc_pair (x0 : 'a) (y0 : 'b) = 

      object 
        inherit ['a,'b] pair x0 y0 
        method get1 z = if x = z then y else raise Not_found 
        method get2 z = if y = z then x else raise Not_found 
      end;; 
class ['a, 'b] acc_pair : 
   'a -> 
   'b -> 
   object 
     val x : 'a 
     val y : 'b 
     method fst : 'a 
     method get1 : 'a -> 'b 
     method get2 : 'b -> 'a 
     method snd : 'b 
   end 
# let p = new acc_pair 3 true;; 
val p : (int, bool) acc_pair = <obj> 
# p#get1 3;; 
- : bool = true 

# class point_pair (p1,p2) = 
      object 
        inherit [point,point] pair p1 p2 
      end;; 
class point_pair : 
   point * point -> 
   object 
     val x : point 
     val y : point 
     method fst : point 
     method snd : point 
  end 

 Parameterized class can 
 inherit from parameterized 
 class

 Definition of a class by
inheriting from parameterized
class



                                  Example:
                                  Stack in Ocaml

# let s = new stack;;
val s : '_a stack = <obj>
# s#push 1;;
- : unit = ()
# s#push 2;;
- : unit = ()
# s#pop;;
- : int = 2
# s#pop;;
- : int = 1

# class ['a] stack =
    object
      val mutable l = ([] : 'a list)
      method push x = l <- x::l
      method pop = match l with
                                  [] -> raise Empty | 
                                  a::l' -> l <- l'; a
      method clear = l <- []
      method length = List.length l
    end;;
  class ['a] stack :
  object
    val mutable l : 'a list
    method clear : unit
    method length : int
    method pop : 'a
    method push : 'a -> unit
  end



Example: Stack in Scala
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Scala
• Martin Odersky, EPFL, Lausanne, 2003
• Multi-paradigm: concurrent, functional, imperative, 

object-oriented
• Influenced by Lisp, Eiffel, Erlang, F#, Scheme, 

Haskell, Java, Ocaml, SML, …
• Features

– Immutability, Currying, polymorphism, higher-order functions, lazy 
evaluation, continuations, pattern matching, strong typing, 

– Pure OO language, every value is object, classes and traits, multiple 
inheritance, algebraic data types, type inference (Curry-style), co/contra-
variance, higher-order types, generic classes, ... JVM

• Concurrent and distributed
– Concurrent: Actor model (from Erlang), asynchronous prog.
– Distributed: Apache Spark 



Google Go

• Statically typed, compiled high-level PL, by Google
– Robert Griesemer, Rob Pike, and Ken Thompson, 2007 

• Main features
– Designed for: multicore, networked machines and large 

codebases
– C syntax, memory safety, garbage collection, structural typing, 

abstract data struct

• Concepts of Golang
– Variables, Constants, For, If/Else, Switch, Arrays, Slices, Maps, 

Functions, Closures, Recursion, Pointers, Structs, Methods, 
Interfaces, Generics

– Goroutines, Channels, Async. messages, Timeouts, Timers, 
Counters, Mutexes, Processes, Signals

– In many ways close to Erlang (Ericson); that is Yahoo’s choice



C#
• Anders Hejlsberg, Microsoft, 2000
• .NET Framework implementation (initial name, Cool)
• Multi-paradigm programming language 

– Imperative, declarative, functional, generic, object-oriented (class-
based), and component-oriented programming disciplines

• Features
– Strong types, type inference,  
– Data structures make high-level programming language

• Arrays, collections, sets, dictionaries, sets, lists, queue/stack, bags, ...

• Development
– C# 1.0 -> Java
– C# 2.0 -> functional, generics, partial types, iterators, static classes,…
– C# 3.0-7.0 -> Dynamic binding, named/optional arguments, asynchronous methods, 

compiler-as-service, exceptions, out variables, pattern-matching, query expressions, 
lambda expressions, …

– C# 8.0 -> Readonly members, default interface methods, pattern matching 
enhancements, static local functions, asynchronous streams, indices and ranges, ...



F#
• Don Syme (BDFL), Microsoft Research, 2005

– ML family, based on Ocaml
– Influenced by C#, Python, Haskell, Scala, and Erlang. 
– Multi-paradigm programming language 

• Functional, imperative, modular and object-oriented programming 

– Some features
• Strongly typed, type inference, eager evaluation, closures, lambda 

expressions, higher-order functions, pattern matching

– Programming styles
• Asynchronous, parallel, meta, agent 

• Implementation
– .NET Framework implementation of Ocaml core
– Common Language Infrastructure (CLI), JavaScript and 

GPU code
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