
Lectures 8-9

Object-oriented programming
languages

Iztok Savnik, FAMNIT

April, 2023.

1

Literature

• Textbooks:
John Mitchell, Concepts in Programming
Languages, Cambridge Univ Press, 2003
(Chapters 10-13)
Michael L. Scott, Programming Language
Pragmatics (3rd ed.), Elsevier, 2009 (Chapter 9)

• Examples from:
Emmanuel Chailloux, Pascal Manoury, Bruno
Pagano, Developing Applications With Objective
Caml, O’REILLY & Associates, 2000 (Chapter 15)

Outline

1. Introduction
2. Classes and objects
3. Inheritance
4. Dynamic binding
5. Subtyping and substitutivity
6. Abstract classes
7. Genericity
8. Popular OO programming languages

Data abstraction
• Data abstraction

– Enforces a clear separation between the abstract
properties and the concrete details of a data type

– Information hiding, representation independence,
encapsulation, interface/implementation, …

• With development of complicated computer apps,
data abstraction has become essential to sw eng.
– It reduces conceptual load by minimizing the amount of

detail that the programmer must think about at one time
– Fault containment by preventing the programmer from

using a program component in inappropriate ways
– Provides a degree of independence among program

components that can be easily separated by functionality

Data abstraction and encapsulation

• Class/object abstraction
– Creates a simplified view of modeled class/object
– Focusing attention to the most important features
– Omitting the representation and implementation details
– Data is hidden in object
– External observer (of class) needs to see only abstract

view of class and its instances, i.e., class interface
– Interface consists of well-defined methods that

manipulate instances of class
• Classes/objects encapsulate internal structure

and behavior of object

Object-oriented model

• An object responds to a set of operations on
some hidden data
– Object representation abstracts away all details about

the implementation of object
– All interactions with an object occur by means of

messages or member-function calls
• Objects are grouped into classes that serve as

object prototypes
– Classes are sets of their instances (denotational view)
– As prototypes, classes stand for types comprised of

method signatures and data members
– Classes inherit properties of their super-classes

Example: int_stack

• Stack of integers
– Ocaml implementation
– Stack is represented by list

• Encapsulation
– Representation of stack

and its implementation can
change

– Interface (abstraction)
stays the same

class int_stack =
 object
 val mutable l = ([] : int list)
 method push x = l <- x::l
 method pop = match l with
 [] -> raise Empty |
 a::l' -> l <- l'; a
 method clear = l <- []
 method length = List.length l
 end;;
let is = new int_stack;;
val is : int_stack = <obj>
is#push 1; is#push 2;
 is#push 3; is#push 4;;
- : unit = ()
is#length;;
- : int = 4
is#pop;;
- : int = 4

History

• Simula, 1960, Norwegian Computing Center
– The first object-oriented language
– It included everything recent OO languages have
– Object/classes, inheritance, subclasses, virtual procedures

• Smalltalk, 1970, Xerox PARC
– Dynamically typed object-oriented language
– Everything is object; still remains to be interesting design
– Object/classes, messages, subclasses, metaclasses
– Structural and computational reflection: can

observe/influence its own structure and behaviour

Mature OO programming languages
• C++, 1983, Bjarne Stroustrup, Bell Labs

– Widely used statically typed object-oriented language
– Extension of the C language; standardized 2014
– Classes/objects, inheritance (multiple), polymorphism,

templates, virtual function and classes, exceptions
– Compatibility with C

• Java, 1995, James Gosling, Sun Microsystems
– Concurrent, class-based, object-oriented
– Compiled to bytecode and run on any Java virtual machine

(JVM)
– Single inheritance, abstract classes, interfaces, generics,

introspection, file-system based modules
– Portability, reliability, safety, dynamic linking, threads,

simplicity, efficiency

Outline

1. Introduction
2. Classes and objects
3. Inheritance
4. Dynamic binding
5. Subtyping and substitutivity
6. Abstract classes
7. Genericity
8. Popular OO programming languages

Classes and objects

• Object model is close to simulation view to problem
solving: make a simulation model of problem and
run it
– Objects represent components of model
– Objects are interconnected by possibly very complex

static structures
– Object may ask other objects to run a task by sending it a

message
– Objects have behavior realized by communication with

other interrelated objects
– Abstractions used are much closer to human

representation of problem

Classes and objects

• Class can be viewed as prototype object from
which its instances (elements of the class) are
created
– Class includes the definition of static structure and

behavior of a prototype object
– Behavior of class instances is implemented in methods
– Methods use internal logic to communicate with other

objects to solve the sub-problem
– New classes can be constructed from existing classes

• specialization and generalization
• composition and decomposition

Class definition in Ocaml
• Data members

– Can have any type
– Value or mutable

• Methods
– Metods have parameters p1,...,pn

• Class can have parameters
#class point x_init =
 object
 val mutable x = x_init
 method get_x = x
 method move d = x <- x + d
 end;;
class point :
 int ->
 object val mutable x : int method get_x : int method move : int -> unit end

val name = expr
val mutable name = expr
name <- expression

class name p1 ... pn =
 object
 ...
 instance variables
 ...
 methods
 ...
end

method name p1 . . . pn = expr

Type!

Object creation

• Most languages have operator new()
– Ocaml does not have constructors as C++, Java
– Class parameters are accessible for the definition of

class variables
– Class acts as generator i.e. function that creates

objects
• Initialization of objects in Ocaml

– Code can be added before and after object creation
– Before: let statement can be put before object
– After: Ocaml uses special function as initializer

• How is the initialization of objects done in Java?

new point;;
- : int -> point = <fun>
let p = new point 7;;
val p : point = <obj>

Example:
class printable_point x_init =
 let origin = (x_init / 10) * 10 in
 object (self)
 val mutable x = origin
 method get_x = x
 method move d = x <- x + d
 method print = print_int self#get_x
 initializer print_string "new point at ";
 self#print; print_newline()
 end;;
class printable_point :
 int ->
 object
 val mutable x : int
 method get_x : int
 method move : int -> unit
 method print : unit
 end
let p = new printable_point 17;;
new point at 10 val p : printable_point = <obj>

Methods

• Sending a message
– o#message() (Ocaml)

– Function call in C++, Java, Ocaml, ...
– Actual messages in Smalltalk,

Erlang, ...
– A method must be defined in a class
– Types of actual parameters must

match type of formal parameters

class point (x_init,y_init) =
 object
 val mutable x = x_init
 val mutable y = y_init
 method get_x = x
 method get_y = y
 method moveto (a,b) = x <- a ; y <- b
 method rmoveto (dx,dy) = x <- x + dx ; y <- y + dy
 method to_string () =
 "("^ (string_of_int x) ^ ", "^ (string_of_int y) ^")"
 method distance () = sqrt (float(x*x + y*y))
 end ;;

gp_list_node::remove(); // C++
super.remove(); // Java
base.remove(); // C#
super remove. // Smalltalk
[super remove] // Objective-C

let p1 = new point (0,0);;
val p1 : point = <obj>
let p2 = new point (3,4);;
val p2 : point = <obj>
p1#get_x;;
- : int = 0
p2#to_string () ;;
- : string = "(3, 4)"
if (p1#distance ()) = (p2#distance ())
 then print_string ("That's just chance\n")
 else print_string ("We could bet on it\n");;
We could bet on it
- : unit = ()

Private methods
• Private and public methods

– Private methods are accessible from object only
• Example of

private methods
– Point remembers

previous position
– mem_pos()

class point (x0,y0) =
 object(self)
 val mutable x = x0
 val mutable y = y0
 val mutable old_x = x0
 val mutable old_y = y0
 method get_x = x
 method get_y = y
 method private mem_pos () = old_x <- x ; old_y <- y
 method undo () = x <- old_x; y <- old_y
 method moveto (x1, y1) = self#mem_pos (); x <- x1; y <- y1
 method rmoveto (dx, dy) = self#mem_pos (); x <- x+dx; y <- y+dy
 method to_string () =
 "("^ (string_of_int x) ^ ","^ (string_of_int y) ^")"
 method distance () = sqrt (float(x*x + y*y))
 end ;;

method private name = expr

Ocaml

Structures of objects and aggregation

• An object can be a component of other object
– Class defines other classes as components
– Object includes references to other objects specifying a link

among two or more objects
• Aggregation is one of two important abstractions used

in OO languages
– Aggregation (composition): “has-a”
– Inheritance (specialization): “is-a”

• Example in Ocaml
– Class Picture includes an array of type Point
– to_string() calls methods to_string() of class Point

Example

class picture n =
 object
 val mutable ind = 0
 val tab = Array.create n (new point(0,0))
 method add p = tab.(ind)<-p ; ind <- ind + 1
 method remove () = if (ind > 0) then ind <-ind-1
 method to_string () =
 let s = ref "["
 in for i=0 to ind-1 do
 s:= !s ^ " "^ tab.(i)#to_string () done ;
 (!s) ^ "]"
 end ;;

class picture :
 int ->
 object
 val mutable ind : int
 val tab : point array
 method add : point -> unit
 method remove : unit -> unit
 method to_string : unit -> string
 end

Type

UML (Unified Modelling Language)

Outline

1. Introduction
2. Classes and objects
3. Inheritance
4. Dynamic binding
5. Subtyping and substitutivity
6. Abstract classes
7. Genericity
8. Popular OO programming languages

Inheritance

• Inheritance realizes specialization abstraction
– Aristotel: genus and differentia specifica.
– Sub-class is a specialization of super-class
– Sub-class inherits all properties of super-class

• Ocaml syntax for definition of inheritance

– Parameters p1, ..., pn are constructor parameters of
super-class

– Super-class part of object can be referenced inside the
class definition using variable name2

inherit name1 p1 . . . pn [as name2]

Example of sub-class
class colored_point (x,y) c =
 object
 inherit point (x,y)
 val mutable c = c
 method get_color = c
 method set_color nc = c <- nc
 method to_string () = "("^ (string_of_int x) ^
 ","^ (string_of_int y) ^ ")"^
 "["^ c ^ "]"
 end ;;

class colored_point :
 int * int ->
 string ->
 object
 val mutable c : string
 val mutable x : int
 val mutable y : int
 method distance : unit -> float
 method get_color : string
 method get_x : int
 method get_y : int
 method moveto : int * int -> unit
 method rmoveto : int * int -> unit
 method set_color : string -> unit
 method to_string : unit -> string
 end

let pc = new colored_point (2,3) "white";;
val pc : colored_point = <obj>
pc#get_color;;
- : string = "white"
pc#get_x;;
- : int = 2
pc#to_string () ;;
- : string = "(2,3)[white] "
pc#distance;;
- : unit -> float = <fun>

Type:

Method overriding

• Method to_string() of class colored_point()
overrides method to_string() of class point()
– Overriding method can be more specific then the

overridden method
– Relationship between types of methods will be

presented in section on types (of classes)
• Consequences of method overriding (through

inheritance)
– Dynamic binding of method name to correct code

• Otherwise method code can be determined statically
– Multiple inheritance

• More than one methods of the same type can be inherited

References to self and super
• While defining methods it is useful to have access

– to the object itself, as well as
– to the part of object that is described by super-class

• Reference to object itself
– Keywords “self” in Smalltalk. Java and C++ ?
– Ocaml allows definition of custom name to self

• Reference to super-object
– Ocaml allows own definition of reference to super
– Access to variable in case it

is overloaded by some other
variable or parameter

– Calling object's own methods

super.remove(); // Java
base.remove(); // C#
super remove. // Smalltalk
[super remove] // Objective C

References to self and super
• Method to_string()

– Using to_string() of
super-class

– Using self to call
method get_color()

class colored_point (x,y) c =
 object (self)
 inherit point (x,y) as super
 val mutable c = c
 method get_color = c
 method set_color nc = c <- nc
 method to_string () = super#to_string () ^
 "["^ self#get_color ^ "]"
 end ;;

Object initialization

• Instance of a specialized class C is initialized by
– Code of initializer-s of all super-classes of C
– Initializer code of C

• Order of evaluation of initializer-s is from the most
general towards more specific

• How is an object initialized in Java? C++?

Example of object initialization

class point (x_init,y_init) =
 object (self)
 val mutable x = x_init
 val mutable y = y_init
 method get_x = x
 method get_y = y
 method moveto (a,b) = x <- a ; y <- b
 method rmoveto (dx,dy) = x <- x + dx ; y <- y + dy
 method to_string () =
 "(" ^ (string_of_int x) ^ "," ^ (string_of_int y) ^ ")"
 method distance () = sqrt (float(x*x + y*y))
 initializer
 Printf.printf ">> Creation of point: %s\n"
 (self#to_string ());
 end ;;

class verbose_point p =
 object (self)
 inherit point p as super
 method to_string () = "point=" ^ (super#to_string ()) ^
 ",distance=" ^ string_of_float (self#distance ())
 initializer
 Printf.printf ">> Creation of verbose point: %s\n"
 (self#to_string ())
 end ;;
new verbose_point (1,1);;
>> Creation of point: (1,1)
>> Creation of verbose point: point=(1,1), distance=1.414213
- : verbose_point = <obj>

Multiple inheritance

• A concept modeled by a class may be a
specialization of more than one concepts
– A class may have more than one base classes
– Some languages allow only single base class

• Java, C#, Ruby, ...
– Some language can use multiple base classes

• C++, Ocaml, Perl, ...

• Common conceptual mistake
– Car can be seen as a class that inherits from classes

Wheels, Motor, etc.
– Specialization should not be used to model

composition, although it is technically possible

Name clashes

• Method m is defined in A, B and C.
– Method m is sent to instance of C.
– Which instance to choose?

• Implicit resolution of name clashes
– Language resolves name conflicts with a set of rules
– Rules use syntactical order of superclass specification

• Python, CLOS, Perl, …: 1st definition in sup-class hierarchy
(recursive traversal)

• Ocaml: last definition in superclasses hierarchy (recursive
traversal)

– Dylan, Python, Perl: C3 method resolution order
[OPSLA,96]

Name clashes
• Explicit resolution of name clashes

– The programmer must explicitly
resolve name conflicts in the code in
some way (C++, Ocaml, Eiffel, Python)

– Method must be identified explicitly (unambiguously)
– Ocaml uses the name to refer to a super-class
– C++ uses the paths to the target class

• Example: D::B::m(), C::m()

• Disallow name clashes
– Programs are not allowed to contain name clashes

• Java, C#, Swift, Go, Scala… but Java 8 (diamond problem with
interfaces)

C3 superclass linearization
• Defines the order in which a method is searched in

the superclass hierarchy with multiple inheritance.
• C3 Method Resolution Order (MRO)

– Recursive method (similar to topological sorting?)
• Starts with the base (top) class; Descends level by level; Using

linearizations of parents to compute linearizations of children;
Nice merging algorithm (selects next class in ordering)

– Used in: Dylan, Python, Perl, ...
• C3 superclass linearization results in three

important properties:
– Consistent extended precedence graph,
– Preservation of local precedence order, and
– Fitting the monotonicity criterion

Example of multiple inheritance

class colored_point (x,y) c =
 object (self)
 inherit point (x,y) as super
 val mutable c = c
 method get_color = c
 method set_color nc = c <- nc
 method to_string () = super#to_string () ^
 "["^ self#get_color ^ "]"
 end ;;

class reference n d =
 object
 val mutable name = n
 val mutable descr = d
 method to_string () = "{"^ name ^ "}"
 end ;;

class reference_point (x,y) c n d =
 object (self)
 inherit colored_point (x,y) c as cp
 inherit reference n d as ref
 end ;;
let rp1 = new reference_point (1,1) "red" "r1"
"reference point";;
val rp1 : reference_point = <obj>
rp1#get_x;;
- : int = 1
rp1#to_string ();;
- : string = "{r1}"

Why?

Example of multiple inheritance
class reference_point (x,y) c n d =
 object (self)
 inherit colored_point (x,y) c as cp
 inherit reference n d as ref
 method to_string () = cp#to_string () ^ ref#to_string ()
 end ;;
let rp1 = new reference_point (1,1) "red" "rp1" "reference point";;
val rp1 : reference_point = <obj>
rp1#to_string ();;
- : string = "(1, 1)[red]{rp1}"

C++ example of multiple inheritance
class C : public A, public B //C is derived from classes A and B
{
 public:
 void sum()
 {
 cout << "Sum = " << x + y;
 }
};

int main()
{
 C obj1; //object of derived class C
 obj1.getx();
 obj1.gety();
 obj1.sum();
 return 0;
} //end of program

// multiple inheritance.cpp
#include
using namespace std;
class A
{
 public:
 int x;
 void getx()
 {
 cout << "enter value of x: "; cin >> x;
 }
};
class B
{
 public:
 int y;
 void gety()
 {
 cout << "enter value of y: "; cin >> y;
 }
};

enter value of x: 5
enter value of y: 4
Sum = 9

Diamond problem
● Problem with multiple inheritance

1) Name clashes
2) Multiple copies of object A part

• Name clashes
– There are more than one solutions to name clashes
– See few slides back…

• Multiple copies of A
– D inherits from B and C
– B and C inherit data members and methods from A
– Instance of D includes two copies of data members

from A
– Solutions?

Diamond problem
• Description of problem

– Multiple instances of object D part
– Since A and B inherit from D

they both include instance of D
– What to do?

• No proper solution!
– Two copies of D may work well

• Naming problem appears
• C++ and Ocaml can follow each inheritance path separately

– Put one copy of D in C instance
• C++ virtual base classes
• A and B instances refer to the same D part
• Also a problem if A and B treat D part differently

Outline

1. Introduction
2. Classes and objects
3. Inheritance
4. Dynamic binding
5. Subtyping and substitutivity
6. Abstract classes
7. Genericity
8. Popular OO programming languages

Method binding

• When and how is method bound to its code?
• Dynamic and static binding

– Dynamic binding takes place in run-time
• Smalltalk, Objective-C, Ocaml, Python, Ruby (only), C++, C#, Go,

Java, Eiffel (default); final classes can be optimized

– Static binding happens at compile time
• Simula, C++, C#, Scala, Ada95 (default)

– Not exclusive; some PLs use both.
• Dynamic binding is more expensive than static.

– Appropriate method is searched (accessed) in the method
lookup table (abbr. MLT)

• Smalltalk searches the table in run-time
• C++, Ocaml, ... computes an index at compile time; on method lookup

method address is accessed from MLT..

Dynamic binding

• Consequences of inheritance/type extension
– Derived class D has all the members—data and subroutines

—of its base class C
– Anything we might want to do to an object of class C we can

also do to an object of class D

• When a message is sent to an object:
– Function code (or method) is determined by the way that

the object is implemented.
– Object “chooses” how to respond to a message.
– Diff. objects may implement same operation differently.

• Very useful PL feature
– Sending the same message to a collection of objs from

different classes.

Dynamic binding

• Classical example of the use of dynamic binding
– We have a collection of objects of class C
– Collection can include also the instances of any class

S such that S inherits from C
– The same method, for instance to_string(), is called for

each of the objects from the collection
• Example in Ocaml

– We have defined classes point, colored_point and verbose_point
– All of them have method to_string()

Example 1
class picture n =
 object
 val mutable ind = 0
 val tab = Array.create n (new point(0,0))
 method add p = tab.(ind)<-p ; ind <- ind + 1
 method remove () = if (ind > 0) then ind <-ind-1
 method to_string () =
 let s = ref "["
 in for i=0 to ind-1 do s:= !s ^ " "^ tab.(i)#to_string () done ;
 (!s) ^ "]"
 end ;;

let pic = new picture 3;
>> Creation of point: (0,0)
val pic : picture = <obj>
pic#add (new point (1,1));
 pic#add ((new colored_point (2,2) "red") :> point);
 pic#add ((new verbose_point (3,3)) :> point);;
- : unit = ()
pic#to_string () ;;
- : string = "[(1,1) (2,2)[red] point=(3,3),distance=4.24264068712]"

Example 2

let p1 = new colored_point (1,1) "Blue";;
val p1 : colored_point = <obj>
p1#to_string () ;;
- : string = "(1,1) [Blue] "
let p2 = new colored_point_1 (1,1) "Blue";;
val p2 : colored_point_1 = <obj>
p2#to_string () ;;
- : string = "(1,1) [UNKNOWN] "

class colored_point_1 coord c =
 object
 inherit colored_point coord c
 val true_colors = ["white"; "black"; "red"; "green"; "blue"; "yellow"]
 method get_color = if List.mem c true_colors then c else "UNKNOWN"
 end ;;

class colored_point (x,y) c =
 object (self)
 inherit point (x,y) as super
 val mutable c = c
 method get_color = c
 method set_color nc = c <- nc
 method to_string () = super#to_string () ^
 "["^ self#get_color ^ "]"
 end ;;

Why?

Implementation of objects in Ocaml

• Each object is represented by two parts
• Variable part

– Includes object variables as in the case of records
– Using reference or value model (some use both)

• Fixed part
– Method lookup table (abbrev. MLT) stores methods that

can be looked up dynamically
– All methods, including the inherited methods, are

stored in a MLT (one) of a class
– Fixed part is the same for all instances of some class
– There are different implementations of MLT (in diff PLs)

Method lookup (binding)

• Find a concrete method for a method call o.m(v1,v2,…)
• Static method lookup

– Compiler can determine the method using the type of object.
• Dynamic method lookup

– Code generated by the compiler must find the right method.
– Object is represented by a record that contains the pointer to

the method lookup table of parent class.
• References to newly defined methods are added
• Overriding ⇒ ref to the old method is replaced with new one
• The same index maintained for the same method in all method

lookup tables of classes from a family (Ocaml)
– Pointer to the type descriptor can be added to method lookup

table to be able to check the type in run-time

Implementation of objects in C++

• Example in C++
– Static and dynamic parts of objects
– C++ checks types statically
– Dynamic binding allowed for virtual methods only

Implementation of objects in C++

Outline

1. Introduction
2. Classes and objects
3. Inheritance
4. Dynamic binding
5. Subtyping and substitutivity
6. Abstract classes
7. Genericity
8. Popular OO programming languages

Subtypes

• Sub-typing is a relation on types that allows values
of one type to be used in place of values of another.
– Assuming that we are in a typed language,

• In Ocaml the type of class C is a record containing
the types of all member functions of C
– The type of class Point

• Formally, type of class includes
only public functions

< distance : unit → float; get_x : int; get_y : int;
 moveto : int * int → unit; rmoveto : int * int → unit;
 to_string : unit → string >

class point :
 int * int ->
 object
 val mutable x : int
 val mutable y : int
 method distance : unit -> float
 method get_x : int
 method get_y : int
 method moveto : int * int -> unit
 method rmoveto : int * int -> unit
 method to_string : unit -> string
end

Subtypes

• Type is different concept to class
– Class is a factory, a prototype, that generates objects
– Type is conceptually one level higher entity than its

instances
• The subtype relationship is defined among types

of classes
– Type t’ is a subtype of t, denoted by t’ ≤ t, if and only if

σi ≤ τi for i {1, . . . , n}∈
t =< m1 : τ1 ; . . . mn : τn > and
t' =< m1 : σ1 ; . . . ; mn : σn ; mn+1 : σn+1 ; . . . >

– Type t' can have more components than t and types of
common components must be in subtype relationship

In Ocaml class is function
that constructs objects

Subtyping functions

• Function call
– If f : t → s, and if a : t' and t' ≤ t then (f a) is well typed,

and has type s
– Intuitively, a function f expecting an argument of type t

may safely receive an argument of a subtype t' of t
– Why? Instances of t' have either additional

components, or, more specific components
• Function type

– Type t' → s' is a subtype of t → s, denoted by t'→s' ≤
t→s, if and only if s' ≤ s and t ≤ t'

– The relation s' ≤ s is called covariance, and the relation
t ≤ t' is called contravariance.

– Although surprising, relation can easily be justified

Covariance/contravariance
• Justification of covariance/contravariance

– Let f : t → s and f' : t'→ s'.
– When the call of f can be replaced by a call of f' ?
– Argument of f can be used as the argument of f'

if t ≤ t'. This is contravariance.
– Result of f' is acceptable in context of the result of f

if s' ≤ s. This is covariance.
– Therefore, we have t'→ s' ≤ t → s iff t ≤ t' and s' ≤ s.

Subtyping methods
• Assume two classes c1 and c2 both have a method

m and
– Method m has type t1→ s1 in c1, and type t2→s2 in c2
– m(1) the method m of c1 and m(2) that of c2
– c2 ≤ c1 and t2→s2 ≤ t1→s1

• Let g : s1 → α, and g(o#m(x)) where o:c1 and x:t1

– g defines the context, i.e., type s1
– Other scenario: a = o#m(x) where a:s1 and x:t1

• Covariance
– Originally, o is an object of type c1
– c2 ≤ c1 ⇒ it is legal to use an object o of type c2
– o#m(x) is m(2), which returns a value of type s2

– g expects an argument of type s1 ⇒ s2 ≤ s1 is OK

Subtyping methods
• Contravariance

– Method m requires a parameter value of type t1

– We use o of type c2 ⇒ m(2) is invoked
– It expects an argument of type t2, so t1 ≤ t2 is OK

• Covariance/contravariance in PLs
– Some languages use invariance for parameters (C++,C#)
– Java, C++, C# support covariant return type
– Contravariance of parameters used by Python (mypy) and Sather

• Scala use contravar. on collection types (set, array, ...)
– Contravariance seems unnecessary …

• employee#follow(employee) ≤ person#follow(person) ??
• The setup for methods is different to the setup for functions?

– Covariance among parameters seems reasonable
• Eiffel and Dart use this approach
• This is not type safe

Substitutivity

• The basic principle associated with subtyping is
substitutivity
– We write A ≤ B to indicate that A is a subtype (sub-class)

of B
– If A ≤ B then instance of A can appear in all contexts

instance of B is expected
– Function f : B → C can be applied to any object of type A

if A ≤ B.
– Instance of class A ≤ B can be assigned to variable of

class B
– Collection of type B can include instances of type A ≤ B
– Etc.

Substitutivity

Type coercion in Ocaml
• Most object-oriented programming languages

support substitutivity
– Ocaml uses explicit type coercion <:

• Type coercion (upcast) :>
– Object of type colored_point

is treated as an instance if its
superclass point

• It remains to be colored_point!
– After type coercion object still

knows it is of original type!
• … and uses its methods!

(name : sub_type :> super_type)
(name :> super_type)

let cp = new colored_point (1,1)
"red";;
val cp : colored_point = <obj>
let p = (cp :> point);;
val p : point = <obj>
p#get_color ();;
Error: This expression has type point
It has no method get_color
p#to_string ();;
- : string = "(1,1)[red]"

Upcast/downcast in Java

• Java and C++ use type casting
– (Implicit) upcast

• Assignment statement, or explicit upcast
• Can access overridden methods

– An explicit downcast type conversion
• An object has to be of the downcasted type to be able to

downcast it !
CorrectLeads to exception

Apple apple = new Apple();
Fruit castedApple = apple;
Fruit castedApple = (Fruit)apple;

Run-time (inclusion) polymorphism
• Dynamic binding and subtyping provide the means

for expressing run-time polymorphism
• Let C be a base class that includes subclasses Si

– Class C is the root of “family” of classes Si

– Subtyping (substitutivity) allows treating instances of type
Si as instances of class C

– Dynamic binding assures that given method name and an
instance of Si, method will be linked to class Si

• Run-time (inclusion) polymorphism
– Method m called for any instance o of some Si depends on

the implementation of m in Si

– Sending the same message to objects of different
“shapes” gives different responses.

Outline

1. Introduction
2. Classes and objects
3. Inheritance
4. Dynamic binding
5. Subtyping and substitutivity
6. Abstract classes
7. Genericity
8. Popular OO programming languages

Abstract classes

• In many OO programs, it is useful to define general
concepts as a root of some family of classes
– General concepts are implem. as abstract base classes

• They are not implemented themselves
– The only purpose of an abstract class is to serve as a

base for other, concrete classes
• They are the generalizations of concrete classes from a family
• Examples: container, account, shape, or vehicle, etc.

• Abstract classes serve an organizational purpose
– They have no instances
– They define a common interface for the family

Abstract classes

• Abstract class includes virtual methods
– Virtual methods are solely defined by specifying their

types (signatures)
– Class must be abstract if it includes one virtual method
– When a sub-class implements all virtual methods it

becomes concrete
• Otherwise sub-class must be defined abstract

– Ocaml abstract classes
• Multiple inheritance of

abstract classes
– If multiple data members are defined then last

definition is visible

class virtual name = object . . . end
method virtual name : type

Example

class virtual printable () =
 object(self)
 method virtual to_string : unit -> string
 method print () = print_string (self#to_string ())
 end ;;
class rectangle (p1,p2) =
 object
 inherit printable ()
 val llc = (p1 : point)
 val urc = (p2 : point)
 method to_string () = "["^llc#t_string ()^","^urc#to_string ()^"]"
 End ;;
let r = new rectangle (new point (2,3), new point (4,5));;
val r : rectangle = <obj>
r#print () ;;
[(2,3),(4,5)]- : unit = ()

print () is implemented by
using a method that is not yet
implemented

abstract method in a base
class provides a “hook” for
dynamic method binding

Example 2

class virtual geometric_object () =
 object
 method virtual compute_area : unit -> float
 method virtual compute_peri : unit -> float
 end;;
class rectangle_2 (p2 : point * point) =
 object
 inherit rectangle p2
 inherit geometric_object ()
 method compute_area () =
 float (abs(urc#get_x - llc#get_x) * abs(urc#get_y - llc#get_y))
 method compute_peri () =
 float ((abs(urc#get_x - llc#get_x) + abs(urc#get_y - llc#get_y)) * 2)
 end;;

Multiple inheritance from
abstract classes
Multiple inheritance from
abstract classes

Outline

1. Introduction
2. Classes and objects
3. Inheritance
4. Dynamic binding
5. Subtyping and substitutivity
6. Abstract classes
7. Genericity
8. Popular OO programming languages

Genericity

• Generic programming
– Programs based on types that are specified later

• Forms of genericity
– Polymorphic functions, polymorphic types
– Parameterized classes, functors (param. modules)

• Evolved from type theory and study of
polymorphic lambda calculus
– Approach is pioneered by ML (1972)
– Definition of types, ADTs, classes including types as

parameters

Parameterized classes

• Parametric polymorphism is extended to classes
– Ocaml defines it as extension of parametric types

• Type variables are used in the definition of class
– Syntax is close to definition of parametric types

• Used in many languages
– Templates in C++
– Generics in Java, C#, Go
– Genericity in Delphi, Haskell, Scala

class [’a,’b,...] name = object . . . end

Example
class pair x0 y0 =
 object
 val x = x0
 val y = y0
 method fst = x
 method snd = y
 end ;;
Characters 6-106:
Some type variables are unbound in this type:
 class pair :
 'a ->
 'b -> object val x : 'a val y : 'b method fst : 'a method snd : 'b end
The method fst has type 'a where 'a is unbound

class ['a,'b] pair (x0:'a) (y0:'b) =
 object
 val x = x0
 val y = y0
 method fst = x
 method snd = y
 end ;;
class ['a, 'b] pair :
 'a ->
 'b -> object val x : 'a val y : 'b method fst : 'a method snd : 'b end

First approach:
don’t care about types.
Bad idea?

let p = new pair 2 'X';;
val p : (int, char) pair = <obj>
p#fst;;
- : int = 2
let q = new pair 3.12 true;;
val q : (float, bool) pair = <obj>
q#snd;;
- : bool = true

Correct definition.

Parameterized class

Inheritance of parameterized
classes # class ['a,'b] acc_pair (x0 : 'a) (y0 : 'b) =

 object
 inherit ['a,'b] pair x0 y0
 method get1 z = if x = z then y else raise Not_found
 method get2 z = if y = z then x else raise Not_found
 end;;
class ['a, 'b] acc_pair :
 'a ->
 'b ->
 object
 val x : 'a
 val y : 'b
 method fst : 'a
 method get1 : 'a -> 'b
 method get2 : 'b -> 'a
 method snd : 'b
 end
let p = new acc_pair 3 true;;
val p : (int, bool) acc_pair = <obj>
p#get1 3;;
- : bool = true

class point_pair (p1,p2) =
 object
 inherit [point,point] pair p1 p2
 end;;
class point_pair :
 point * point ->
 object
 val x : point
 val y : point
 method fst : point
 method snd : point
 end

 Parameterized class can
 inherit from parameterized
 class

 Definition of a class by
inheriting from parameterized
class

 Example:
 Stack in Ocaml

let s = new stack;;
val s : '_a stack = <obj>
s#push 1;;
- : unit = ()
s#push 2;;
- : unit = ()
s#pop;;
- : int = 2
s#pop;;
- : int = 1

class ['a] stack =
 object
 val mutable l = ([] : 'a list)
 method push x = l <- x::l
 method pop = match l with
 [] -> raise Empty |
 a::l' -> l <- l'; a
 method clear = l <- []
 method length = List.length l
 end;;
 class ['a] stack :
 object
 val mutable l : 'a list
 method clear : unit
 method length : int
 method pop : 'a
 method push : 'a -> unit
 end

Example: Stack in Scala

Outline

1. Introduction
2. Classes and objects
3. Inheritance
4. Dynamic binding
5. Subtyping and substitutivity
6. Abstract classes
7. Genericity
8. Popular OO programming languages

Scala
• Martin Odersky, EPFL, Lausanne, 2003
• Multi-paradigm: concurrent, functional, imperative,

object-oriented
• Influenced by Lisp, Eiffel, Erlang, F#, Scheme,

Haskell, Java, Ocaml, SML, …
• Features

– Immutability, Currying, polymorphism, higher-order functions, lazy
evaluation, continuations, pattern matching, strong typing,

– Pure OO language, every value is object, classes and traits, multiple
inheritance, algebraic data types, type inference (Curry-style), co/contra-
variance, higher-order types, generic classes, ... JVM

• Concurrent and distributed
– Concurrent: Actor model (from Erlang), asynchronous prog.
– Distributed: Apache Spark

Google Go

• Statically typed, compiled high-level PL, by Google
– Robert Griesemer, Rob Pike, and Ken Thompson, 2007

• Main features
– Designed for: multicore, networked machines and large

codebases
– C syntax, memory safety, garbage collection, structural typing,

abstract data struct

• Concepts of Golang
– Variables, Constants, For, If/Else, Switch, Arrays, Slices, Maps,

Functions, Closures, Recursion, Pointers, Structs, Methods,
Interfaces, Generics

– Goroutines, Channels, Async. messages, Timeouts, Timers,
Counters, Mutexes, Processes, Signals

– In many ways close to Erlang (Ericson); that is Yahoo’s choice

C#
• Anders Hejlsberg, Microsoft, 2000
• .NET Framework implementation (initial name, Cool)
• Multi-paradigm programming language

– Imperative, declarative, functional, generic, object-oriented (class-
based), and component-oriented programming disciplines

• Features
– Strong types, type inference,
– Data structures make high-level programming language

• Arrays, collections, sets, dictionaries, sets, lists, queue/stack, bags, ...

• Development
– C# 1.0 -> Java
– C# 2.0 -> functional, generics, partial types, iterators, static classes,…
– C# 3.0-7.0 -> Dynamic binding, named/optional arguments, asynchronous methods,

compiler-as-service, exceptions, out variables, pattern-matching, query expressions,
lambda expressions, …

– C# 8.0 -> Readonly members, default interface methods, pattern matching
enhancements, static local functions, asynchronous streams, indices and ranges, ...

F#
• Don Syme (BDFL), Microsoft Research, 2005

– ML family, based on Ocaml
– Influenced by C#, Python, Haskell, Scala, and Erlang.
– Multi-paradigm programming language

• Functional, imperative, modular and object-oriented programming

– Some features
• Strongly typed, type inference, eager evaluation, closures, lambda

expressions, higher-order functions, pattern matching

– Programming styles
• Asynchronous, parallel, meta, agent

• Implementation
– .NET Framework implementation of Ocaml core
– Common Language Infrastructure (CLI), JavaScript and

GPU code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

