
Lectures 10-11

Memory management

Iztok Savnik, FAMNIT

May, 2023.

1

Literature

• John Mitchell, Concepts in Programming
Languages, Cambridge Univ Press, 2003
(Chapter 7, Section 7.7.3)

• Michael L. Scott, Programming Language
Pragmatics (3rd ed.), Elsevier, 2009 (Chapters 3
and 8)

• Brian W. Kernighan, Dennis M. Ritchie, The C
Programming Language, Second Edition, Prentice
Hall, Inc., 1988.

Outline

1.Binding time
2.Lifetime and storage management
3.Static allocation
4.Stack allocation
5.Blocks, scope and activation records
6.Heap allocation
7.Explicit memory management
8.Garbage collection

Introduction

• We did talk about these topics but not in a
organized way and not in detail

• How and where memory for variables are
allocated?
– Static and dynamic variables
– Stack allocation and heap allocation

• Implementation view of scope and lifetime of
objects
– Activation records, stack allocation,
– Local and global variables
– How to access global variables?

Introduction

• How the chains of function calls are
implemented?
– Stack activation records
– Structures formed by the activation records

• Manual and automatic allocation of heap storage
– We did not talk much about this
– Memory for objects, records, arrays, lists, ...
– Memory leaks, dangling references, possible bugs

• Heap management strategies and algorithms
– Price for automatic storage allocation
– Garbage collection

Binding Time

• A binding is an association between two things,
such as a name and the thing it names

• Binding time is time at which a binding is created
– The time at which any implementation decision is made
– Binding between question and answer

• Important binding times in SW systems
– Compile time: Mapping of high-level constructs to machine

code, including the layout of statically defined data in memory
– Link time: Name in one module refers to an object in another

module, the binding between the two is not finalized until link
time

– Run time: Bindings of values to variables and other run-time
decisions

Binding time

• Early binding times are associated with greater
efficiency, while later binding times are associated
with greater flexibility
– Compiler-based language implementations tend to be

more efficient than interpreter-based implementations
because they make earlier decisions

– Interpreters must analyze the declarations every time the
program begins execution

• The terms static and dynamic are generally used to
refer to things bound before run time and at run time

 Lifetime and Storage Management

• It is important to distinguish between names and
the objects to which they refer

• Key events in object / binding lifetime:
– Creation of objects
– Creation of bindings
– References to variables, subroutines, types, and so on,

all of which use bindings
– Deactivation and reactivation of bindings that may be

temporarily unusable
– Destruction of bindings
– Destruction of objects

Lifetime

• The period of time between the creation and the
destruction of a name-to-object binding is called the
binding’s lifetime

• The time between the creation and destruction of
an object is the object’s lifetime
– Object may retain its value and the potential to be

accessed even when a given name can no longer be
used to access it

• When a variable is passed to a subroutine by reference
• Fortran, var in Pascal, or ‘&’ in C++

– Lifetime of name-to-object binding is longer than that of
object

• Generally, a sign of a program bug – dangling references

Storage allocation mechanisms

• Object lifetimes generally correspond to one of
three principal storage allocation mechanisms,
used to manage the object’s space:
1.Static objects are given an absolute address that is

retained throughout the program’s execution.
2.Stack objects are allocated and deallocated in last-in,

first-out order, usually in conjunction with subroutine
calls and returns.

3.Heap objects may be allocated and deallocated at
arbitrary times. They require a more general (and
expensive) storage management algorithm.

Program memory

Static allocation

• Global variables are static objects, but not the only
ones

• Other static objects:
– Instructions that constitute a program’s machine

language translation
– Variables that are local to a single subroutine, but retain

their values from one invocation to the next
– Numeric and string-valued constant literals, such as A =

B/14.7 or printf("hello, world\n")
– Tables that are used by run-time support routines for

debugging, dynamic-type checking, garbage collection,
exception handling, and other purposes

Static allocation

• Statically allocated objects are often allocated in
protected, read-only memory

• Static activation records
– Storing variables in blocks, subrutines
– One activation record for one subrutine
– Only one activation of subrutine can live at a given time
– Location of activation record is determined in compile time
– Simple and very fast

• Static activation records store:
– Local variables + Temporary values
– Subrutine arguments, return address, return value
– Reference to activation record of the caller

Static allocation

• Problems with static allocation records
– Recursion can not be used
– Fortran did not have recursion until very late version
– Multi-threading can also not be implemented statically

Stack allocation

• Activation record or stack frame is allocated when
block or subrutine are activated
– Natural nesting of blocks and subroutine calls makes it

easy to allocate space for locals on a stack
• Maintenance of the stack is the responsibility of

the subroutine calling-sequence
– The code executed by the caller immediately before

and after the call (prologue/epilogue)
• Access to higher name spaces

– Chain of activation records following structure of blocks
and subrutines

Block-structured languages

• Storage management mechanisms
associated with block structures
– A block can be: begin-end, procedure, function, let statemnt, ...
– A variable declared in block is said to be local to that block
– A variable declared in an enclosing block is said to be global to

the block
• Properties of block-structured languages

– May define new variables anywhere in block
– Blocks may be nested, but cannot partially overlap
– When entering, memory is allocated for variables declared in

block
– When exiting, some or all of the memory allocated to variables

declared in that block will be deallocated

Recall!

Stack-based allocation of space for
subroutines

Memory for block-variables

• Memory management mechanisms for three
classes of variables

• Local variables
– Stored on the stack in activation record associated with

block
• Parameters

– Parameters to subrutine stored in activation record
• Global variables

– Accessed from an activation record that was placed on
the run-time stack before activation of the current block

Example
• When the outer block is entered,

an activation record containing
space for x and y is pushed onto the stack

• On entry into the inner block, a separate activation
record containing space for z will be added to the
stack

• After the value of z is set, the activation record
containing this value will be popped off the stack

• Finally, on exiting the outer block, the activation
record containing space for x and y will be popped
off the stack

Intermedate results

Control link

• Different activation records have different sizes
– Operations that push and pop activation records from

the run-time stack store a pointer to the top of the
preceding activation record

• Control link (dynamic link)
– The pointer to the top of

the previous activation record
• When a new act. record is added

– Control link of the new activation
record is set to the previous value
of the environment pointer

– Environment pointer is updated

Example

Activation Records for Functions

• control link, pointing to the previous
activation record on the stack,

• access link (static link), pointer to
structurally subsuming block

• return address, giving the address of the
first instruction to execute when the function
terminates,

• return-result address, the location in which
to store the function return value,

• actual parameters of the function,
• local variables declared within the function,
• temporary storage for intermediate results

computed with the function executes

Example

• Activation records are added and removed from
the run-time stack when tracing the execution of
the familiar factorial function

Global Variables

• Identifier x appears in the body of a function, but x
is not declared inside the function

• Access to a global x involves finding an appropriate
activation record elsewhere on the stack

• There are two main rules for finding the declaration
of a global identifier
– Static Scope:

• A global identifier refers to the identifier with the name that is
declared in the closest enclosing scope of the program text

– Dynamic Scope:
• A global identifier refers to the identifier associated with the most

recent activation record

Static and dynamic scope

• Difference between static and dynamic scope:
– Finding declaration under static scope uses the static

(unchanging) relationship between blocks in program
text.

– Actual sequence of calls that are executed in the
dynamic (changing) execution of the program.

• Example:

Access link

• How to implement Static scope?
• Access link (static link) of an

activation record points to the
activation record of the closest
enclosing block in the program

• In-line blocks do not need an
access link, as the closest
enclosing block will be the most
recently entered block

• Access link will generally point to
a different activation record than
the control link

Example

• Declaration of g occurs inside the
scope of declaration of x

• access link for declaration of g points to
activation record for declaration of x

• Declaration of f is similarly inside the
scope of the declaration of g

• Access link for declaration of f points to
activation record for the declaration of g

• Calls f(3) and g(12) cause activation
record to be allocated for scope
associated with body of f and body of g,
respectively

Control and access links

• To summarize:
– Control link is a link to the activation record of the

previous (calling) block
– Access link is a link to the activation record of the

closest enclosing block in program text
– Control link depends on the dynamic behavior of

program
– Access link depends on only the static form of the

program text
– Access links are used to find the location of global

variables in statically scoped languages with nested
blocks at run time

Example: quicksort

let rec quicksort = function
 [] -> []
 | pivot::rest ->
 let rec split = function
 [] -> ([],[])
 | x::tail ->
 let (below, above) = split tail
 in
 if x<pivot then (x::below, above)
 else (below, x::above)
 in let (below, above) = split rest
 in quicksort below @ [pivot] @ quicksort above;;
val quicksort : 'a list -> 'a list = <fun>

Example: quicksort

control link

temp mem

vars: x,xs,...

params

return-result adr

return address

static link

control link

temp mem

vars: x,xs,...

params

return-result adr

return address

static link

control link

temp mem

vars: x,xs,...

params

return-result adr

return address

static link

control link

temp mem

vars:pivot,
rest, ...

params

return-result adr

return address

static link

split

control link

quicksortsplit split

 Heap allocation

• A heap is a region of storage in which subblocks
can be allocated and deallocated at arbitrary times

• Heaps are required for the dynamically allocated
pieces of linked data structures
– Character strings, lists, and sets, whose size may change

on update
– Arrays, records, objects, recursive data structures, ...

• Strategies to manage space in a heap
– Tradeoffs between speed and space
– Internal and

external
fragmentation

Storage-management algorithms

• Single linked list—the free list
– Heap blocks not currently in use
– Initially list consists of a single block comprising the

entire heap
– Allocation request searches list for a block of

appropriate size
– First fit algorithm
– Best fit algorithm
– Unneeded portion below some min threshold is left in

block as internal fragmentation, or, inserted back to list

Single linked list

• One would expect the best-fit algorithm to do a
better job

• Time complexity
– Best-fit has higher allocation cost than first-fit algorithm

• Always goes through all candidates
• In recent applications, we may have a huge number of blocks!

– The concept of “current” block in first-fit algorithm
• Travels in a round-robin fashion

• Any algorithm is linear in the number of free
blocks
– In worst case the algorithm has to inspect all blocks

Single linked list

• Space complexity
– First-fit tends to behave better then best-fit
– Best-fit results in a larger number of very small “left-

over” blocks
• Internal as well as external fragmentation?

– Score depends on the distribution of size requests
• Distribution depends on the application type

Single linked list

• How to reduce the cost of the algorithm?
– Maintain separate free lists for blocks of different sizes
– If block is not found in the appropriate list then the list

with larger blocks is searched
• The leftover is stored in a list with smaller blocks

– Cost can be reduced to a constant
• We first consider a heap in the C prog. language
• Then we will go through some solutions that use

more lists

Heap in C

• C originally implemented heap based on linked
list of free blocks
– Calls to malloc() and free() may occur in any order
– malloc() calls upon the operating system to obtain

more memory when needed
– Space that malloc() manages may not be contiguous
– Free storage is kept as a list of free blocks
– Each block contains a size, a pointer to the next block,

and the space itself
– Blocks are kept in order of increasing storage address
– Last block (highest address) points to the first

Heap in C

• When a request is made, the free list is scanned
until a big-enough block is found, i.e. “first fit”

• If the block is too big, it is split, and the proper
amount is returned to the user while the residue
remains on the free list

Heap in C

• Proper alignment for the objects stored
– The most restrictive type can be stored at a particular

address, then all other types may be also
– On some machines, the most restrictive type is a

double; on others, int or long suffices

typedef long Align; /* for alignment to long boundary */
union header { /* block header */
 struct {
 union header *ptr; /* next block if on free list */
 unsigned size; /* size of this block */
 } s;
 Align x; /* force alignment of blocks */
};
typedef union header Header;

Heap in C

• Requested size in characters is rounded up to the
proper number of header-sized units
– Block that will be allocated contains one more unit, for

the header itself
• Search for a free block of adequate size begins

where the last block was found (at freep)
– This strategy helps keep the list homogeneous
– If a too-big block is found, the tail end is returned to

user
– Pointer returned to the user points to free space within

the block, which begins one unit beyond the header

static Header base; /* empty list to get started */
static Header *freep = NULL; /* start of free list */
/* malloc: general-purpose storage allocator */
void *malloc(unsigned nbytes)
{
 Header *p, *prevp;
 Header *morecore(unsigned);
 unsigned nunits;

 nunits = (nbytes+sizeof(Header)-1)/sizeof(header) + 1;
 if ((prevp = freep) == NULL) {
 /* no free list yet */
 base.s.ptr = freeptr = prevptr = &base;
 base.s.size = 0;
 }

 for (p = prevp->s.ptr; ; prevp = p, p = p->s.ptr) {
 if (p->s.size >= nunits) { /* big enough */
 if (p->s.size == nunits) /* exactly */
 prevp->s.ptr = p->s.ptr;
 else { /* allocate tail end */
 p->s.size -= nunits;
 p += p->s.size;
 p->s.size = nunits;
 }
 freep = prevp;
 return (void *)(p+1);
 }
 if (p == freep) /* wrapped around free list */
 if ((p = morecore(nunits)) == NULL)
 return NULL; /* none left */
 }
 }

malloc()

⇩

⇩

morecore()
free()

#define NALLOC 1024 /* minimum #units to request */
/* morecore: ask system for more memory */
static Header *morecore(unsigned nu)
{
 char *cp, *sbrk(int);
 Header *up;
 if (nu < NALLOC)
 nu = NALLOC;
 cp = sbrk(nu * sizeof(Header));
 if (cp == (char *) -1) /* no space at all */
 return NULL;
 up = (Header *) cp;
 up->s.size = nu;
 free((void *)(up+1));
 return freep;
}

/* free: put block ap in free list */
void free(void *ap)
{
 Header *bp, *p;
 bp = (Header *)ap – 1; /* point to block header */
 for (p = freep; !(bp > p && bp < p->s.ptr); p = p->s.ptr)
 if (p >= p->s.ptr && (bp > p || bp < p->s.ptr))
 break; /* freed block at start or end of arena */
 if (bp + bp->size == p->s.ptr) { /* join to upper nbr */
 bp->s.size += p->s.ptr->s.size;
 bp->s.ptr = p->s.ptr->s.ptr;
 } else
 bp->s.ptr = p->s.ptr;
 if (p + p->size == bp) { /* join to lower nbr */
 p->s.size += bp->s.size;
 p->s.ptr = bp->s.ptr;
 } else
 p->s.ptr = bp;
 freep = p;
}

Dynamic pools

• Heap is divided into “pools,” one for each
standard size
– Request is rounded up to the next standard size
– Division into ranges may be static or dynamic

• Two common mechanisms for dynamic pool:
– Buddy system
– Fibonacci heap

• Buddy system
– Standard block sizes are powers of two
– Block of size 2k is needed

• none ⇒ block of size 2k+1 is split in two
(one is put into 2k free list)

Dynamic pools

– When a block is deallocated, it is coalesced with its
“buddy”—if that buddy is free

• Fibonacci heap
– Fibonacci numbers for the standard sizes
– Slightly more complex
– Leads to slightly lower internal fragmentation

• Problems with external fragmentation
– The ability of the heap to satisfy requests may degrade

over time
– It is always possible to devise a sequence of requests

that cannot be satisfied (while enough space ∃)
– Compact the heap, by moving already-allocated blocks

• update all outstanding references

Manual/automatic memory
management

• Explicit (manual) memory management
– Explicit allocation and deallocation of objects
– Programer has total control over memory management
– C, C++, Pascal, ...

• Automatic memory management
– Compiler and run-time system manage memory
– Garbage collection
– Java, Scala, Go, Haskell, Erlang, Python, Perl, ...

 Explicit memory management

• Program allocates memory blocks and has full
control over them
– After block is not needed it is reclaimed

• Usual malloc-free cycle known from C
– Functions malloc() and free() implement heap in C

• Problems:
– If pointer is “lost” then we have memory leak—

performance decreases and memory is filled-up eventually
– If object is reclaimed by mistake we have dangling pointer

• Programmer has to be very careful and design all
allocations in pairs.

Example

int main() {
 function_which_allocates();
 // the pointer ’a’ no longer exists, and therefore cannot be freed,
 // but the memory is still allocated. a leak has occurred.
 int* p = new(1024);
 int* q = p;
 delete p; // q is dangling pointer by now
 // main continues
 *q = 2048; // memory corruption: write to garbage memory
 delete q; // memory corruption: double free of memory
}

void function_which_allocates() {
 // allocate an array of 50 floats
 float* a = new float[50];
 // additional code making use of ’a’
 // return to caller, having forgotten
 // to delete the memory we allocated
}

Explicit memory management

• Many reclaims are automatic
– On function return, space for local variables and

parameters is reclaimed
• Disciplined allocation/deallocation of memory can

lead to efficient programs
– In reality, all fast programs are implemented in

languages that allow explicit memory management
– Performance of PL with GC is comparable to explicit

memory management if there is enough memory :-|
– Language without GC can perform orders of magnitude

better than languages with GC
– If memory is a problem languages with explicit control

are always better

 Garbage collecton

• Allocation of heap-based objects is always
triggered by some specific operation in program:
– Instantiating an object, appending to the end of a list,

assigning a long value into previously short string, ...
• Deallocation can be done in two ways:

– It is explicit in some languages
• e.g., C, C++, and Pascal

– In many languages objects are deallocated implicitely
• After they can not be reached from any program variable
• Such language must then provide a garbage collection

mechanism to identify and reclaim unreachable objects

Garbage collection

• Languages with garbage collection
– Most functional and scripting languages require

garbage collection
– Many more recent imperative languages (including

Modula-3, Java, and C) use garbage collectors
• Arguments in favor of explicit deallocation!

– Implementation simplicity
• Even naive implementations of automatic garbage collection

add significant complexity to the implementation
– Execution speed

• Even the most sophisticated garbage collector can consume
nontrivial amounts of time in certain programs

Garbage collection

• Argument in favor of automatic garbage collection
– Manual deallocation errors are among the most

common and costly bugs in real-world programs
– Object is deallocated too soon

• Program may follow a dangling reference
• Accessing memory now used by another object

– Object is not deallocated at the end of its lifetime
• Program may “leak memory,” eventually running out of heap

space
• Deallocation errors are notoriously difficult to identify and fix

Garbage collection

• Automatic garbage collection is an essential
language feature (Invariant)
– Conclusion of both language designers and

programmers
– Many times we do not want to spend many days

debugging but want solution »at once«
– The cost of garbage collection is compensated by

faster hardware
• In many cases it is not possible to implement

system efficiently without explicit control of
memory allocation
– Most compilers, DBMSs, OS routines, ... are written in

C or C++

Reference counts
• When is an object no longer useful?

– There are no pointers to object
• Simple solution:

– Place the counter of pointers referencing the object in
object itself

• Initially this counter is 1
– When pointer a is assigned to pointer b:

1.dec_rc(object(b))
2.Make assignment b := a
3.inc_rc(object(a))

– On subrutine return
• calling-sequence epilogue has to decrement reference counts

of all objects referred to by parameters and local variables

Reference counts

– When reference count is 0 object can be reclaimed
• Recursively, run-time system must decrement counts for any

objects referred to by pointers within the reclaimed object

• In order for reference counts to work
– Language implementation must be able to identify the

location of every pointer
• Which words in object or stack frame represent pointers?

– Type descriptors (offsets of components) generated by
compiler are used

– In general languages with strong typing can use such
algorithms

• Solutions for languages not strongly typed also exist

Reference counts

• The most important problem is definition of “useful
object”.
– Object may be useless despite there are references to it
– RCs fail to collect circular structures

• Many languages use RC
for var-length strings
– They do not contain refs

• Perl uses RCs for all
dynamically allocated
data
– Programmer is warned to

break cycles

Mark-and-sweep
• Better definition of a “useful” object

– Can be reached by following a chain of valid pointers
starting from something that has a name

– Circularly referenced objects do not stay in heap
• Recursively exploring the heap to determine

what is useful
– Starting from external pointers (very expensive...)

• Mark-and-sweep
– Classic mechanism to identify useless blocks, under

this more accurate definition
– When amount of free space remaining in heap falls

below some minimum threshold
– It proceeds in three main steps

Mark-and-sweep

1.Collector walks through the heap, tentatively
marking every block as “useless.”

2.Beginning with all pointers outside the heap,
collector recursively explores all linked data
structures in the program, marking each newly
discovered block as “useful.”

3.The collector again walks through the heap,
moving every block that is still marked “useless”
to the free list.

Mark-and-sweep

• Problems with algorithm:
– We must know where every block in-use begins and

ends
– Every block must begin with an indication of its size,

and of whether it is currently free
– Collector must be able in Step 2 to find the pointers

contained within each block
• Solution: put pointer to (block) type descriptor near the

beginning of block

Improvements of Mark-and-sweep
• Pointer reversal

– Recursive exploration of heap requires storage
• Heap could be used to track the path

– As collector explores the path to a given block, it
reverses the pointer to the block

• Collector keeps track
of current block
and the block from
whence it came

– Search can be
implemented
without stack

Improvements of Mark-and-sweep

• Stop-and-copy
– Reduce external fragmentation by performing storage

compaction
– Eliminating Steps 1 and 3
– Divide the heap into two regions of equal size

• All allocations happen in first part
– Each reachable block is copied into second half of the

heap, with no external fragmentation
• Old copy is marked “useful”
• Pointers to old block are corrected to point to new

– When collector finishes, all useful blocks are stored in
the second part of heap

• First part of heap is empty!
• Collector swaps its notion of first and second halves

Generational Collection

• Observation: most dynamically allocated objects
are short-lived

• Heap is divided into multiple regions (often two)
– When space runs low the collector first examines the

youngest region (the “nursery”)
• It is likely to have the highest proportion of garbage

– If it is unable to reclaim sufficient space in this region
the collector examines the next-older region

– In worst case collector has to examine complete heap
• In most cases, the overhead of collection will be

proportional to the size of youngest region only

Generational Collection

• Object that survives few collections (often one) is
promoted (moved) to the next older region
– Reminiscent of stop-and-copy
– Promotion requires that pointers reflect new locations
– At each pointer assignment, the compiler generates

code to check whether new value is old-to-new pointer
– This instrumentation on assignments is known as a

write barrier

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

