
Lecture 1

Programming II

Concepts of programming
languages

Iztok Savnik, FAMNIT

February, 2024.
1

 Contents

• Course organization
• History of programming languages
• Programming models
• Concepts of programming languages
• Meta-Language ML
• Method of the course

Course organization

• Lectures
– Iztok Savnik

• Exercises
– Murat Elhüseyni

• Written exam
– 4-5 exercises from tutorials and lectures
– 90 min

• Homework
– Writing programs in Ocaml
– 3 homework assignments

• Oral exam
– Can be approached after successful written exam and

homework
– Three questions from the course material

 4

Grading

1) Written exam – 40%
2) Homeworks – 40%
3) Oral exam – 20%

All parts must be positive (>50%).
Oral exam can be approach after (1) and (2) are
graded positive.

1) John Mitchell, Concepts in Programming Languages,
Cambridge Univrsity Press, 2003.

2) Michael L. Scott, Programming Language Pragmatics
(3rd ed.), Elsevier, 2009.

3) Iztok Savnik, Transparencies of Programming 2
Lectures, 2023.

5

Literature

 Contents

• Course organization
• History of programming languages
• Models of programming languages
• Concepts of programming languages
• Meta-Language ML
• Method of the course

Charles Babbage

• The origins of the digital programmable computer
– English mathematician, philosopher, inventor and

mechanical engineer.
– In 1837 he has designed Analytical engine, the first

mechanical computer that led to the design of more complex
electronic computers.

• The analytical engine
– Decimal system
– Mechanical computation of arithmetic operations
– Branching
– Loops were the results of the previous computation are

taken as an input to the following iterations.

• Turing-complete machine

Konrad Zuse

• The first electro-mechanical computer
– German civil engineer and inventor Konrad Zuse
– Z1, Z2, Z3, 1936-1945, totally independent
– Floating-point mechanical digital calculator Z1

• Series of the calculations of the arithmetical operations

– Z2 = Z1 + Using telephone relays for the memory
– Z3 = Improved Z2 (22-bit FP arithmetic)

• First programming language Plankalkuel
– Binary system
– Loops
– No branching

• Despite no branching, shown to be Turing-complete

– Sequence of arithmetical operations

ENIAC

• First general-purpose electronic computer.
– 1943 Uni. of Pennsylvania (J. Mauchly and J.P. Eckert)
– ENIAC (Electronic Numerical Integrator and Computer)
– 1000x faster than the electro-mechanical computers
– Programming

• 10 digit arithmetic, accumulators, general bus
• Complex functions, branching, loops, procedures

• UNIVAC developed from ENIAC
– First commercial computer

Electronic computers

• Mark 1, Mark 2, Mark 3
– ASCC (Automatic Sequence Controlled Calculator)
– Developed by Harvard University in 1944
– Original concept presented to IBM by H.Aiken in 1937
– Following Charles Babbage
– Design, architecture

• Decimal, 60 sets of 24 switches for data input, 72 numbers
• ~2000 counters, 72 adding machines,
• Punched paper tape, program, data
• Instructions, execute current, read next
• Loops, paper tape attached to the beginning
• Branching, manual, later electronic (1946)
• 800km wire, 5 tons, 5KW power

•

Electronic computers

• von Neumann architecture
– Princeton arhitecture, 1945
– First Draft of a Report on the EDVAC

• Descendant of ENIAC, Pensilvania University, 1944
• U.S. Army's Ballistics Research Laboratory
• Binary, 44-bit words, 5.6KB memory, 5,937 vacuum tubes,

12,000 diodes, power 56 kW, 45.5 m², (+) 0.864 ms, (*) 2.9 ms
• von Neumann contributed as a consultant; he wrote "First Draft

of a Report on the EDVAC", 1945.

– Principal abstraction, representation of the basic
function of computers

• central processing unit
• main memory and
• input/output devices

First compiler

• A-0 programming language
– Algorithmic Language version 0
– Developed on UNIVAC I computer
– Grace Hopper in 1951, 1952

• Program in A-0 language was a sequence of
subroutine calls together with the parameters

• The compiler was merely a linker and a loader
• Followed by the A-1, A-2, A-3

– Commercal names: ARITH-MATIC (A-1), MATH-
MATIC (AT-3), FLOW-MATIC (B-0)

Fortran

• First complete compiler
• John W. Backus, 1953, IBM

– IBM 704 mainframe
• Mathematical FORmula TRANslating System

– IBM 360
• Constructs of Fortran

– DO, GOTO, IF, SUBRUTINE, CALL

• Numerical processing
• Followed by the imperative familliy

– C, Pascal, Modula, Ada, Java
• Fortran II, Fortran 77, Fortran III, Fortran 90,

Fortran 95, Fortran 2003, ...

FLOW-MATIC

• Bussiness Language version 0, or B-0.
– UNIVAC I at Remington Rand
– Grace Hopper in 1955.
– Business does not like formulas, therefore based on

English language

• Hopper team developed compiler by 1959.
– First language that made a clear distinction between

the data definition section and the code section

• Strong influence on the development of the
programming language COBOL.

Information Processing Language

• Information Processing Language (IPL)
– Allen Newell, Cliff Shaw and Herbert Simon
– Rand Corporation in 1956.
– Assembly language - operations manipulate lists

• IPL computer
– Set of symbols, set of cells, set of primitive functions
– Functions defined on the cells and lists
– primitive PL run-time environment

• AI language
– Abstract and suitable for expressing AI programs
– Programs are not efficient

Algol

• Developed in ETH Zuerich, 1958.
– Team of computer scientists from Europe and US

• Allan J. Perlis, Peter Naur, John McCarthy, and others

– Originally: Algebraic Language, or, IAL
– Avoided problems perceived in FORTRAN

• Contributions
– John Backus developed BNF to specify ALGOL 58
– Formal semantics, two parameter passing methods:

cbv and cbr, code blocks, nested functions, lexical
scope

– Imperative effect of cbr to lambda calculus studied

• Influence on:
– Pascal, C, Modula, Java, C++

C.A.R. Hoare: "Here is a language so far ahead of its time

that it was not only an improvement on its predecessors but

also on nearly all its successors."

Lisp
• Developed by John McCarthy at MIT, 1958
• Lisp is based on lambda calculus

– Alonzo Church in 1936, lambda calculus used in paper
on undecidability

– Strongly influenced by IPL
– Lists used for the representation of programs and data

• New concepts
– Automatic storage management, dynamic typing, self-

hosting compiler, and others.

• AI language
– Second-oldest programming language that is still in use

• Common Lisp and Scheme.

Cobol

• Designed by CODASYL, 1959
– Conference/Committee on Data Systems Languages
– Previous work of Grace Murray Hopper

• Programming language for business applications
– Imperative and procedural
– Since 2002, object-oriented

• A compiled English-like programming language
– Awkward syntax
– Cobol programs work today!
– Syntax has been changed

Pascal

• Niklaus Wirth, ETH Zürich, 1970
• Very popular in Europa
• Structured programming language

– Algol family
– Data structures, pointers, arrays, variable records, ...…

• Many implementations
– VAX Pascal, Turbo Pascal, …
– Delphi: a nice programming environment

• Modula-2, Modula-3, Oberon

Programming Language C

• Dennis Ritchie, Bell Laboratories, 1972
– C designed for Unix
– Language B, based on BCPL

• Language constructs
– Algol family
– Still one of best languages (C++ =? C + object illusion)
– Close to hardware, system programming

• Arrays and references are closely related
– E1[E2] = *((E1)+(E2))
– Adress arithmetic

• Ritchie wrote:
– “C is quirky, flawed, and a tremendous success.”

 Contents

• Course organization
• History of programming languages
• Programming model
• Concepts of programming languages
• Meta-Language ML
• Method and aims of the course

Programming models

• Functional
• Imperative
• Object-oriented
• Modular
• Script
• Logic

Imperative languages

• Rooted in assembly language
– Instructions, procedures, loops, branching
– Program is a sequence of instructions
– The outcome is built in the execution of instructions
– Instruction changes the contents of the main memory

• Abstract syntax added
– Variables, IF, LOOP, FOR, PROCEDURE,

FUNCTION
• Fortran

– John Backus, 1956

• Pascal, C, Ada, Modula

Functional languages
• Rooted in logic

– Lambda calculus, 1930, Alonzo Church
• LISP

– John McCarthy, 1958
– Implementation of lambda calculus

• Meta-Language
– ML, Rob Milner, 1970

• Haskel, Ocaml, Ruby, Scala
• More appropriate for teaching?

– Strong typing
– Program is proof
– Elements of declarative programming

Object-Oriented Languages
• First OO language is Simula

– 1960, Norwegian Computing Center
– Simulation programming environment
– It included everything recent OO languages have

• Smalltalk is one of the most famous OO languages
– Adele Goldberg, Xerox, Palo Alto, 1970
– Everything is object!
– Every object belongs to one class
– Class is prototype + class is object!
– Complex inheritance hierarchies

• C++, Java, Objective C, Eiffel, Ruby, Scala...
• Java

– J.Gosling, B.Joy, G.Steele, G.Bracha
The Java Language Specification

 https://docs.oracle.com/javase/specs/

Modular Languages
• In imperative programming languages

– Program is split into multiple program units or modules.
– A modul gathers code for the implementation of some conceptual

entity or physical object
• Screen, driver, device, data structure, algorithm, etc.

– Module includes an interface and an implementation
– Controled module access and use from other modules

• In functional languages a module is an ADT
– Abstract data type (ADT)
– Module includes the definition of

• Common abstract data structure and
• Set of operations for working with abstract data structures.

– Interface/implementation ≡ Signature/structure
• Modules are used in most programming languages

– ML, C, Pascal, Modula 2, Scala, Go, Erlang, Perl, Phyton, itd.

Modular Languages

• In imperative programming languages
– Program is split into multiple program units or modules.

– A modul gathers code for the implementation of some
conceptual entity or physical object

• Screen, driver, device, data structure, algorithm, etc.

– Module includes an interface and an implementation
• Controled module access and use from other modules

• In functional languages a module is an ADT
– Abstract data type (ADT)

• Common abstract data structure and

• Set of operations for working with abstract data structures.

– Interface/implementation ≡ Signature/structure

• Modules are used in most PLs
– ML, C, Pascal, Modula 2, Scala, Go, Erlang, Perl, Phyton, itd.

Script languages

• Programming languages closely coupled with an
existing system.
– Environments of script languages: editor, Web server,

operation system, games, application programs, etc.

• Very high-level programming languages
– Well-defined and implemeted abstract data structures

• Collections, Bags, Sets, Dictionarys, Associative arrays, etc.

– Often serve as control languages of the host system
– Very slow languages; few 100-1000 times slower than C
– Some develop into general purpose PLs (Python)

• Examples of script languages:
– csh, bash, sed, AWK, Python, Perl, Tcl, Lua, JavaScript,

PhP, JSP, itd.
– First script languages were developed around 1960 (shells)

Logic programming languages

• Programming in Logic, Robert Kowalski
• Predicate calculus

– Horn clauses
– Unification, resolution

• Strong, abstract and simple language
• Back-tracking

– Declarative and procedural semantics of Prolog
– Operator CUT (!)

• Database programming languages
– Datalog

• Sicstus, SB Prolog, SWI Prolog,…

 Contents

• Course organization
• History of programming languages
• Programming models
• Concepts of programming languages
• Meta-Language ML
• Method of the course

Concepts in programming languages

• Programming language is a tool, defined in the
form of a language, that is used for design and
implementation of computer programs.
– A tool is some form of a language
– Text, graphical, 2D, 3D, etc.

• Concepts of programming languages are
abstractions used for the representation of the
structure and behavior of modeled systems.

 Abstraction
• In Philosophy

– A specific operation of the intellect consisting in
detaching some properties and retaining some other
properties of a thing

• Aristotel
– Constructive mental process associated with the

relation between forms (ideas) and concrete objects
– Human mind actively abstracts or extracts forms from

the objects in which they are realized

• St. Thomas Aquinas
– Two kinds of abstractions
– Mind joins properties that are separate from each other
– Mind separates properties that are one

 Concepts in programming languages

• Abstractions integrated into the language
– Values, variables, branch, iteration, function, procedure,

parameter passing, function composition, recursion,
higher-order function, polymorphism, object, method,
class, abstract class, specialization, aggregation,
classification, module, functor, etc.

• Abstractions define language model
– Imperative languages: variables, loops, procedures
– Functional languages: functions, composition, recursion
– Object languages: objects, methods, classes

 Concepts in programming languages

• Algorithmic and data abstractions
– Algorithmic abstractions

• Imperative: sequence, loop, branch, blocks, etc.
• Functional: function, recursion, polymorphism, etc.

– Data abstractions
• Simple: integer, bool, real
• Structured: n-tuple, list, array, dictionary, set, recursive data

structures, etc.

– Algorithmic and data abstractions
• Objects & classes: encapsulation, classification, inheritance, etc.
• Modules: abstract data types, functions, abstract values

 Concepts in programming languages

• Implementation of the language concepts
– Function

• Function call, parameter passing, activation records

– Recursion
• Stack of activation records

– Variables
• Symbol tables, value/reference models, namespaces

– Memory representation of data structures
• Lists, n-tuples, records, unions, objects, classes, modules

– Objects and classes
• Static/dynamic binding, inheritance

– Memory management
• Stack, heap

Properties of abstractions in PL

• Closer to hardware, simpler abstractions
– Basic types: integer, real, string, etc.
– Imperative language: loops, functions, procedures, etc.
– Usually very efficient languages

• Higher-level abstractions
– Objects, classes, modules, functors.

• Not so efficient (inheritance, dynamic binding)
• General purpose but also for specific areas (simulation, parallel

systems, information systems, distributed systems, switching
systems, protocols, etc.)

– High-level abstractions, more directed language
• Language designed for specific problems
• Languages for programming with abstract data structures, e.g.

tables (PL/SQL), Data-flow processing in distributed environemnt
(Spark), Processing and analysing big data (Map-Reduce)

Properties of abstractions in PL

• General high-level programming languages
– Include multiple levels of abstractions

• Usually not the most efficient PLs

– They are among more complex languages
• C++, C#, F#, Ocaml, Java

– General applicability
• Financial analyses, numerical calculations (Fortran, Ocaml)
• System programming (C++, Lua, Rust, Swift, Python, Ocaml)
• Information systems (C#, F#, Java)

 Abstractions

• Study of abstractions can improve learning
process
– COMMUNICATIONS OF THE ACM April 2007/Vol. 50, No. 4

IS ABSTRACTION THE KEY TO COMPUTING?

 Why study concepts in PL?

• We learn about possible ways of expressing ideas
– Concepts of PL are tools for implementing an idea

• Every PL concept defined with abstraction and
implementation
– Every abstraction has a price
– Recursion is expensive; iteration can be very complex
– Working with objects is more expensive than working with

common data structures

• We learn how to use given PL abstractions correctly
– You have to know the tool to be used efficiently
– Examples of using a PL construct are useful
– Formal background of programming language
– Experiences with tools and study of example systems

 Contents

• Course organization
• History of programming languages
• Programming models
• Concepts of programming languages
• Meta-Language ML
• Method of the course

Lambda calculus

• Lambda calculus is the foundamental
formalism for studying programming languages

• Theory of programming languages
– Operational and denotational semantics
– Using rule-based reasoning for:

• deriving expression types, and
• evaluation of expressions.

– Static and dynamic semantics of PL
– Prooving the properties of languages (determinism,

strict typing, termination, etc.).

• Lambda calculus is a topic of the first lecture

Meta-Language

• Developed unintentionally while working on system
for automatic theorem proving

• Logic for computable functions (LCF)
– Robin Milner, Dana Scott
– Stanford 1970-71, Edinburgh 1972-1995
– LCF is a version of lambda calculus
– Automatization of logic reasoning

• Meta-language for LCF system
– ML used for:

• Language for expressing proofs (step-by-step)
• Expressing decisions (tactics) in proving
• Implementation of theorem prover

– Program execution is a search for proof

 Meta-Language

• Success story from functional branch of
programming languages
– Standard ML, SML/NJ, Alice ML, Ocaml, Moscow ML,

Mlton, MLKit, SML.NET, etc.

• Research related to ML
– Hindley-Milner type-checking algorithm

• Algorithm is included in a lecture on type checking.

– Polimorfic lambda calculus (System F, Girard)
• Implemented in Ocaml (System F=LCF)

– Type systems, meta-programming
• COQ, Twelf, CoffeeScript and TypeScript

– ML had significant influence on development of PLs

 Objective Caml

• Objective Caml is reference language
– Caml core is pure lambda calculus.
– Theoretically well-studied language.
– Caml has strong typing.
– Imperative constructs.
– Parametric polymorphism
– Nice object model
– Modules and functors

• Ocaml offers more than one programming models
– Imperative + functional + object-oriented + modular

programming model
– Also other PLs: C#, F#, Rust, Scala

communications of the acm
| november 2 0 1 1 | vo l . 5 4 | n o. 1 1

Who uses OCaml

• Facebook
• Jane Street
• Bloomberg
• Microsoft
• Docker
• Citrix
• See: https://ocaml.org/learn/companies.html

F#

• F# is like C#
– .NET language
– F# is based on OCaml
– C# is C-like language, similar to Java and C++ …

• Features
– Lightweight syntax
– Immutable by default
– Type inference and automatic generalization
– First-class functions
– Powerful data types
– Pattern matching
– Async programming

Courses taught in OCaml
https://ocaml.org/learn/teaching-ocaml.html

North America

 Boston College - Computer Science I (CS 1101)

 Brown University - An Integrated introducion (CS 17/18) (along with Racket, Scala and Java)

 Caltech - Fundamentals of Computer Programming

 Columbia University - Programming Languages and Translators

 Cornell University - Data Structures and Functional Programming (CS 3110)

 Harvard University - Principles of Programming Language Compilation (CS153)

 Harvard University - Introduction to Computer Science II: Abstraction & Design (CS51)

 McGill University - Programming Languages and Paradigms (COMP 302)

 Princeton University - Functional Programming (COS 326)

 Rice University - Principles of Programming Languages (COMP 311)

 University of California, Los Angeles - Programming Languages (along with Python, Java) (CS 131)

 University of California, San Diego - Programming Languages: Principles and Paradigms (CSE130-a) (with Python, Prolog)

 University of Illinois at Urbana-Champaign - Programming Languages and Compilers (CS 421)

 University of Maryland (along with Ruby, Prolog, Java) - Organization of Programming Languages (CMSC 330)

 University of Massachusetts Amherst - Programming Languages (CMPSCI 631)

 University of Massachusetts - Programming Languages (CS691F)

 University of Minnesota Twin Cities — Advanced Programming Principles (CSCI 2041)

 University of Pennsylvania - Compilers (CIS341)

 University of Pennsylvania - Programming Languages and Techniques I (CIS120)

 University of Virginia - Programming Languages (CS 4610)

Courses taught in OCaml
https://ocaml.org/learn/teaching-ocaml.html

Europe
 Aarhus University - The compilation course (along with Java)

 Aix-Marseille University - Functional Programming

 Epita - Introduction to Algorithms (Year 1 & 2)

 ISAE/Supaéro - Functional programming and introduction to type systems

 Universidade da Beira Interior - Programming Languages and Compilers Design

 University Pierre & Marie Curie - Types and static analysis (5I555)

 University Pierre & Marie Curie - Models of programming and languages interoperability (LI332)

 University of Birmingham - Foundations of Computer Science (FOCS1112)

 University of Cambridge - Advanced Functional Programming (L28)

 University of Innsbruck - Programming in OCAML (SS 06)

 University of Rennes 1 - Programming 2 (PRG2)

 University of Wrocław - Functional Programming

 Université Paris-Diderot - Advanced Functional Programming (PFAV)

 Université Paris-Diderot - Functional Programming (PF5)

Asia
 Indian Institute of Technology, Delhi - Introduction to Computers and Programming (CSL 101) (along with Pascal and Java)

 Contents

• Course organization
• History of programmiing languages
• Programming models
• Concepts of programming languages
• Meta-Language ML
• Method of course

Methods of the course

• Concepts of programming languages
– Language is »conceptual universe” (Perlis)

• Learning more than one PL model
– Functional, Imperative, Object-oriented, Modular, Logical

• Learning more than one programming language
– Lambda calculus, ML, Python, Java, C

• Comparing the concepts of PL
– Which construct is more appropriate in the given context?
– Implementations of concepts can be different

• Implementations of PL concepts
– Knowledge about implementation of PL concepts enables

writing efficient programs
54

Languages used in the course
• Lambda calculus

– Formal foundation
– Basic principles of functional PLs
– Lisp: first programming language based on LC

• Meta-Language
– Mathematical foundations, strong typing, mainly functional
– Ocaml contains four PL models

• PLs for comarison (with Ocaml): C, Java, Python
– Python is currently the most popular language.
– C is still among the most popular languages.
– Java uses clean (simplified) object-oriented model.

• Additonal PLs: C++, Fortran, Scala, Go
– Presenting specific concepts of PLs

55

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

