
Lectures 5-6

Imperative languages

Iztok Savnik, FAMNIT

March, 2024.

1

Literature

• Textbooks:
– John Mitchell, Concepts in Programming Languages,

Cambridge Univ Press, 2003 (Chapters 5 and 8)
– Michael L. Scott, Programming Language Pragmatics

(3rd ed.), Elsevier, 2009 (Chapters 6 and 8)

• Many examples are from:
– Emmanuel Chailloux, Pascal Manoury, Bruno Pagano,

Developing Applications With Objective Caml, English
translation, O’REILLY, 2000

Outline

• Introduction
• Memory and variables
• Sequences, conditional statements and blocks
• Loops
• Procedures and functions
• Records
• Pointers
• Arrays
• Sets, unions, dictionaries

Functional vs. imperative approach

• Functional programming
– Abstract computation model is λ-calculus
– Program is a function represented by a λ-term,

• The outcome is obtained by its reduction

– Functions do not have side effects
• Variables outside the function can not be altered

• Imperative programming
– Abstract computation model is a Turing machine
– Program is a sequence of instructions

• Program has states; results are computed by executing
instructions

– Instructions change the state of main memory
• The outcome is obtained when the final state is reached

Imperative programming

• Early imperative programming languages
– Fortran, 1954; mathematical formulas

• Still popular programming language

– BASIC, 1960; Beginners' All-purpose Symbolic
Instruction Code

– Pascal, 1970; Algorithms + Data Structures =
Programs

– C, 1972; Constructs map efficiently to typical machine
instructions

• January 2021, C was ranked first in the TIOBE index
• On top of lists: on demand, job offers, Web search results

– Fortran is still among the most popular languages for
numeric processing

Example

Let us compute the greatest common divisor of two
integers

let rec gcd x y =

 if y = 0 then x

 else gcd y (x mod y);;

int gcd(int x, int y) {

 while (y != 0) {

 int t = x % y;

 x = y; y = t;

 }

 return x;

}

OCaml

C

Functional: values, recursion

Imperative: variables, loops, sequences

Structured control

• Structured programming, 1970
– Emerged in late 1950s with ALGOL 58, ALGOL 60
– Coined by Edsger W. Dijkstra

• Paper “Go To Statement Considered Harmful", open letter, 1968

– Structured and unstructured control flow
• Unstructured: GOTO statements
• Structured: syntactical constructs direct computation

– »Revolution« in software engineering
• Top-down design (i.e., progressive refinement)
• Modularization of code
• Structured types (records, sets, pointers multidim. arrays)
• Descriptive variable and constant names
• Extensive commenting conventions

Structured control

• Strong influence on imperative programming
languages
– Most structured programming ideas were

implemented in imperative languages
– Pascal, C, Modula, Ada, Oberon, Java, C#, …
– But also in ML, Scala, F#, ...

• Most of modern algorithms can be elegantly
expressed in imperative languages
– All classical algorithms implemented in imperative

languages (Dijkstra, Floyd, Knuth, ...)

Concepts of imperative languages

• Read-write memory, variables
• Instructions and sequences of instructions
• Blocks
• Conditional statements
• Loops - conditional loops, iterations through

ranges or through containers
• Procedures and functions
• Records and arrays
• Sets, unions and dictionaries

Outline

• Introduction
• Memory and variables
• Sequences, conditional statements and blocks
• Loops
• Procedures and functions
• Records
• Pointers
• Arrays
• Sets, unions, dictionaries

Program memory

Variables

• Memory of a program is organised into memory cells
• Any cell can be accessed via its address; an integer,

usually in range 0 – (262 − 1)
• Variable is a symbolic name for a memory space of

given size
– Variable can be accessed by using the name instead of the

address of the memory cell

• Namespaces in a program
– A program context (block, function, module)
– A namespace includes information about variables

• Name (identifier), the address of the beginning of memory space, the
size of allocated memory

– Namespaces are often organized hierarchically

Operations with variables

• Program must allocate the memory space before the
variable is used
– The allocation can be either static or dynamic

• Program reads the contents of the memory in the
moment we refer to the identifier (name)

• The contents of the memory referred by a variable is
changed by assignment

• The variable is freed either on the end of execution or
on demand

• Possible problems:
– Read/write unallocated memory, concurrent write, memory

leak
– We will study these problems in lecture on memory

management

Models of variables

• Two models of variabes
– Value model and reference model

• Value model of variables
– Variable is a named container for a value
– Location and value (see variable a)

• l-value = refers to the location of a variable (left-hand side of
assignment statements)

• r-value = refers to the value of a variable (expressions that
denote values)

• both l-values and r-values can be complicated expressions

– An expression can be either an l-value or an r-value,
depending on the context

– C, C++, Pascal, Ada, Java (simple values), etc.

d = a;

a = b + c;

Models of variables

• Reference model of variables

– A variable is a named reference to a value
• every variable is an l-value
• variable in a context of an r-value must be dereferenced
• dereference is automatic in most PL but not in ML

– Reference model is (not) more expensive
• Use multiple copies of immutable objects

– Algol68, Clu, Lisp/Scheme, Python, ML, Haskell, and
Smalltalk

b := 2;

c := b;

a := b + c;

Variables in C

• Two important operators
– Operator »&«: returns address of variable
– Operator »*«: returns value of variable (from an address)

int x = 1, y = 2, z = 3;

int *ip;

ip = &x;

y = *ip;

*ip = 0;

*ip = *ip + 10;

y = *ip + 1;

z = *ip * 10;

1

2

3

y

x

z

ip

Value model

10

11

100

y

x

z

ip

Two important operators
– Operator »&«: returns address of variable
– Operator »*«: returns value of a variable

swap(&a, &b);

...

void swap(int *px, int *py) {

 int temp;

 /* interchange *px and *py */

 temp = *px;

 *px = *py;

 *py = temp;

}

a:

b:

Pointers and arrays in C

• C has pointer arithmetic

int a[10];

// a[0], a[1],..., a[9]

pa = &a[0];

z
/* strlen: return length of string s */

int strlen(char *s) {

 int n;

 for (n = 0; *s != '\0', s++)

 n++;

 return n;

}

Variables in OCaml

• Variables are implemented by using a reference type
• OCaml has weaker, but safer model of a variable

– Reference is initialised on creation by the referenced value
– Memory space is automatically allocated using the type of

referenced value

– Assignment is a special function with resulting type unit
– The result of reading has the type of referenced variable

• Drawbacks of the model
– Functions cannot be referenced
– We do not have full access to the program’s memory – no

pointers, no pointer arithmetic

type ’a ref = {mutable contents: ’a}

Examples of variables in Ocaml

let x = ref 2 ;; (* declaration and allocation

val x : int ref = {contents=2}

!x;; (* reading, notice operator ‘!‘

- : int = 2

x ;; (* reading of the reference

- : int ref = {contents=2}

x := 5; !x;; (* assignment

- : int = 5

x := !x * !x; !x;; (* reading, operation, and assignment

- : int = 25

let l = ref [1;2;3];;

val l : int list ref = {contents = [1; 2; 3]}

!l;;

- : int list = [1; 2; 3]

l := 0::!l; !l;;

- : int list = [0; 1; 2; 3]

Outline

• Introduction
• Memory and variables
• Sequences, conditional statements and blocks
• Loops
• Procedures and functions
• Records
• Pointers
• Arrays
• Sets, unions, dictionaries

Sequence

• Sequence is foundamental abstraction used to
describe algorithms
– Von Neumann’s instruction cycle

• Sequence of instructions change the state of
variables (memory)

LOOP: execute *PC; // execute instruction referenced by PC

 PC++; // increment programm counter (PC) by 1

 goto LOOP; // loop

int t = x % y;

x = y;

y = t;

Sequences in OCaml

• Syntax of OCaml sequences

• Every expression in a sequence must be of type
unit.

let t = ref 0

and x = ref 42

and y = ref 28 in begin

 t:= !x mod !y;

 x:=!y;

 y:=!x ;

end;;

<expr1>; <expr2>; <expr3> (* list of exprs *)

print_int 1; 2; 3;;

Warning 10: this expression should have type unit.

1- : int = 3

print_int 2; ignore 4; 6;;

2- : int = 6

Blocks
• Imperative languages are typicaly block-structured

languages
• Block is a sequence of statements enclosed by some

structural language form
– Begin-end blocks, loop blocks, function body, etc.

begin

 let t = ref 0

 and x = ref 42

 and y = ref 28 in

 begin

 t:= !x mod !y;

 x:=!y;

 y:=!x;

 end;

end;;

Blocks

• Each block is represented using activation record
– Includes parameters and local variables
– Includes memory location for return value
– Includes control pointers to be detailed in next lectures
– Control pointers are used to control computation

• Activation records are allocated on program stack
– Presented in lecture on Memory management

• Machine languages use
instructions for
conditional jumps
– Initial imperative approach

• OCaml syntax

• Conditional statements is a concept shared
between imperative and functional languages
– Both branches must agree on type in Ocaml
– Conditional statement in Ocaml has value

Conditional
statements

(if 1 = 0 then 1 else 2) + 10;;

- : int = 12

if <cond_expr> then <expr_true> else <expr_false> ;;

Outline

• Introduction
• Memory and variables
• Sequences, conditional statements and blocks
• Loops
• Procedures and functions
• Records
• Pointers
• Arrays
• Sets, unions, dictionaries

Loops – while-do

• Repeat a block of commands while (or until) a
condition is satisfied
– Loop body changes

the state of program

• Statement while
in OCaml

while <cond_expr> do

 <sequence>

done

let gcd (x,y) =

 let t = ref 0 in

 while !y != 0 do

 t := !x mod !y; x := !y; y := !t

 done; !x;;

val gcd : int ref * int ref -> int = <fun>

let a = ref 42 and b = ref 28;;

val a : int ref = {contents = 42}

val b : int ref = {contents = 28}

gcd (a,b);;

- : int = 14

(!a,!b);; (* passing references! *)

- : int * int = (14, 0)

Loops – for statement

• Statement for is classical
construct of imperative
programming languages

• Statement for in OCaml

for <sym> = <exp1> to <exp2> do

 <exp3>

done

for <sym> = <exp1> downto <exp2> do

 <exp3>

done

/* atoi: convert s to integer */

int atoi(char s[])

{

 int i, n, sign;

 for (i = 0; isspace(s[i]); i++) ; /* skip white space */

 sign = (s[i] == '-') ? -1 : 1;

 if (s[i] == '+' || s[i] == '-') i++; /* skip sign */

 for (n = 0; isdigit(s[i]); i++) /* convert s to integer */

 n = 10 * n + (s[i] - '0');

 return sign * n;

}

• Used in
 - Impertive

 - Script

 - OO

 - Moduar
 programming
 languages

Ocaml: for->while statement

let is_digit = function '0' .. '9' -> true | _ -> false;;

let is_white = function ' ' | '\n' | '\t' -> true | _ -> false;;

let int_of_string s =

 begin

 let i = ref 0 and n = ref 0 in

 while is_white(s.[!i]) do i := !i+1; done;

 let sign = (if s.[!i]='-' then -1 else 1) in

 if s.[!i]='+' || s.[!i]='-' then i := !i+1;

 while is_digit(s.[!i]) do

 n := 10 * !n + (int_of_char(s.[!i]) - int_of_char('0'));

 i := !i+1;

 done;

 sign * !n;

 end;;

let s = " -12\n";;

val s : string = " -12\n"

int_of_string s;;

- : int = -12

Loops – do-while statement

• Loop condition is at the end of loop block
– do-while syntax

in C prog. lang.
(also in Java)

– Not included in
Ocaml!

– repeat-until in
Pascal

• Example:
– Kernighan & Ritchie:

The C programming
language

/* itoa: convert n to characters in s */

void itoa(int n, char s[]) {

 int i, sign;

 if ((sign = n) < 0) /* record sign */

 n = -n; /* make n positive */

 i = 0;

 do { /* generate digits in reverse order */

 s[i++] = n % 10 + '0'; /* get next digit */

 } while ((n /= 10) > 0); /* delete it */

 if (sign < 0)

 s[i++] = '-';

 s[i] = '\0';

 reverse(s);

}

do <sequence>

while <cond_expr>

Ocaml: do-while->while statement

let string_of_int n =

 begin

 let s = Bytes.make 10 ' ' and sign = n and nr = ref n and i = ref 0 in

 if sign<0 then nr := -n;

 Bytes.set s !i (char_of_int(!nr mod 10 + int_of_char('0')));

 nr := !nr / 10;

 while (!nr > 0) do

 i := !i+1;

 Bytes.set s !i (char_of_int(!nr mod 10 + int_of_char('0')));

 nr := !nr / 10;

 done;

 if (sign < 0) then begin i := !i+1; Bytes.set s !i '-'; end;

 reverse(Bytes.to_string (Bytes.trim s));

 end;;

Loop control

• Loop control in C programming language
– Jumping out of a loop – break
– Jumping to a loop condition – continue
– Not included in Ocaml!

– Kernighan & Ritchie:
The C programming
language

/* trim: remove trailing blanks, tabs, newlines */

int trim(char s[]) {

 int n;

 for (n = strlen(s)-1; n >= 0; n--)

 if (s[n] != ' ' && s[n] != '\t' && s[n] != '\n')

 break;

 s[n+1] = '\0';

 return n;

}

for (i = 0; i < n; i++)

 if (a[i] < 0)

 /* skip negative elements */

 continue;

 ...

 /* do positive elements */

Outline

• Introduction
• Memory and variables
• Sequences, conditional statements and blocks
• Loops
• Procedures and functions
• Records
• Pointers
• Arrays
• Sets, unions, dictionaries

Procedures and functions

• Abstraction is a process by which the programmer
can associate a symbol or a pattern with a
programming language construct.
– Control and data abstractions

• Subroutines are the principal mechanism for control
abstraction.
– Part of program with well defined input and output is

abstracted as subrutine, procedure, or function.
– Subrutine performs operation on behalf of caller.
– Caller passes arguments to subrutine by using parameters
– Subrutine that returns values is a function.
– Subrutine that does not is called a procedure.

Procedures and functions

• Most subroutines have parameters
• Procedure was first abstraction in Algol-family of

programming languages
– Formal and actual parameters of procedure

– Actual parameters are mapped to formal parameters

• The most common parameter-passing modes
– Some languages define a single set of rules that apply

to all parameters (C, Java, Fortran, ML, and Lisp)
– Others have more modes of parameter passing

(Pascal, C++, Ada, ...)

procedure Proc(First : Integer; Second: Character);

Proc(24,’h’);

Parameter passing
• Input and output of procedure is realized by

means of parameter passing
– Passing values

• C (only cbv), Java,
Ocaml, C++, Pascal, ...

– Passing references
• Pascal, C++, Fortran, ...

• Other parameter passing issues
– Passing structured things

• arrays, structures, objects

– Missing and default parameters
– Named parameters
– Variable-length argument lists

Procedure Square(Index : Integer;

 Var Result : Integer);

 Begin

 Result := Index * Index;

 End

Passing values

• The most commonly used method
– Values of actual parameters are copied to formal

parameters
– Java uses only this method (arrays and structures are

identified by references)

• Parameter is seen as local variable of procedure
– It is initialized by the value of actual parameter

int plus(int a, int b) {

 a += b;

 return a;

}

int f() {

 int x = 3; int y = 4;

 return plus(x, y);

}

OcamlJava

let plus ((a:int), (b:int)) : int = a + b;;

val plus : int * int -> int = <fun>

let f () =

 let x = 3 and y = 4

 in plus (x,y);;

val f : unit -> int = <fun>

f ();;

- : int = 7

Passing references
• Reference to variable is passed to procedure

– Code of procedure is changing passed variable
– All changes are retained after the call
– Passed variable and formal parameter are aliases

• Best method for larger structures!

void plus(int a, int *b) {

 *b += a;

}

...

int x = 3;

plus(4, &x);

// x == 7

...

C

let plus ((a:int), (b:int ref)) : unit =

 b := a + !b;;

val plus : int * int ref -> unit = <fun>

let a = 4 and b = ref 3;;

val a : int = 4

val b : int ref = {contents = 3}

plus (a,b);;

- : unit = ()

!b;;

- : int = 7

Ocaml

Variations on value and reference
parameters
• C++ references

– In C++, C references are made explicit
– C++ implements call-by-reference

• Call-by-sharing
– Barbara Liskov, CLU (also Smalltalk)
– Objects (identifiers) are references
– No need to pass reference (to references)
– Just pass reference

void swap(int &a, int &b) { int t = a; a = b; b = t; }

Variations on value and reference
parameters
• Call-by-value/Result

– Actual params are copied to formal params initially
– Result is copied back to actual parameter before exit

• Read-only parameters
– Modula-3 provided read-only params
– Parameter values can not be changed
– Read-only params are available also in C (const)

• Parameters in Ada,
– Modes: in, out, in out (also in PL/SQL)
– Named parameters / position parameters

Variations on value and reference
parameters
• Default values of parameters

– Ada, Oracle PL/SQL

• Variable length argument lists
– Programming language C, Perl, ...
– No type-checking, no control, may be dangerous

Outline

• Introduction
• Memory and variables
• Sequences, conditional statements and blocks
• Loops
• Procedures and functions
• Records
• Pointers
• Arrays
• Sets, unions, dictionaries

Type declaration

• Type is defined from simpler types
– By using type constructors
– *, |, record, list, array, ...

• Type definition in Ocaml
• No parametrized (polymorphic)

types in imperative languages!
– Just concrete

• Records, Pointers and Arrays !
– Types of imperative programming languages
– Presented in this section

type name = typedef ;;

type name1 = typedef1

and name2 = typedef2

...

and namen = typedefn ;;

 Records

• Record types allow related data of heterogeneous
types to be stored and manipulated together.

• Records in programming languages
– Originally introduced by Cobol
– In Algol 68 called them structures (also in C)

• They use the keword struct

• Later in Fortran 90 they named them record type

– In C++ structures are special form of a class
– Java has no notion of a structure
– C# and Swift use reference model for classes and

value model for the type struct (no inheritance)

 Records

• In C, a simple record might be defined as follows:
• Each of the record components

is known as a field.
• To refer to a given field of

a record, most languages
use “dot” notation:

 Records in Ocaml

• Record is a product with named components
• Record type definition and record constr. in Ocaml

• Record components can be defined mutable
– Component assignment operation

type name = { name1 : t1 ; . . . ; namen : tn }

{ name1 = expr1 ; . . . ; namen = exprn }

type name = { ...; mutable namei: ti ; ... } expr1.name <- expr2

type complex = { mutable re:float;
 mutable im:float } ;;

type complex = { mutable re : float;
 mutable im : float; }

let c = {re=2.;im=0.} ;;

val c : complex = {re=2; im=0}

c.im <- 3.;;

- : unit = ()

c;;

- : complex = {re = 2.; im = 3.}

c = {im=3.;re=3.} ;;

- : bool = true

 Records in Ocaml

• Operations:
– Accessing components
– Pattern matching

let add_complex c1 c2 = {re=c1.re+.c2.re; im=c1.im+.c2.im};;

val add_complex : complex -> complex -> complex = <fun>

add_complex c c ;;

- : complex = {re=4; im=6}

let mult_complex c1 c2 = match (c1,c2) with

({re=x1;im=y1},{re=x2;im=y2}) -> {re=x1*.x2-.y1*.y2; im=x1*.y2+.x2*.y1} ;;

val mult_complex : complex -> complex -> complex = <fun>

mult_complex c c ;;

- : complex = {re=-5; im=12}

expr.name

{ namei = pi ; . . . ; namej = pj }

Example
in Ocaml

let moveto p dx dy =

 begin

 p.xc <- p.xc +. dx;

 p.yc <- p.yc +. dy;

 end;;

val moveto : point -> float -> float -> unit = <fun>

moveto p 1.1 2.2 ;;

- : unit = ()

p ;;

- : point = {xc=4.1; yc=2.2}

type point = { mutable xc : float; mutable yc : float } ;;

type point = { mutable xc: float; mutable yc: float }

let p = { xc = 1.0; yc = 0.0 } ;;

val p : point = {xc=1; yc=0}

p.xc <- 3.0 ;;

- : unit = ()

 Memory layout for records

• The fields of a record are usually stored in
adjacent locations in memory.

• Compiler keeps track of the offset
of each field within each rec. type.

• Value model (of var.)
– Nested records are

embedded in parent record

• Reference model
– Fields are references to data

in another location.

 Memory layout for records

• Layout of memory for a nested struct (class) in C
(top) and Java (bottom).

Outline

• Introduction
• Memory and variables
• Sequences, conditional statements and blocks
• Loops
• Procedures and functions
• Records
• Pointers
• Arrays
• Sets, unions, dictionaries

 Pointers

• A pointer is a reference to an object in memory
– There were attempts to call it reference
– Pointer is usually represented by a memory address
– A pointer can be typed (ML,C++,Java, …)

• PL then knows the structure and size of referenced object
• The access to the object can now be checked by a compiler

– A pointer can be untyped (Lisp,C)
• Programmer must know the object pointed to by a pointer
• Compiler does not know the structure of object
• Therefore, it can not check the access to the object

 Pointers and recursive structures

• A recursive data structure includes at least one
reference to an object of the same type
– A recursive structure can be implemented by using a

structure that includes components
• Records, products, lists, arrays and unions.

• Languages using reference model
– Components include references to other objects
– No need to define pointers; they are defined implicitly

• Languages using value model
– Components must include pointers to objects and not

object values

 Pointers

• Pointed location
– In some languages pointers are restricted to refer to

objects on heap (Java, Pascal, Ada, Modula)
• Object is created with operation new() that returns pointer
• This is the only way you can create a pointer

– Other languages use pointers that can point to any
location (C, C++)

• This languages use operator address-of ‘&’

• Disposing allocated objects
– Some languages use explicit operation for releasing the

allocate memory space (C,C++,Pascal)
• Possible errors: memory leak, accessing disposed object

– Others use automatic memory management (Java,C#)

 Pointers

• Operations on pointers depend on the model of
variables
– Allocation and deallocation of objects on the heap

• Reference model usually implies automatic memory management
• Value model often implies manual storage allocation/deallocation

– Dereferencing a pointer to access an objects to which it
points

• Need to dereference in the case of reference model
• No need to dereference in the case of value model

– Assignment of one pointer to another
• In the case of a reference model, pointers are copied as

references
• In case of value model, an assignment copies the value, so the

pointers have to be used

Reference model

• Recursive data structures include the pointers to
structures of the same kind

• An example of a recursive data structure in Ocaml
– ML uses references to idenfify tuples, lists, records,

arrays, ...

type ctree = Empty | Node of char * ctree * ctree;;

type ctree = Empty | Node of char * ctree * ctree

Node('R',Node('X',Empty,Empty),

 Node('Y',Node('Z',Empty,Empty),

 Node('W',Empty,Empty)))

Recursive types in OCaml

• Recursive data structures in languages with
explicit pointers
– Imperative languages with

the value model of variables
– C, C++, ML, ...

• Example in Pascal and C

Value model

type 'a rnode = { mutable cont: 'a; mutable next: 'a rlist }

 and 'a rlist = Nil | Elm of 'a rnode;;

type 'a rnode = { mutable cont : 'a; mutable next : 'a rlist; }

and 'a rlist = Nil | Elm of 'a rnode

let l1 = Elm {cont = 1; next = Elm {cont = 2; next = Nil}};;

val l1 : int rlist = Elm {cont = 1; next = Elm {cont = 2; next = Nil}}

let cons v l = Elm {cont=v; next=l};;

val cons : 'a -> 'a rlist -> 'a rlist = <fun>

let (**) v l = cons v l;;

val (**) : 'a -> 'a rlist -> 'a rlist = <fun>

let l2 = cons 3 (cons 4 Nil));;

val l2 : int rlist = Elm {cont = 3; next = Elm {cont = 4; next = Nil}}

let l3 = 5**6**Nil;;

val l3 : int rlist = Elm {cont = 5; next = Elm {cont = 6; next = Nil}}

Example: Implementation of lists

exception EmptyList;;

exception EmptyList

let head l = match l with Nil -> raise EmptyList | Elm r -> r.cont;;

val head : 'a rlist -> 'a = <fun>

let tail l = match l with Nil -> raise EmptyList | Elm r -> r.next;;

val tail : 'a rlist -> 'a rlist = <fun>

head l1;;

- : int = 1

tail l1;;

- : int rlist = Elm {cont = 2; next = Nil}

Example: Implementation of lists

let rec length l = match l with Nil -> 0 | Elm {next=t} -> 1+length t;;

val length : 'a rlist -> int = <fun>

length l1;;

- : int = 2

append l1 l2;;

- : int rlist =

Elm {cont=1; next=Elm {cont=2; next=Elm {cont=3; next=Elm {cont=4; next=Nil}}}}

l1;;

- : int rlist = Elm {cont=1; next=Elm {cont=2; next=Nil }}

l2;;

- : int rlist = Elm {cont=3;next=Elm {cont=4;next=Nil }}

let rec append l1 l2 = match l1,l2 with

 Elm r1,_ -> Elm {cont=r1.cont; next=append r1.next l2}

| Nil,Elm r2 -> Elm {cont=r2.cont; next=append Nil r2.next}

| Nil,Nil -> Nil;;

val append : 'a rlist -> 'a rlist -> 'a rlist = <fun>

Example: Implementation of lists

append1 l1 l2;;

- : int rlist =

Elm {cont=1; next=Elm {cont=2; next=Elm {cont=3; next=Elm {cont=4; next=Nil}}}}

l1;;

- : int rlist =

Elm {cont=1; next=Elm {cont=2; next=Elm {cont=3; next=Elm {cont=4; next=Nil}}}}

l2;;

- : int rlist = Elm {cont=3;next=Elm {cont=4;next=Nil}}

let rec append1 l1 l2 = match l1 with

 Nil -> l2

| Elm r when r.next=Nil -> r.next <- l2; l1

| Elm r -> ignore (append1 r.next l2); l1;;

val append1 : 'a rlist -> 'a rlist -> 'a rlist = <fun>

Example: Implementation of lists

Outline

• Introduction
• Memory and variables
• Sequences, conditional statements and blocks
• Loops
• Procedures and functions
• Records
• Pointers
• Arrays
• Sets, unions, dictionaries

 Arrays

• Arrays are data structures holding the finite number
of elements of certain data type

• Semantically, array is a mapping from an index type
to a component or element type.
– Index is usually an integer but many PLs can use discrete

type

• In imperative languages an array is an important
data structure
– C, C++, Java, Fortran, Pascal, ...
– Similar role in imperative PL as lists have in functional PL.

• An array is by definition mutable, but its size is fixed

Syntax and operations

• Accessing elements of array
– Most languages append index delimited by a variant of

parentheses to the array name (a(), a[], a{}, ...)
– Indexes of arrays are usually of integer type but can be

also of discrete type

• Declaration of an array
– Indexes in most

languages are
defined by range

– Index in C starts
with 0

char[] upper; /* Java */

char upper[]; /* alternative declaration */

upper = new char[26];

char upper[26]; /* C */

character, dimension (1:26) :: upper /* Fortran */

character (26) upper /* shorthand notation */

var upper : array [’a’..’z’] of char; /* Pascal */

Dimensions, Bounds, and Allocation

• In prev. examples, the shape of the array (including
bounds) was specified in the declaration.

• For such static shape arrays, storage can be
managed in the usual way
– Static allocation for arrays whose lifetime is the entire

program;
– Stack allocation for arrays whose lifetime is an invocation

of a subroutine;
– Heap allocation for dynamically allocated arrays with

more general lifetime.

• Storage management is more complex for arrays
– Whose shape is not known until elaboration time, or
– Whose shape may change during execution.

Dimensions, Bounds, and Allocation

• For dynamic arrays, compiler must
– Allocate space and make shape info available at run time
– Some PLs allow the number and bounds of dimensions to

be dynamic, others allow just bounds to be dynamic

• Allocation of dynamic arrays
– Local array may still be allocated in the stack.

• Shape, is known at elaboration time

– An array whose size may change is allocated in the heap.

• Descriptors, or dope vectors, hold shape
information at run time
– Offsets for record components, lower bound, the size and

upper bound of each dimension
– Dope vector may be stored in activation record on stack,

or together with an array on heap

Memory Layout

• Arrays in most language implementations are
stored in contiguous locations in memory.
– One-dimensional array: one elem. after another
– Multi-dimensional array: row-major, column-major

• Important for nested loops to access all the elements of a large,
multidi-mensional array.

• Speed of such loops depends heavily effectiveness of caching

– True multidimensional arrays
use contiguous layout

• Row-Pointer Layout
– Not stored contiguously, but in blocks including 1d arrays
– Advantages: variable sized of rows, initialized from pieces
– C, Ocaml, Java, C# (many provide both layouts)

Arrays in OCaml

• Elements can be
enumerated between [|...|]

• Arrays are integrated into Ocaml
– (but not so profoundly as lists)

• Similarly to lists, there is a module Array that
includes all necessary operations

• Create an array
• Access/update

an array element
– Accessing an element
– Setting new value

let v = [| 3.14; 6.28; 9.42 |] ;;

val v : float array = [|3.14; 6.28; 9.42|]

let v = Array.create 3 3.14;;

val v : float array = [|3.14; 3.14; 3.14|]

expr1.(expr2)

expr1.(expr2) <- expr3

Arrays in OCaml

• Example:
• Array index must not

go accross the borders

• Checking that the index is not used outside
borders is expensive
– Some languages do not check this by default (C)

v.(1) ;;

- : float = 3.14

v.(0) <- 100.0 ;;

- : unit = ()

v ;;

- : float array = [|100; 3.14; 3.14|]

v.(-1) +. 4.0;;

Uncaught exception: Invalid_argument("Array.get")

Functions on arrays
let n = 10;

val n : int = 10

let v = Array.create n 0;;

val v:int array = [|0; 0; 0; 0; 0; 0; 0; 0; 0; 0|]

for i=0 to (n-1) do v.(i)<-i done;;

- : unit = ()

v;;

- : int array = [|0; 1; 2; 3; 4; 5; 6; 7; 8; 9|]

let reverse v =

 let tmp=ref 0

 and n = Array.length(v)

 in for i=0 to (n/2-1) do

 tmp := v.(i);

 v.(i) <- v.(n-i-1);

 v.(n-i-1) <- (!tmp);

 done;;

- : unit = ()

reverse(v);;

- : int array = [|9; 8; 7; 6; 5; 4; 3; 2; 1; 0|]

let u = [|2;3|];;

val u : int array = [|2; 3|]

let m = 2;;

val m : int = 2

let subarray u v =

 let found = ref false

 and i = ref 0

 in while ((!i<=(n-m)) && not !found) do

 found := true;

 for j=0 to (m-1) do

 if v.(!i+j) != u.(j) then

 found := false

 done;

 i := !i+1

 done;

 !found;;

val subarray : ’a array -> ’a array -> bool = <fun>

subarray u v;;

- : bool = true

Example: subarray()

let prefix u v i =
 let found = ref true
 and m = Array.length(u)
 in for j=0 to (m-1) do
 if v.(i+j) != u.(j) then
 found := false
 done;
 !found;;
val prefix : ’a array -> ’a array -> int ->
 bool = <fun>
prefix u v 0;;
- : bool = false
prefix u v 2;;
- : bool = true

let subarray u v =
 let found = ref false
 and i = ref 0
 and m = Array.length(u)
 and n = Array.length(v)
 in while ((!i<=(n-m)) && not !found) do
 found := prefix u v !i;
 i := !i+1
 done;
 !found;;
val subarray : 'a array -> 'a array ->
 bool = <fun>

Matrix in Ocaml is array
of arrays

let v = Array.create 3 0;;
val v : int array = [|0; 0; 0|]
let m = Array.create 3 v;;
val m : int array array =
 [|[|0; 0; 0|]; [|0; 0; 0|]; [|0; 0; 0|]|]

v.(0) <- 1;;
- : unit = ()
m;;
- : int array array =
 [|[|1; 0; 0|]; [|1; 0; 0|]; [|1; 0; 0|]|]

1 0 0

0 1 20

1

2

m

v

let v2 = Array.copy v ;;
val v2 : int array = [|1; 0; 0|]
let m2 = Array.copy m ;;
val m2 : int array array = [|[|1; 0; 0|]; [|1; 0; 0|]; [|1; 0; 0|]|]
v.(1)<- 352;;
- : unit = ()
v2;;
- : int array = [|1; 0; 0|]
m2 ;;
- : int array array = [|[|1; 352; 0|]; [|1; 352; 0|]; [|1; 352; 0|]|]

Matrices in Ocaml

let m = Array.create_matrix 4 4 0;;

val m : int array array = [|[|0; 0; 0; 0|]; [|0; 0; 0; 0|]; [|0; 0; 0; 0|]; [|0; 0; 0; 0|]|]

for i=0 to 3 do m.(i).(i) <- 1; done;;

- : unit = ()

m;;

- : int array array = [|[|1; 0; 0; 0|]; [|0; 1; 0; 0|]; [|0; 0; 1; 0|]; [|0; 0; 0; 1|]|]

m.(1);;

- : int array = [|0; 1; 0; 0|]

Operations on matrices

let add_mat a b =

 let r = Array.create_matrix n m 0.0 in

 for i = 0 to (n-1) do

 for j = 0 to (m-1) do

 r.(i).(j) <- a.(i).(j) +. b.(i).(j)

 done

 done ; r;;

val add_mat : float array array -> float array array -> float array array = <fun>

a.(0).(0) <- 1.0; a.(1).(1) <- 2.0; a.(2).(2) <- 3.0;;

- : unit = ()

b.(0).(2) <- 1.0; b.(1).(1) <- 2.0; b.(2).(0) <- 3.0;;

- : unit = ()

add_mat a b;;

- : float array array = [|[|1.; 0.; 1.|]; [|0.; 4.; 0.|]; [|3.; 0.; 3.|]|]

Matrices

• Multidimensional
arrays
– Declaration
– Arrays of arrays

• C, C++, ML, Java

– Two-dimensional array
• One block of memory
• Ada, Fortran

• Slices
– A slice is a rectangular

portion of an array.
– R, Fortran, Python

/* C */

double mat[10][10];

/* Ocaml */

type 'a matrix = array array 'a;;

/* Modula-3 */

VAR mat : ARRAY [1..10] OF ARRAY [1..10] OF REAL;

/* Ada */

mat1 : array (1..10, 1..10) of real;

Outline

• Introduction
• Memory and variables
• Sequences, conditional statements and blocks
• Loops
• Procedures and functions
• Records
• Pointers
• Arrays
• Sets, unions, dictionaries

Sets

• A set stores unique values, without any particular
order

• Basic operations
– Set ops: create, delete, add_element, delete_element
– Boolean ops: membership, subset, equality, disjoint
– Set algebra: union, difference, intersection

• Implementation
– There are many different ways of implementing sets

• Each with serious weaknesses for some purposes
• For any specific purpose, it is not hard to implement set

functionality using commonly available data structures

Sets

• Implementation
– Lists, arrays (unefficient)
– Bitstrings (storage efficient, converted to instructions)
– Binary search trees (library: Ocaml, Haskell)
– Hash tables
– Dictionary representation of sets

• Sets in programing languages
– Libraries: C++, Java, .NET, Ruby, Ocaml, Swift, Erlang
– Build-in: Javascript, Python, Pascal

Sets in Phyton

• Examples:

thisset = {"apple", "banana", "cherry"}

for x in thisset:

 print(x)

thisset.add("orange")

thisset.remove("banana")

thisset.discard("banana") # not ∃ -> no error

del thisset # delete complete set

set2 = {1, 2, 3}

set3 = set1.union(set2) # {3, 'b', 'a', 2, 1, 'c'}

Sets in Phyton

•add() Adds an element to the set

•remove() Removes the specified element

•discard() Remove the specified item

•pop() Removes an element from the set

•clear() Removes all the elements from the set

•copy() Returns a copy of the set

•union() Return a set containing the union of sets

•intersection()Returns a set, that is the intersection of two other sets

•difference() Returns a set contains the difference betw two or more sets

•isdisjoint() Returns whether two sets have a intersection or not

•Issubset() Returns whether another set contains this set or not

•issuperset() Returns whether this set contains another set or not

•
•… and more

Unions

• Type constructed by union
– Make a new type by taking the union of existing types

• Unions in Ocaml
– Type definition
– Construction of instance
– Pattern matching

• Union in other languages
– Tagged union:

• ML-family, Haskell
• Pascal, Ada, Modula2

– Also called: Variant records in Pascal

– Untagged union: C, C++

type name = ...

 | Namei ...

 | Namej of tj ...

 | Namek of tk * ...* tl ... ;;

Unions in C

• Type that allows
multiple different
values to be stored in
the same memory space
– Size = the largest

component

union Data {

 int i;

 float f;

 char str[20];

} data;

union [union tag] {

 member definition;

 member definition;

 ...

 member definition;

} [one or more union variables];

int main() {

 union Data data;

 data.i = 10;

 data.f = 220.5;

 strcpy(data.str, "C Programming");

 printf("data.i : %d\n", data.i);

 printf("data.f : %f\n", data.f);

 printf("data.str : %s\n", data.str);

 return 0;

}

Variant records in Pascal

• Parts of records are variant
– Type tag is used to differentiate among the variants
– Records must include the largest variant

type paytype=(salaried, hourly);

var employee: record

 id: integer;

 dept: array [1...3] of char;

 age: integer;

 case payclass: paytype of

 salaried: (monthlyrate: real; stardate: integer);

 hourly: (hourrate: real; reghours: integer; overtime: integer);

 end;

Dictionaries

• Alternative names
– Associative array, map, symbol table

• A store of key/value pairs
– Keys and values are of arbitrary type
– Operations provided

• Create, access, update, delete, to-list, keys, ...

• Programming languages
– Initial implementations

• TMG (1965, compiler-compiler), SETL (late 1960s), Snobol (1969)

– Script languages
• AWK, Rexx, Perl, PHP, Tcl, JavaScript, Python, Ruby, Go, Lua

Dictionaries
– Other languages

• C++, Java, Scala, Erlang, OCaml, Haskell

• Implementation of a dictionary
– Hash tables

• O(1)

– Search trees
• Binary search trees, B+-trees, ...

• Very popular and useful data structure
– Any data structure can be represented

Python dictionary operation

• Creation
– D = {}, D = {’key1’:value1,’key2’:value2, … }

– dict(name1=value1,name2=value2, …)

– From a list: of pairs, names, ...

• Access by a key
– D[’name’], D[’name1’][’name2’], ’name’ in D

– D.get(key)

• Update and delete a key
– D.update(D1)

– del D[key], D.pop(key)

• Reading keys, values and key/value pairs
– D.keys(), D.values(), D.items()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

