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Bits of history

• 30-40’s: one-purpose computers, hard-wired programs 
and data (ZuSe, ENIAC);

• 1952: G. Hopper, A-0 compiler, rather linker and loader 
than compiler;

• 1952: A. Glennie, Mark 1, autocode, first compiler in the 
modern sense;

• 1957: J. Backus, Fortran, first ‘real’ compiler, BNF, code 
better than the same written in assembly code;

• 1958: Bauer et al., Algol 58, first ‘modern’ compiler;
• 60’s: IBM’s crosscompilers for IBM 7xx architecture (e.g. 

from UNIVAC)
• 1962: Hart & Levin: LISP, first self-hosting compiler;



Bits of history

• 1968-1972: UNIX, C, lex, yacc; also make, sh, grep;
• 70's: Pascal, Niklaus Wirth, Zürich, CDC Pascal
• 70's: SmallTalk, first just-in-time compilers;
• 80's: Erlang, C++, Ocaml, Modula, Ada, Perl, Objective-C;
• 90’s: Haskell, Python, Ruby, Java;
• 00’s: C#, Scala, F#, Go, mobile architectures, functional;
• 10’s: TypeScript, Julia, Raku, Swift; data, functional, object-

oriented.
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Why compilers? Why interpreters?

• Source code: 
– Program is mostly represented by an ordinary text file, 

which cannot be directly executed by target machine.
• Executable code: 

– The form of the program which can be directly 
executed by a computer.

• Usual targets of compilers/interpreters
– machine code, in fact a form of intermediate code;
– bytecode;
– ‘runnable’ file;
– other programming language;
– cross compiling.



Targets

• Machine code: 
– bound to the particular architecture and the host operating 

system, C, C++ (gcc), Fortran (gfortran), Pascal (fpc), 
OCaml (ocamlc),. . .

• Bytecode: 
– prepared for the running in the environment of the specific 

virtual machine, hence (mostly) machine and operating 
system independent, Java (javac), Python (python), Erlang 
(erl), C# (.NET), but also C and C++ (LLVM or .NET). . .

• Runnable source: 
– the source code is directly executed, Unix shells (bash, 

csh, zsh), BASIC (many, but not Visual Basic), Web 
(tangle);



Targets

• Programming languages: 
– Fortran to C (f2c), Python to C (cpython);

• Cross-compilers: 
– applications for mobile phones and other gadgets are 

compiled in this way, ObjC for iOS, C++ for Android, 
Windows Phone, NVida CUDA, C for OpenCL. . .



Structure and action of a compiler

The job of a compiler usually consists of
i. Front-end:

– Line reconstruction,
– Lexical analysis,
– Preprocessing,
– Syntax analysis,
– Semantic analysis;

ii. Back-end:
– Intermediate optimisation
– Flow (data and execution) analysis,
– Code generation + target-dependent optimisation;

iii.Linking (optional)

Analysis

Synthesis



Phases of compilation

Analysis

Synthesis
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Line reconstruction

• UNICODE characters are substituted by escape-
sequences, e.g. č → \x10D;

• tabulators are substituted by delimiters (usually spaces);
• end-of-line characters are substituted by delimiters;
• string literals 

are merged;
• empty lines 

are removed.



Lexical analysis

• Normalised text form of program is divided into the 
list of tokens, the lexical units of the languaguage.

• The usual types of tokens are:
– literals: 12345, 0xAB, "hello world", ’c’, true. . .
– keywords: if, else, for, function, return. . .
– identifiers: var1, a$, MyClass,. . .
– type names: int, char*, ’a, void. . .
– operators: =, <-, +, :=, ==, >=,. . .
– parenthesis, braces, and brackets;
– indentations (old Fortran, Python);

• The sequence of tokens is produced, the delimiters 
are removed.



Lexical analysis: Rationale

• Lexical analyser reads the source by characters and if a 
token is recognised, it is appended to the sequence of 
tokens;

• Very tedious and complicated, regular expressions are 
used instead;

• Regular expressions are kind of abstract computers 
(DFAs), which recognise prescribed patterns in the text;

• Regular expressions are ‘hungry’, they match the longest 
possible text;

• Lexical analysers are constructed using specialised 
compilers - lexers (lex, flex);

• Lexers used to produce the source code of the lexical 
analyser in a high-level programming language (C, Java, 
OCaml, Pascal, Python).



Lexical analysis: Examples

Regular expressions

Regular expressions are ‘hungry’, The RE 0x[0-9a-fA-F]+ recognise in 
string 0x109AB a hexadecimal constant instead of <const><id>.

Recognising tokens



Preprocessing

• Comment blocks and comment lines are thrown 
away;

• Many languages use preprocessor macros - 
special language for text processing;

• Macros are expanded at this moment;
• Conditional compilation is evaluated and omitted 

blocks of tokens are removed;
• Auxiliary files (header files, in C, C++) are placed 

instead of corresponding macros (#include);
• The lexical analyser is run again.

#ifndef SET_H
#define SET_H
#define max(a,b)  ((a) > (b) ? (a) : (b))
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Grammars of programming languages

Programming languages have simple syntax which 
can be described in terms of context-free grammars.
Context-free grammar is a mathematical structure of 
the form

G = (V, T, R, S)
where
• V is the set of non-terminals (variables),
• T is the set of terminals (symbols),
• R is the set of production rules,
• S is the starting non-terminal.

.



Grammars of programming languages

Example: 
Language of binary words consisting of equal 
number of ‘0’s and ‘1’ can be expressed by 
grammar

G = ({S}, {0, 1}, R, S), where R is the set of rules

S → 01 | 10 | 0S1 | 1S0



Backus-Naur form
A convenient way of expressing (context-free) 
grammars of programming languages.

Example: 
The simple language of mathematical expressions:

<expression> ::= <term> | <term> "+" <expression>
<term>       ::= <factor> | <term> "*" <factor>
<factor>     ::= <constant> | <variable> | "(" <expression> ")"
<variable>   ::= "x" | "y" | "z"
<constant>   ::= <digit> | <digit> <constant>



Syntax analysis - parsing

• Parser is the algorithm which takes the ordered 
list of tokens and recognise which rules of the 
grammar form input list of tokens

• The (concrete) syntax tree of the input is created 
– The top (base, root) vertex corresponds to the starting 

non-terminal (expression)
– Nodes correspond to the rules, and leaves correspond 

to terminals (tokens)
• Every expression in the source yields a syntax 

tree



Syntax analysis - parsing

• The process of construction of a syntax tree is 
ambiguous, since CFGs are ambiguous. We have 
several methods to get rid of ambiguities:
– orderting of rules in the grammar (precedence);
– look-ahead buffer for tokens (LL-parsers, LL(1));
– read from left, parse from right (LR, LALR parsers)



Example: 
Syntax tree

<expression> ::= <term> | <term> "+" <expression>
<term>       ::= <factor> | <term> "*" <factor>
<factor>     ::= <constant> | <variable> | "(" <expression> ")"
<variable>   ::= "x" | "y" | "z"
<constant>   ::= <digit> | <digit> <constant>

<expression> 

<expression> ::= <term> | <term> "+" <expression>
<term>       ::= <factor> | <term> "*" <factor>
<factor>     ::= <constant> | <variable> | "(" <expression> ")"
<variable>   ::= "x" | "y" | "z"
<constant>   ::= <digit> | <digit> <constant>

<factor>

"+"<term> <expression>

<term> "*" <factor>

<variable>

<constant>

Expression: x*10+1

<factor>

<term>

1

10

x

<constant>



Abstract syntax tree (AST)

• AST keeps the essence of the structure but omits 
the irrelevant details
– Each node corresponds to one or more nodes in the 

(concrete) syntax tree
• Additional data can be attached to the nodes

– For type checking
– For analyses that can not be implemented in syntax 

analaysis or type checking
– For the syntax directed translation



Example: Abstract syntax tree (1)

<expression> ::= <term> | <term> "+" <expression>
<term>       ::= <factor> | <term> "*" <factor>
<factor>     ::= <constant> | <variable> | "(" <expression> ")"
<variable>   ::= "x" | "y" | "z"
<constant>   ::= <digit> | <digit> <constant>

"+"

"*"

Expr: x*10+1

1

10x



Example: Abstract syntax tree (2)



Symbol tables

• Symbol table holds information about source-
program symbols
– Names of variables, types, functions, etc.
– Data about symbols are collected incrementally by the 

analysis phases of a compiler
• Used by the synthesis phases to generate the target code

– For each identifier we store the following data
• Character string of identifier, its type, its position in storage, …

• A symbol table is defined for each scope
– We can have different symbols with the same name in 

different scopes
– Scopes are linked hierarchicaly
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Type checking

• Types as abstract representation of values 
– Description of the structure and the domain of variables

• Type checking is a semantic analysis of a program
– Aspect that is not covered by grammar rules
– Verifies that the types of the operation arguments agree 

with the type of the operation 
• First, the types of arguments are derived 
• Then the rules are used to check the compatibility

• Type derivation
– Types of expressions are derived from the types of the 

sub-expressions 
• AST is usually used 



Type checking

– Types in polimorphic type systems are computed as 
the results of a system of equations 

• Type derivation and type checking is covered in 
more detail in the lecture on Types
– Type equality, conversions, coerction 
– Type derivations
– Rule-based type checking 
– Type derivations in languages with polymorphism

• Here we will inspect an example of the type 
checking rules for expressions



Type checking

• Example
– Type checking                                                             

the language of                                                               
Expressions



Semantic analysis

• Semantic analyser enforces a variety of rules 
– These rules are not captured by parsing (using CFG) 

or type checking.
• Static and dynamic semantic rules

– Static are checked in compile time
– Code is generated for dynamic checks



Semantic analysis

• Typical static rules covered by semantic analyser
– Every identifier is declared before it is used
– Labels on the arms of a switch statement are distinct 

constants
– Some languages allow coerecion

• Parameters are automatically converted to the expected type
–  Any function with a non-void return type returns a 

value explicitly



Semantic analysis

• Examples of rules enforced at run time include 
the following
– Variables are never used in an expression unless they 

have been given a value. 
– Pointers are never dereferenced unless they refer to a 

valid object.
– Array subscript expressions lie within the bounds of the 

array.
– Arithmetic operations do not overflow.



Pre-intermediate code
• Every node of the abstract syntax tree (a rule of 

CFG) is represented by a ‘template code’
– The parsing tree is transformed to the linear sequence 

of instructions (codes);
– The templates are filled by actual variables and values;
– The codes for all expression in the program are 

merged into the resulting sequence of instructions.
• Pre-intermediate code

– The form of pre-intermediate code can be
• Sequence of instructions
• Annotated abstract syntax tree
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 Intermediate-Code Generation

• Eventually, the program will have to be expressed 
as code for the given concrete machine

• Many compilers use a medium-level language.
– A stepping-stone language is called an intermediate 

language (abbr. IL)
• Advantages:

– Structuring the compiler into smaller jobs
– Several high-level languages can be compiled to IL  
– IL can be compiled to different target architectures
– IL can be interpreted 

• By program implemented on the target architecture 



 Intermediate-Code Generation

• To compile many different languages (N) to many 
target architectures (M)
– Direct translation: N*M
– Intermediate language: N+M

• Interpreter for an intermediate language 
– Use a PL implemented on many architectures
– The same interpreter can be used for different 

architectures
– Single intermediate code can be used for all machines
– Intermediate form may be more compact than machine 

code



 Intermediate-Code Generation

• The disadvantage is speed
– Interpreting will (in most cases) be a lot slower than the 

machine code
• Java virtual machine is a great success
• Translating the intermediate code to machine code 

during execution of the program
– Just-in-time (JIT) compilation
– Often used for executing the intermediate code for Java

• We will focus mainly on using the intermediate 
code for traditional compilation
– Translated to machine code by a back-end of compiler



Choosing an intermediate language

• Conflicting goals:
– Easy to translate from (different) high-level languages 

to the intermediate language
– Easy to translate from the intermediate language to a 

wide range of different target architectures
– The intermediate format should be suitable for 

optimisations
• The level of the language

– High-level intermediate language, more burden on the 
back-ends

– Low-level intermediate language, more burden on the 
front-ends



Choosing an intermediate language

• Intermediate language “granularity”
– Should an operation in the intermediate language 

correspond to a large or small amount of work?
• Complex operations 

– Often used for interpreters (performance) 
– Mapped to a sequence of machine instructions

• Very simple operations
– Sequence of operations mapped to one machine 

instruction



Intermediate language

• Fairly low-level                                                        
fine-grained                                                        
intermediate                                                      
language



Syntax directed translation

• Generate code using translation functions for 
each syntactic category
– Syntactical category is defined by a grammar rule     

(non-terminal)
– The parameters of a translation function hold 

information about the context (e.g., symbol table)
– Additional attributes are defined for nodes of AST.

• Code generated locally, for a given category
– Translation is not optimal in regards to the related 

categories
– Optimization (presented later) eliminates unnecessary 

variables, itd.



Translating 
expressions



Translating 
statements



Outline

• History
• Architecture of compiler
• Lexical analysis 
• Grammars & parser
• Semantic analysis
• Intermediate language
• Code generation
• Code optimization



 Machine-Code Generation

• Intermediate language we used is quite low-level
– Similar to the machine code you can find on modern 

RISC processors
– We will use RISC MIPS (RISC V)

• Often we have one-to-one mapping from IL to the 
RISC instruction set 
– Complex RISC (MIPS) instructions map to IL patterns
– And vice versa

• Problems involved in translation  
– Differences in the instruction sets
– Register allocation
– Function call sequences



 Machine-Code Generation

• Differences between RISC processor operations 
and IL operations
1) IF-THEN-ELSE instruction has two target labels

• Conditional jump instruction has only one target label
2) Any constant can be operand to an instruction 

• RISC processors allow only small constants as operands
3) There are some complex operations in (RISC) MIPS     

 and ARM processors 
4) We used an unbounded number of variables

• There is a bounded number of registers
5) We have used a complex CALL instruction 



Conditional jumps

• Conditional jumps come in many forms on 
different machines
– Relational comparison between registers (if-then-else)
– Conditional jump instructions specify                         

only one target address 
• if c a1; jp a2

– Often followed by one                                                      
of target addresses                                                          
(see rule for IF in IL)

• Generator checks what follows
– Code must be generated for the condition and stored

• In gen.purpose register (MIPS, Alpha) + In special register (IA-
64, PowerPC),  +  In flags (Sparc, IA-32) ...



Constants

• IL allows arbitrary constants as operands to 
binary or unary operators
– Not so in MIPS, ARM, …
– More machine instructions needed for a single 

comparison
• Code generator must check if constant matches 

with some machine-code instruction 
– If it does, the code generator generates a single 

machine-code instruction
– If not,

1) sequence of instructions builds the constant in a register, 
2) an instruction uses this register in place of the constant



Complex instructions

• Most instructions in our IL are atomic
– Using RISC MIPS, ARM (in mobile phones)
– Each instruction corresponds to a single operation

• Complex RISC operations (MIPS, ARM)
– Mapped to a sequence of IL instuctions

• Example:



Pattern/
replacement 
pairs for 
a subset of 
the MIPS 
instruction set



Register allocation

• When generating code in IL we used as many 
variables as we found convenient
– Processors do not have an unlimited number of registers 

• We need register allocation to handle this conflict
– Map a large num of vars into a small num of registers
– Letting several variables share a single register
– Sometimes, not enough registers in the processor

• This is called spilling
– Some variables must be temporarily stored in memory



Register allocation

• When can two variables share a register?
• Liveness of a variable

– Value it contains might conceivably be used in future
• Formal definition (through the changes of states)

• Register allocation by graph colouring
– Interference graph of variables

• Two variables are linked if they interfere
• Two nodes that share an edge have different register numbers
• Register numbers must not be higher than the num of 

available registers
• Otherwise, some variables are stored to the memory

– NP complete problem



Function calls

• Function call was not considered before
– When translating the function...

• The call stack
– When function is called all live variables are stored 

(from registers) to the memory
• Stack is used as the temporary storage

– Now registers are free to be used in a callee
– Stack is used also for the activation records of callees

• Variables and parameters of the callee
• Control data such as return address, scope info, etc.

– Activation records are detailed in lecture on Memory 
management



Function calls

• Issues handeled by a function call
– Prologues, epilogues and call-sequences

• Handling registers, live vars, parameters, activation records
• What happens when a function call is issued?
• And when function returns?

– Who saves registers? Caller or callee?
• More complex when caller saves live variables, and callee 

saves the variables it needs.
– Accessing global variables

• Handling scope by relating activation records
– Using registers to pass parameters
– Interaction with the register allocator
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 Analysis and optimisation

• Recognising specific patterns in a program 
• Replacing recog.patterns by smaller and/or faster 

patterns
– Replacing sequences of instructions by other 

sequences
– Can be applied to intermediate lang. or machine code

• Peephole optimisation
– We look at the code through a small hole 
– We only see short sequences of instructions
– However, non-local properties require looking at an 

arbitrarily large context!



 Peephole optimizations

• Eliminating redundant loads                               
and stores

• Eliminating unreachable code

• Flow-of-control optimizations

• Algebraic simplification and                        
reduction in strength
– Eliminate three-address statements
– Replace expensive operations by cheaper ones (x2=x*x)



 Data-flow analyses

• Attempt to discover how information flows through 
a program
– Recognising patterns in a given context
– E.g., liveness analysis of variables at each instruction

• We have in and out sets (of vars) for each instructions

• Context data needed for the analyses 
– Represents one aspect of program computation
– Different types of analyis requires different types and 

treatments of data-flows 



 Data-flow analyses

• Data-flow analysis is used for optimisation 
– Replacing one sequence by another sequence of 

instructions
– E.g., analysis of variable liveness can improve register 

allocation
• Backward and forward analysis

– Liveness analysis is a backward analysis
– Data-flow goes back: from the use to the assignement 

of variables
• Some examples of data-flow analyses will be 

presented in this section



Examples of data-flow analyses

• Dead code elimination
– False branches of conditionals

• Constant propagation
– It is cheaper to allocate a fixed block of memory for 

constants at the beginning
• Common sub-expressions 

– Identified and computed only once (references to 
values are set)

• Jump-to-jump elimination
– Sequences of jumps replaced by the direct jump 



Examples of data-flow analyses

• Indexes to arrays are checked only once 
– Unnecessary checks are eliminated. 

• Loop transformation
– Memory pre-fetching
– Interchange: exchange inner loops with outer loops. 

Improve locality of reference
– Vectorisation: attempts to run as many of the loop 

iterations as possible at the same time
– Reversal: Enables other optimization by reversing the 

loop 
– Code hoisting: removing loop-invariant code



Examples of data-flow analyses

• Function calls
– Inline expansion: inline code is ‘cheaper’ than function 

call
– Tail-call optimisation: transform tail recursion to 

iteration
– Specialization: handle specific calls by removing 

unnecessary code
• Automatic parallelisation

– Processors have several cores, independent code 
segments can be executed at once.
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