
PMJ, O-R, 2018

Object-relational data model

Iztok Savnik, FAMNIT.

PMJ, O-R, 2018

Outline

● Object-relational model of Informix
● Object-relational model of Oracle

PMJ, O-R, 2018

Object-relational model of
Informix

PMJ, O-R, 2018

Object-oriented DBMS

● Considerable academic research on database
technology over the past decade has been
focused on new, post-relational data models
– Merge the principles of object-oriented

programming and design with traditional database
characteristics

● Some large venture capital investments flowed
into a group of startup software companies

PMJ, O-R, 2018

Object-oriented DBMS

● early-1990s
– Gemstone (Servio Logic, later renamed to Gemstone Systems),

Gbase (Graphael), and Vbase (Ontologic)
● mid-1990s

– ITASCA (Itasca Systems), Jasmine (Fujitsu, marketed by
Computer Associates), Objectivity/DB (Objectivity, Inc.),
ObjectStore (Progress Software, acquired by eXcelon, which was
originally Object Design), Matisse (Matisse Software), O2 (O2
Technology, eventually acquired by Informix, which was acquired
by IBM), ONTOS (Ontos, Inc., formerly Ontologic), POET (Poet
Software, now FastObjects from Versant), Versant Object
Database (Versant Corporation), and VOSS (Logic Arts)

PMJ, O-R, 2018

OO-DBMS Characteristics

● Objects
– Everything is an object and is manipulated as an object
– The tabular, row/column organization of a relational database is replaced by the

notion of collections of objects
● Classes

– Object-oriented databases replace the relational notion of atomic data types with
a hierarchical notion of classes and subclasses.

– VEHICLES might be a class of object. CARS and BOATS …
● Inheritance

– Objects inherit characteristics from their class and from all of the higher-level
classes to which they belong.

– Subclasses of VEHICLE, i.e., CARS, BOATS, and CONVERTIBLES classes have
all properties defined in VEHICLE

– CARS, BOATS, … can have specific attributes

PMJ, O-R, 2018

OO-DBMS Characteristics
● Attributes

– The characteristics that an object possesses are modeled by its attributes.
– Color of an object, or number of doors that it has, …
– Same way as columns of a table relate to its rows.

● Messages and methods
– Objects communicate with one another by sending and receiving

messages
– When it receives a message, an object responds by executing a method
– Thus, an object includes a set of behaviors described by its methods

● Encapsulation
– The internal structure and data of objects is hidden from the outside world

(encapsulated) behind a limited set of well-defined interfaces

PMJ, O-R, 2018

OO-DBMS Characteristics
● Object identity

– Objects can be distinguished from one another through unique
object identifiers

● Abstract pointer known as an object handle

– Representation of the relationships among objects by the use
object identifier

PMJ, O-R, 2018

Pros and Cons of OO-DBMS
● Pros

– Object-oriented databases have stirred up a storm of controversy in the database
community

– Multitable joins that are an integral part of the relational data model inherently
create database overhead and make relational technology unsuitable for the
ever-increasing performance demands of today’s applications

● Cons
– Object-oriented databases are unnecessary and offer no real, substantive

advantages over the relational model

– Handles (oid-s) of object-oriented databases are nothing more than the
embedded database pointers of prerelational hierarchical and network databases

– Object-oriented databases lack the strong underlying mathematical theory that
forms the basis of relational databases

–

PMJ, O-R, 2018

Object-Relational Databases

● Object-relational databases typically begin
with a relational database foundation and add
selected features that provide object-oriented
capabilities

● The object extensions that are commonly
found in object-relational databases are:
– Large data objects
– Structured/abstract data types
– User-defined data types

PMJ, O-R, 2018

Object-Relational Databases

– Tables within tables
– Sequences, sets, and arrays
– Stored procedures
– Handles and object-ids

● State-of-the-art examples
– IBM Informix
– Oracle

PMJ, O-R, 2018

Data types

● Predefined types
– Numeric, String, BLOB, Boolean, Datetime, Interval

● User-defined types
– Distinct type

– Structured types

● Structured types
– ROW, TABLE, ARRAY, REF, LIST, SET, MULTISET

PMJ, O-R, 2018

Predefined types

PMJ, O-R, 2018

Large Object Support

● LOBs – new data types
● LOB - byte sequences of many GB
● Two new types

– BLOB - Binary Large Object
● Audio, pictures, video

– CLOB - Character Large Object
● Text

PMJ, O-R, 2018

LOB (1)

● Stored in a database
– Not in “external files”

● The size of LOB is defined at creation
– (KB, MB, GB)

CREATE TABLE BookTable
(title varchar(200),
book_id INTEGER,
summary CLOB(32K),
movie BLOB(2G));

PMJ, O-R, 2018

 LOB: Example

CREATE TABLE employee
(emp# INTEGER,
 name VARCHAR(30),
 …
 abstract CLOB(75K),
 signature BLOB(1M),
 picture BLOB(10M)
);

PMJ, O-R, 2018

 LOB: Functions
● LOB functions

– CONCATENATION string1|| string2

– SUBSTRING(string FROM start FOR length)

– LENGTH(expression)

– POSITION(search-string IN source-string)

– NULLIF/COALESCE

– TRIM, OVERLAY, Cast

– User-defined functions

– LIKE

EXEC SQL
 SELECT position(„Chapter 1“ IN book_text)
 INTO :int_variable
 FROM BookTable
 WHERE title=“Moby Dick“;

PMJ, O-R, 2018

LOB: Updates

● LOBs can be read, updated, deleted as any other
objects

● Large buffers for LOB
● SQL99: locators

EXEC SQL
 SELECT summary, book_text, movie
 INTO :bigbuf,:biggerbuf, :massivebuf
 FROM BookTable
 WHERE title=“Moby Dick“;

PMJ, O-R, 2018

Oracle

locator

functions

PMJ, O-R, 2018

Example CLOB (Oracle)

PMJ, O-R, 2018

Distinct types

● Distinct types are used to define new type out of
existing built-in types

● Before SQL99, columns could only be defined with the
existing built-in data types

PMJ, O-R, 2018

Distinct types

CREATE TYPE plan.roomtype
AS CHAR(10);

CREATE TYPE plan.meters
AS INTEGER;

CREATE TYPE plan.squaremeters
AS INTEGER;

CREATE TABLE RoomTable
(RoomID plan.roomtype,
 RoomLength plan.meters,
 RoomWidth plan.meters,
 RoomPerimeter plan.meters,
 RoomArea plan.squaremeters);

UPDATE RoomTable
SET RoomArea=RoomLength;

Napaka v tipu !!!

PMJ, O-R, 2018

SQL Routines

● Named persistent code
– Activated from SQL

– SQL procedure, function or method

● Created in schema or in a separate SQL module
● DDL

– CREATE and DROP statements

– ALTER statements – limited functionality

– EXECUTE privileges GRANT and REVOKE statements

PMJ, O-R, 2018

SQL Routine (1)
● Head and body
● Head consists of the name and a (possibly empty)

set of parameters
– Parameter types: IN, OUT, INOUT

– Function parameters are always IN

– Function return velue with RETURN statement

● SQL routines
– Head and body are written in SQL

● External rutines
– Head in SQL

– Body in the host language

PMJ, O-R, 2018

SQL Routine (2)
● Parameters have names and types
● Routine body is one SQL statemen

– Can include: BEGIN ...END

– Cannot include: DDL, CONNECT, DISCONNECT,
dynamic SQL, COMMIT, ROLLBACK

 CREATE PROCEDURE get_balance(IN acct_id INT, OUT bal
 DECIMAL(15,2))
 BEGIN
 SELECT balance INTO bal
 FROM accounts WHERE account_id =acct_id;
 IF bal <100
 THEN SIGNAL low_balance
 END IF;
 END

PMJ, O-R, 2018

SQL Routine (3)

● Routine body
– RETURN allowed in functions

– Exception is triggered if function does not include
RETURN

CREATE FUNCTION get_balance(acct_id INT) RETURNS
DECIMAL(15,2)
BEGIN
 DECLARE bal DECIMAL(15,2);
 SELECT balance INTO bal
 FROM accounts
 WHERE account_id = acct_id;
 IF bal <100 THEN SIGNAL low_balance
 END IF;
 RETURN bal;
END

PMJ, O-R, 2018

SQL Routine (4)

● Parameters
– Names are optional

– Not all SQL types are allowed (depends on host)

● LANGUAGE: host language
● NAME: file with the code

CREATE PROCEDURE get_balance (IN acct_id INT, OUT bal
DECIMAL(15,2))
LANGUAGE C
EXTERNAL NAME ‘bankSbalance_proc’

CREATE FUNCTION get_balance (IN INTEGER) RETURNS
DECIMAL(15,2)
LANGUAGE C
EXTERNAL NAME ‘usr/han/banking/balance’

PMJ, O-R, 2018

SQL Routines: polymorphism

● More routines having the same name

– S1.F (p1 INT, p2 REAL)

– S1.F (p1 REAL, p2 INT)

– S2.F (p1 INT, p2 REAL)

● Inside one schema we have one signature

– S1.F (p1 INT, p2 REAL)

– S1.F (p1 REAL, p2 INT)

● The same signature can be used in different schemas

– S1.F (p1 INT, p2 REAL)

– S2.F (p1 INT, p2 REAL)

● More later ...

PMJ, O-R, 2018

SQL Routine: call

● Procedure is activated by CALL

– CALL get_balance(100, bal);

● Functions can be called from expressions

 SELECT account_id, get_balance (account_id)

 FROM accounts

● Requires EXECUTE privilegies for a given routine

– Otherwise routine is not found

PMJ, O-R, 2018

Abstract (Structured) Data Types

● The data types envisioned by the relational data
model are simple, indivisible, atomic data values

● Data item such as an address is actually
composed of a street address, city, state, and
postal code
– Treat it as collumns
– Treat it as a single unit
– No middle ground

PMJ, O-R, 2018

ADTs

● Many programming languages do provide such a
middle ground
– Including C and Pascal
– They support compound data types or named data structures
– Data structure is composed of individual data items, which

can be accessed individually
– Entire data structure can also be treated as a single unit

when that is most convenient
● Structured or composite data types in object-relational

databases provide this same capability in a DBMS
context

PMJ, O-R, 2018

ADTs – Informix

● Informix Universal Server supports abstract
data types through its concept of row data types
– Structured sequence of individual data items

● Example
– Informix CREATE TABLE statement
– Simple PERSONNEL table that uses a row data

type to store both name and address information

PMJ, O-R, 2018

Example: personnel

PMJ, O-R, 2018

ADTs (Informix)

● This table has three columns.
– EMPL_NUM, has an integer data type.
– NAME and ADDRESS, have row data type

● ROW, followed by a parenthesized list of fields that make up the row

● NAME column’s row data type has three fields
● ADDRESS column’s row data type has four fields

– POSTCODE itself has a row data type
● consists of two fields

– Hierarchy is only two levels deep

PMJ, O-R, 2018

ADTs (Informix)

● Extension of the SQL dot notation
– Already used to qualify column names with table

names and user names
– Adding a dot after a column name

● Specify the names of individual fields within a column

PMJ, O-R, 2018

ADTs (Informix)

● Query that retrieves the employee numbers of
employees who are also managers
– Suppose another table named MANAGERS, had the same

NAME structure as one of its columns
– Use the entire name column (all three fields) as the basis for

comparison

● Row data type allows access to the fields at any level of
the hierarchy

PMJ, O-R, 2018

ADTs (Informix)

● Special handling when you’re inserting data into
the database
– Columns that have a row data type require a

special ROW value-constructor

PMJ, O-R, 2018

Defining Abstract Data Types

● If two tables need to use the same row data
type structure, it is defined within each table

● Row data type should be defined once and then
reused for the two columns

● Examples for the PERSONNEL table

PMJ, O-R, 2018

Example (Informix)

PMJ, O-R, 2018

Example (Informix)

PMJ, O-R, 2018

Manipulating Abstract Data Types

● Informix Universal Server is fairly liberal in its data
type conversion requirements for unnamed row
types
– Double-colon operator casts the constructed three-field

row as a NAME_TYPE
● Oracle automatically defines a constructor method

for the type
– Constructor is used in the VALUES clause of the

INSERT statement to glue the individual components
together

PMJ, O-R, 2018

Example: Manipulating ADTs

PMJ, O-R, 2018

Inheritance

● Support for abstract data types gives the relational
data model a foundation for object-based capabilities
– Abstract data type can embody the representation of an

object,
● and the values of its individual fields are its attributes

● Another important feature of the object-oriented
model is inheritance
– Example of how inheritance might work in a model of a

company’s employee data

PMJ, O-R, 2018

Example: Inheritance

PMJ, O-R, 2018

Example: Inheritance

PMJ, O-R, 2018

Example: Inheritance

● The type hierarchy has pushed the complexity
into the data type definitions and made the table
structure very simple and easy to define

● All other characteristics of the table can (and
must) still be defined within the table definition
– REPS table includes a column that is actually a

foreign key to the PERSONNEL table

PMJ, O-R, 2018

Example: Creating tables

PMJ, O-R, 2018

Example: Creating tables

● Type inheritance creates among the structure of the tables
a relationship that is based on the defined row types

● Tables remain independent of one another in terms of the
data that they contain
– Rows inserted into the TECHNICIANS table don’t automatically

appear in either the ENGINEERS table or in the PERSONNEL
table

● A different kind of inheritance, table inheritance, provides a
very different level of linkage between the table’s contents
– Turning the tables into something much closer to object classes

PMJ, O-R, 2018

Table Inheritance: Implementing
Object Classes

● Moves the table structure much closer to the
concept of an object class

● Create a hierarchy of typed tables!
– The tables are still based on a defined type

hierarchy, but now the tables themselves have a
parallel hierarchy

PMJ, O-R, 2018

Example: Table inheritance

● Informix
● Table »under« does not

inherits just attributes
– Prim.key, foreign key,

integrity constraints,
indexes, ...

● Every type has its own
table

● SQL queries work on
sbtables

PMJ, O-R, 2018

Example: Table inheritance

PMJ, O-R, 2018

Example: Table inheritance

PMJ, O-R, 2018

Example: Table inheritance

PMJ, O-R, 2018

Sets, Arrays, and Collections

● Extend table engineers
– Engineer has a set of academic degrees
– Relational solution:

PMJ, O-R, 2018

Defining Collections (Informix)

PMJ, O-R, 2018

Example: Collections

● Extend previously defined tables with
collections

PMJ, O-R, 2018

Querying Collection Data

● A limited set of SQL extensions or extend
existing SQL concepts to provide simple
queries involving collection data

● For more advanced queries, they require you to
write stored procedure

PMJ, O-R, 2018

Manipulating Collection Data

PMJ, O-R, 2018

Object-relational model of
Oracle

PMJ, O-R, 2018

Object-relational part of PL/SQL

● Oracle (12c Release) !
● Concepts

– Abstract data types
● User-defined named type
● Internal structure and behaviour

– Complex structures
– Functions
– Subtypes and inheritance
– Encapsulation

PMJ, O-R, 2018

User-defined types (1)

● There is no difference among atributes,
functions and virtual attributed from »outside«

● Physical representation can change without
affecting the external application

● Private/public attributes and functions
● Creation of instances using constructor

PMJ, O-R, 2018

User-defined types (2)

● Column type
– Text, picture, audio, video, time series, ...

● Type constructors
– REF
– VARRAY, NESTED TABLE

● Orthogonality
● Querying complex structures

PMJ, O-R, 2018

Object Types

● An object type is a kind of data type.
● You can specify an object ype as the data type

of a column in a relational table, and you can
declare variables of an object type

PMJ, O-R, 2018

Object Types →

 CREATE TYPE
● Object types serve as blueprints or templates that

define both structure and behavior
CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER,
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ));
/
CREATE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN idno;
 END;
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ) IS
 BEGIN
 -- use the PUT_LINE procedure of the DBMS_OUTPUT package to display details
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(idno) || ' ' || first_name || ' ' || last_name);
 DBMS_OUTPUT.PUT_LINE(email || ' ' || phone);
 END;
END;

PMJ, O-R, 2018

Object Types →

 Object Attributes and Methods
● Object types are composed of attributes and

methods:
● Attributes hold the data about an

object
● Attributes have declared data

types which can be other object
types

● Methods are procedures or
functions that applications can
use to perform operations on the
attributes of the object type

● Methods are optional
● They define the behavior of

objects of that type

PMJ, O-R, 2018

Object Types →

 Object instances
● Variable of an object type is an instance of the

type, or an object
● Instance is a concrete thing, you can assign

values to its attributes and call its methods

CREATE TABLE contacts (
 contact person_typ,
 contact_date DATE);

INSERT INTO contacts VALUES (
 person_typ (65, 'Verna', 'Mills', 'vmills@example.com', '1-650-555-0125'),
 to_date('24 Jun 2003', 'dd Mon YYYY'));

PMJ, O-R, 2018

Object Types →

 Object Methods
● Object methods are functions or procedures

that you can declare in an object type definition
to implement behavior that you want objects of
that type to perform

● Methods:
– Member methods
– Static methods
– Constructors SELECT c.contact.get_idno() FROM contacts c;

PMJ, O-R, 2018

How Objects are Stored in Tables
● Objects can be stored in two types of tables:

– Object tables: store only objects
● Each row represents an object, which is referred to as a

row object

– Relational tables: store objects with other table data
● Objects that are stored as columns of a relational table,

or are attributes of other objects, are called column
objects

PMJ, O-R, 2018

How Objects are Stored in Tables

● Two views of object table:
– Single-column table, in which each row is object,

allowing you to perform object-oriented operations
– Multi-column table, in which each attribute of the

object type occupies a column
INSERT INTO person_obj_table VALUES (
person_typ(101, 'John', 'Smith', 'jsmith@example.com', '1-650-555-0135'));

SELECT VALUE(p) FROM person_obj_table p
WHERE p.last_name = 'Smith';

DECLARE
 person person_typ;
BEGIN -- PL/SQL block for selecting a person and displaying details
 SELECT VALUE(p) INTO person FROM person_obj_table p WHERE p.idno = 101;
 person.display_details();
END;

CREATE TABLE person_obj_table OF person_typ

PMJ, O-R, 2018

Using Object Identifiers to Identify
Row Objects

● Object identifiers (OIDs) uniquely identify row
objects in object tables

● You cannot directly access object identifiers, but you can
make references (REFs) to the object identifiers and
directly access the REFs

● There are two types of object identifiers
● System-Generated Object Identifiers (default)
● Primary-Key Based Object Identifiers

PMJ, O-R, 2018

References to Row Objects

● A REF is a logical pointer or reference to a row
object that you can construct from an object
identifier (OID)
– You can use the REF to obtain, examine, or update

the object
– You can change a REF so that it points to a

different object of the same object type hierarchy or
assign it a null value

PMJ, O-R, 2018

References to Row Objects →

 Example
CREATE TYPE emp_person_typ AS OBJECT (
 name VARCHAR2(30),
 manager REF emp_person_typ);
/
CREATE TABLE emp_person_obj_table OF emp_person_typ;
/
INSERT INTO emp_person_obj_table VALUES (
 emp_person_typ ('John Smith', NULL));
INSERT INTO emp_person_obj_table
 SELECT emp_person_typ ('Bob Jones', REF(e))
 FROM emp_person_obj_table e
 WHERE e.name = 'John Smith';

select * from emp_person_obj_table e;

NAME MANAGER
---------- --
John Smith
Bob Jones 0000220208424E801067C2EABBE040578CE70A0707424E8010
 67C1EABBE040578CE70A0707

PMJ, O-R, 2018

References to Row Objects →

 Topics
● Using Scoped REFs
● Checking for Dangling REFs (IS DANGLING)
● Dereferencing REFs

● Obtaining a REF to a Row Object

SELECT DEREF(e.manager) FROM emp_person_obj_table e;

DECLARE
person_ref REF person_typ;
person person_typ;
BEGIN
 SELECT REF(p) INTO person_ref
 FROM person_obj_table p
 WHERE p.idno = 101;
 select deref(person_ref) into person from dual;
 person.display_details();
END;

PMJ, O-R, 2018

Collections

● Modeling multi-valued attributes and many-to-
many relationships

● Two collection data types:
● varrays (variable arrays) and
● nested tables

● Orthogonality
● use collection types anywhere other data types are used

PMJ, O-R, 2018

Collections →

 Nested table
● Unordered set of data elements, all of the same

data type
● select, insert, delete, and update in a nested

table just as you do with ordinary tables
● To declare nested table types, use the CREATE

TYPE ... AS TABLE OF statement
● Elements of a nested table are actually stored

in a separate storage table

CREATE TYPE people_typ AS TABLE OF person_typ;

PMJ, O-R, 2018

Collections →

 Nested table
● Using the Constructor Method to Insert Values

into a Nested Table

CREATE TABLE people_tab (
 group_no NUMBER,
 people_column people_typ) -- an instance of nested table
NESTED TABLE people_column STORE AS people_column_nt; -- storage table for NT

INSERT INTO people_tab VALUES (
 100,
 people_typ(person_typ(1, 'John Smith', '1-650-555-0135'),
 person_typ(2, 'Diane Smith', NULL)));

PMJ, O-R, 2018

Collections → Nested table → Example
-- nested table type
CREATE TYPE people_typ AS TABLE OF person_typ;
/
CREATE TCREATE TABLE students (
 graduation DATE,
 math_majors people_typ, -- nested tables (empty)
 chem_majors people_typ,
 physics_majors people_typ)
NESTED TABLE math_majors STORE AS math_majors_nt -- storage tables
NESTED TABLE chem_majors STORE AS chem_majors_nt
NESTED TABLE physics_majors STORE AS physics_majors_nt;
CREATE INDEX math_idno_idx ON math_majors_nt(idno);
CREATE INDEX chem_idno_idx ON chem_majors_nt(idno);
CREATE INDEX physics_idno_idx ON physics_majors_nt(idno);

iNSERT INTO students (graduation) VALUES ('01-JUN-03');
UPDATE students
SET math_majors =
 people_typ (person_typ(12, 'Bob Jones', '650-555-0130'),
 person_typ(31, 'Sarah Chen', '415-555-0120'),
 person_typ(45, 'Chris Woods', '415-555-0124')),
 chem_majors =
 people_typ (person_typ(51, 'Joe Lane', '650-555-0140'),
 person_typ(31, 'Sarah Chen', '415-555-0120'),
 person_typ(52, 'Kim Patel', '650-555-0135')),
 physics_majors =
 people_typ (person_typ(12, 'Bob Jones', '650-555-0130'),
 person_typ(45, 'Chris Woods', '415-555-0124'))
WHERE graduation = '01-JUN-03';
SELECT m.idno math_id, c.idno chem_id, p.idno physics_id
FROM students s, TABLE(s.math_majors) m, TABLE(s.chem_majors) c,
 TABLE(s.physics_majors) p;

PMJ, O-R, 2018

Collections →

 Variable arrays
● A varray is an ordered set of data elements
● All elements of a given varray are of the same data

type or a subtype of the declared one
● Each element has an index, which is anumber

corresponding to the position of the element in the
array

● The index number is used to access a specific element

● Varrays are stored in columns either as raw values
or LOBs

PMJ, O-R, 2018

Collections → Variable arrays →

 Example

CREATE TYPE email_list_arr AS VARRAY(10) OF VARCHAR2(80);
/
CREATE TYPE phone_typ AS OBJECT (
 country_code VARCHAR2(2),
 area_code VARCHAR2(3),
 ph_number VARCHAR2(7));
/
CREATE TYPE phone_varray_typ AS VARRAY(5) OF phone_typ;
/
CREATE TABLE dept_phone_list (
 dept_no NUMBER(5),
 phone_list phone_varray_typ);
INSERT INTO dept_phone_list VALUES (
 100,
 phone_varray_typ(phone_typ ('01', '650', '5550123'),
 phone_typ ('01', '650', '5550148'),
 phone_typ ('01', '650', '5550192')));

PMJ, O-R, 2018

Type Inheritance

● Type inheritance enables you to create type
hierarchies

● A set of successive levels of increasingly specialized
subtypes that derive from a common ancestor object type,
which is called a supertype

● Derived subtypes inherit the features of the
parent object type and can extend the parent
type definition

● Type hierarchy provides a higher level of
abstraction for managing the complexity of an
application model

PMJ, O-R, 2018

Type Inheritance

● Two subtypes, Student_t and Employee_t,
created under Person_t, and the
PartTimeStudent_t, a subtype under Student_t

PMJ, O-R, 2018

Type Inheritance →

 Inheritable properties
● For an object type to be inheritable, the object

type definition must specify that it is inheritable
● Keywords FINAL or NOT FINAL are used for

both types and methods

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 FINAL MAP MEMBER FUNCTION get_idno RETURN
NUMBER)
NOT FINAL;

PMJ, O-R, 2018

Type Inheritance →

 Creating parent

Creating

a parent or

supertype

object

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER,
 MEMBER FUNCTION show RETURN VARCHAR2)
NOT FINAL;
/

CREATE OR REPLACE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN idno;
 END;
 -- function that can be overriden by subtypes
 MEMBER FUNCTION show RETURN VARCHAR2 IS
 BEGIN
 RETURN 'Id: ' || TO_CHAR(idno) || ', Name: ' || name;
 END;
END;
/

PMJ, O-R, 2018

Type Inheritance →

 Creating subtype
● A subtype inherits the following:

● attributes declared in or inherited by the supertype.
● methods declared in or inherited by supertype.

CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30),
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2)
NOT FINAL;
/

CREATE TYPE BODY student_typ AS
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2 IS
 BEGIN
 RETURN (self AS person_typ).show || ' -- Major: ' || major ;
 END;
END;
/

● New dept_id,
major

● Overrides the
show method

● Generalized
Invocation

PMJ, O-R, 2018

Type Inheritance →

 Generalized Invocation
● Mechanism to invoke a method of a supertype

or a parent type, rather than the specific
subtype member method

(SELF AS person_typ).show

DECLARE
myvar student_typ := student_typ(100, 'Sam', '6505556666', 100, 'Math');
name VARCHAR2(100);
BEGIN
name := (myvar AS person_typ).show; --Generalized invocation
END;
/

DECLARE
myvar2 student_typ := student_typ(101, 'Sam', '6505556666', 100, 'Math');
name2 VARCHAR2(100);
BEGIN
name2 := person_typ.show((myvar2 AS person_typ)); -- Generalized expression
END;
/

PMJ, O-R, 2018

Type Inheritance →

 Creating subtype

● Type can have multiple child subtypes, and
these subtypes can also have subtypes

CREATE OR REPLACE TYPE employee_typ UNDER person_typ (
 emp_id NUMBER,
 mgr VARCHAR2(30),
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2);
/

CREATE OR REPLACE TYPE BODY employee_typ AS
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2 IS
 BEGIN
 RETURN (SELF AS person_typ).show|| ' -- Employee Id: '
 || TO_CHAR(emp_id) || ', Manager: ' || mgr ;
 END;
END;
/

PMJ, O-R, 2018

Type Inheritance →

 Creating subtype
● Subtype can be defined under another subtype

● New subtype inherits all the attributes and methods that
its parent type has, both declared and inherited

CREATE TYPE part_time_student_typ UNDER student_typ (
 number_hours NUMBER,
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2);
/

CREATE TYPE BODY part_time_student_typ AS
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2 IS
 BEGIN
 RETURN (SELF AS person_typ).show || ' -- Major: ' || major ||
 ', Hours: ' || TO_CHAR(number_hours);
 END;

END;
/

PMJ, O-R, 2018

Type Inheritance →
 Creating table

Creating a table that contains supertype and subtype objects

CREATE TABLE person_obj_table OF person_typ;
INSERT INTO person_obj_table
 VALUES (person_typ(12, 'Bob Jones', '650-555-0130'));
INSERT INTO person_obj_table
 VALUES (student_typ(51, 'Joe Lane', '1-650-555-0140', 12, 'HISTORY'));
INSERT INTO person_obj_table
 VALUES (employee_typ(55, 'Jane Smith', '1-650-555-0144',100, 'Jennifer Nelson'));
INSERT INTO person_obj_table
 VALUES (part_time_student_typ(52, 'Kim Patel', '1-650-555-0135', 14, 'PHYSICS',
20));

SELECT p.show() FROM person_obj_table p;
The output is similar to:
Id: 12, Name: Bob Jones
Id: 51, Name: Joe Lane -- Major: HISTORY
Id: 55, Name: Jane Smith -- Employee Id: 100, Manager: Jennifer Nelson
Id: 52, Name: Kim Patel -- Major: PHYSICS, Hours: 20

PMJ, O-R, 2018

Type Inheritance →
 NOT INSTANTIABLE
● Type can be defined NOT INSTANTIABLE

– There will be type hierarchy but we do not need
instances

● Method can be defined NOT INSTANTIABLE
– Method is just a placeholder
– All subtypes will define their own

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 NOT INSTANTIABLE MEMBER FUNCTION get_idno RETURN NUMBER)
NOT INSTANTIABLE NOT FINAL;

PMJ, O-R, 2018

 Overloading and Overriding Methods

● Subtype can redefine methods it inherits, and it can
also add new methods, including methods with the
same name.

● Overloading Methods
● Adding new methods that have the same names as inherited

methods to the subtype is called overloading.

● Overriding and Hiding Methods
● Redefining an inherited method to customize its behavior in a

subtype is called overriding, in the case of member methods, or
hiding, in the case of static methods

●

PMJ, O-R, 2018

 Overloading and Overriding Methods →
 Overloading
● Methods that have the same name, but different

signatures are called overloads
● Overloading is useful when you want to provide

a variety of ways of doing something
● Compiler uses the method signatures to determine which

method to call

CREATE TYPE ellipse_typ AS OBJECT (...,
 MEMBER PROCEDURE calculate(x NUMBER, x NUMBER),
) NOT FINAL;

CREATE TYPE circle_typ UNDER ellipse_typ (...,
 MEMBER PROCEDURE calculate(x NUMBER),
...);

PMJ, O-R, 2018

 Overloading and Overriding Methods →
 Overriding
● Redefining an inherited method to customize its

behavior in a subtype is called overriding, in the case
of member methods, or hiding, in the case of static
methods

● Unlike overloading, you do not create a new method, just
redefine an existing one

● Methods preserve signatures
● Method code determined dynamically (statically for static)

CREATE TYPE ellipse_typ AS OBJECT (...,
 MEMBER PROCEDURE calculate(),
 FINAL MEMBER FUNCTION function_mytype(x NUMBER)...
) NOT FINAL;

CREATE TYPE circle_typ UNDER ellipse_typ (...,
 OVERRIDING MEMBER PROCEDURE calculate(),
...);

PMJ, O-R, 2018

 Overloading and Overriding Methods →
 Overriding
● Restrictions on Overriding Methods

● Only methods that are not declared to be final in the
supertype can be overridden

● Order methods may appear only in the root type of a type
hierarchy: they may not be redefined (overridden) in
subtypes

● A static method in a subtype may not redefine a member
method in the supertype

● A member method in a subtype may not redefine a static
method in the supertype

● If a method being overridden provides default values for any
parameters, then the overriding method must provide the
same default values for the same parameters

PMJ, O-R, 2018

 Overloading and Overriding Methods →
 Dynamic Method Dispatch
● The way that method calls are dispatched to the

nearest implementation at run time, working up the
type hierarchy from the current or specified type

● ellipse_typ, circle_typ, and sphere_typ might define a
calculate() method differently

● The method call works up the type hierarchy: never
down

● Type of object is dynamically determined
● The nearest signature in type hierarchy is found
● Method is invoked

PMJ, O-R, 2018

 Dynamic Method Dispatch
 Substitutability →
● Supertype is substitutable if one of its subtypes

can substitute or stand in for it in a variable or
column whose declared type is the supertype

● In general, types are substitutable. Object
attributes, collection elements and REFs are
substitutable.

PMJ, O-R, 2018

Substituting Types in a Type Hierarchy

● Work with types in a type hierarchy
● Sometimes you need to work at the most general level, for

example, to select or update all persons
● Other times, you need to address only a specific subtype

such as a student, e.g. persons who are not students

● Ability to select all persons and get back not only
objects whose declared type is person_typ but
also objects whose declared subtype is
student_typ or employee_typ is called
substitutability

PMJ, O-R, 2018

 Substitutability →
 Description
● Supertype is substitutable if one of its subtypes can

substitute or stand in for it in a variable or column
whose declared type is the supertype

● Subtypes include all members of supertype
● In general, all types are substitutable

● Object attributes
● Collection elements
● REFs
● Also, object types

PMJ, O-R, 2018

 Substitutability →
 Column and Row Substitutability
● Object type columns and object-type rows in object

tables are substitutable

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
NOT FINAL;
/
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30))
NOT FINAL;
/
CREATE TYPE part_time_student_typ UNDER student_typ (
 number_hours NUMBER);
/
CREATE TABLE contacts (
 contact person_typ,
 contact_date DATE);

PMJ, O-R, 2018

 Substitutability →
 Column and Row Substitutability
● A newly created subtype can be stored in any

substitutable tables and columns of its supertype
● To access attributes of a subtype of a row or column's

declared type, you can use the TREAT function.

INSERT INTO contacts
 VALUES (person_typ (12, 'Bob Jones', '650-555-0130'), '24 Jun 2003');
INSERT INTO contacts
 VALUES (student_typ(51, 'Joe Lane', '1-650-555-0178', 12, 'HISTORY'), '24 Jun 2003');
INSERT INTO contacts
 VALUES (part_time_student_typ(52, 'Kim Patel', '1-650-555-0190', 14, 'PHYSICS', 20),
 '24 Jun 2003');

SELECT TREAT(contact AS student_typ).major FROM contacts;

PMJ, O-R, 2018

 Substitutability →
 Issues of substitutability
● Subtypes with Attributes of a Supertype
● Substitution of REF Columns and Attributes
● Substitution of Collection Elements
● Turning Off Substitutability in a New Table
● Constraining Substitutability
● Modifying Substitutability
● Restrictions on Modifying Substitutability
●

PMJ, O-R, 2018

Literature

● Oracle® Database, Object-Relational Developer's Guide,
12c Release 1 (12.1), E53277-02

● Information technology, Database languages, SQL
ISO/IEC JTC 1/SC 32, ANSI, 2007.

● P.Weinberg, J.Groff, A.Oppel. SQL The Complete
Reference 3rd Edition, McGraw-Hill, 2010.

● Ki-Joon Han, SQL3 Standardization.
● H.Garcia-Molina, J.D.Ullman, J.Widom, Database

systems, The Complete Book, 2nd Edition, McGraw-
Hill, 2010.

PMJ, O-R, 2018

Literatura (2)

● C.J.Date, H.Darwen, A guide to the SQL standard
Addison-Wesley, 1994.

● P.Pistor, SQL3 Standard Suite - An Overview, DEXA,
1996.

● N.Mattos, An overview of SQL3 standard, 1996.
● N.Mattos, L.DeMichiel, Recent Design Trade-offs in SQL3,

SIGMOD Record, 1996.
● L.Gallagher, Influencing Database Language Standard,

1994.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102

