
OPB, ER -> SQL
 1

Translation of ER to SQL
Iztok Savnik

FAMNIT

OPB, ER -> SQL
 2

Literature
Toby Teorey, Sam Lightstone, Tom Nadeau, H.V. Jagadish,
Database Modeling and Design: Logical Design, 5th Edition,
Morgan Kaufmann Pub., Inc. (Elsevier), 2011. (Chapter 5)

OPB, ER -> SQL
 3

Introduction
• Basic rules for translating ER diagrams to

relations are given
– Translating entities and relationships
– Some integrity constraints can be used to

implement features of ER model
• NULL declarations, foreign keys, UNIQUE

constraints, functional dependencies
• Not all features of ER model can be translated

into SQL

OPB, ER -> SQL
 4

 Translation of entities
• SQL table with the same information contents as the

original entity from which it was developed
• Translation is used for entities with binary relationship

– N-N
– 1-N on „one“ side
– 1-1 on both sides

• Entities that are linked with binary recursive relationship of
type N-N

• Entities with ternary or, in general, n-ary relationship, or,
with the generalization hierarchy

OPB, ER -> SQL
 5

Dependent entities
• SQL table with nested foreign key of the parent entity
• Transformation is done for the entities with binary

relationship of type
– 1-N for the entity on the (child) side
– 1-1 for one of the entities
– For all entities with the binary recursive relationship of

type 1-1 or 1-N
• This is one of two ways that the design tools treat

relationships

OPB, ER -> SQL
 6

Translation of relationships
• SQL table derived from a relationship

– Contains foreign keys of all entities in relationship

• This translation is used for
– Binary relationships of type N-N
– Relationships that are recursive and N-N
– Relationships that are ternary or higher order

• This is the second most common way that the design
tools use to treat relationships in ER and in UML
– Relationship of type N-N is always defined with a table that

contains foreign keys of all entities in relationship
– This table can include the attributes of the original ER relationship

OPB, ER -> SQL
 7

The use of NULL values
• NULL values are allowed for the foreign keys that link

optional entities
• NULL values are not allowed in SQL tables for foreign

keys that link obligatory entities
• NULL values are not allowed for all foreign keys derived

from a binary relationship of type N-N, and, any n-ray
relationship where n>2
– Only the complete rows (with all foreign keys) make sense

OPB, ER -> SQL
 8

Binary relationships
• We will go through the cases of binary relationships based

on cardinality of relationships
• How entities are translated? How to translate binary

relationships? How to translate optional and mandatory
relationships? Which SQL constructs are used?

• We have three types of relationships based on the type of
the relationship: 1-1, 1-N in N-N

• Every role in relationship can be either optional or
mandatory

• We will present Min-Max and Chen’s cardinality notations !

OPB, ER -> SQL
 9

Relationship 1-1 (2 x mandat.)

create table report
 (report_no integer,
 report_name varchar(256),
 primary key(report_no);

create table abbreviation
 (abbr_no char(6),
 report_no integer not null unique,
 primary key (abbr_no),
 foreign key (report_no) references report
 on delete cascade on update cascade);

 has-abbrReport Abbreviation
(1,1) (1,1)

1 1

OPB, ER -> SQL
 10

Relationship 1-1 (1 x mandat.)

create table department
 (dept_no integer,
 dept_name char(20),
 mgr_id char(10) not null unique,
 primary key (dept_no),
 foreign key (mgr_id) references employee
 on delete set default on update cascade);

 managed-byDepartment Employee
(1,1) (0,1)

create table employee
 (emp_id char(10),
 emp_name char(20),
 primary key (emp_id));

11 1

OPB, ER -> SQL
 11

Relationship 1-1 (2 x optional)

create table desktop
 (desktop_no integer,
 emp_id char(10),
 primary key (desktop_no),
 foreign key (emp_id) references engineer
 on delete set null on update cascade);

 has-alloc Engineer Desktop
(0,1) (0,1)

create table engineer
 (emp_id char(10),
 desktop_no integer,
 primary key (emp_id));

111 1

OPB, ER -> SQL
 12

Relationship 1-N (2 x mandat.)

create table employee
 (emp_id char(10),
 emp_name char(20),
 dept_no integer not null,
 primary key (emp_id),
 foreign key (dept_no) references department
 on delete set default on update cascade);

 has Department Employee
(1,N) (1,1)

create table department
 (dept_no integer,
 dept_name char(20),
 primary key (dept_no));

N1

OPB, ER -> SQL
 13

Relationship 1-N (1 x mandat.)

create table report
 (report_no integer,
 dept_no integer,
 primary key (report_no),
 foreign key (dept_no) references department
 on delete set null on update cascade);

 has Department Report
(1,N) (0,1)

create table department
 (dept_no integer,
 dept_name char(20),
 primary key (dept_no));

N1

OPB, ER -> SQL
 14

Relationship N-N (2 x optional)

create table belongs_to
 (emp_id char(10),
 assoc_name varchar(256),
 primary key (emp_id, assoc_name),
 foreign key (emp_id) references engineer
 on delete cascade on update cascade,
 foreign key (assoc_name) references prof_assoc
 on delete cascade on update cascade);

 belongs-to Engineer Prof-assoc
(0,N) (0,N)

create table engineer
 (emp_id char(10),
 primary key (emp_id));

create table prof_assoc
 (assoc_name varchar(256),
 primary key (assoc_name));

NN

OPB, ER -> SQL
 15

Recursive relationship
• Binary relationship defined on a single entity

– Is the set of pairs composed of primary (foreign) keys
of the given entity

– Enrolment of entities from the either side of the
relationship can be optional or mandatory

• Two possibe translations into SQL
– Set of pairs is stored in a separate SQL table
– Set of pairs can be represented by an additional

column of SQL table derived from the given entity

OPB, ER -> SQL
 16

Recursive relationship 1-1
(2 x optional)

create table employee
 (emp_id char(10),
 emp_name char(20),
 spouse_id char(10),
 primary key (emp_id),
 foreign key (spouse_id) references employee
 on delete set null on update cascade);

 Employee

(0,1)

(0,1)

 is-
married-to

1

1

OPB, ER -> SQL
 17

Recursive relationship 1-N
(1 x optional)

create table engineer
 (emp_id char(10),
 leader_id char(10) not null,
 primary key (emp_id),
 foreign key (leader_id) references engineer
 on delete set default on update cascade);

 Engineer

(1,1)

(0,N)
 is-
group-leader
 -of

1

N
emp_id

leader_id

OPB, ER -> SQL
 18

Recursive relationship N-N
(2 x optional)

create table employee
 (emp_id char(10),
 emp_name char(20),
 primary key (emp_id));

create table coauthor
 (author_id char(10),
 coauthor_id char(10),
 primary key (author_id, coauthor_id),
 foreign key (author_id) references employee
 on delete cascade on update cascade,
 foreign key (coauthor_id) reference employee
 on delete cascade on update cascade);

 Employee

(0,N)

(0,N)
 is-
 coauthor
 -with

N

N

author_id

coauthor_id

OPB, ER -> SQL
 19

Ternary relationships
• We will have a look at some examples of ternary

relationship
• The constraints are important for the translation of

ternary relationship
– Some can be expressed: participation constraints
– Some can not be expressed with SQL CREATE

statement
– Keys in ternary relationship are always NOT NULL
– Keys must be updated and deleted

OPB, ER -> SQL
 20

Ternary relationship
(1-1-1)

 uses-
notebook Project Notebook

 Technician

create table technician (
 emp_id char(10),
 primary key (emp_id));
create table project (
 project_name char(20),
 primary key (project_name));
create table notebook (
 notebook_no integer,
 primary key (notebook_no));

create table uses_notebook (
 emp_id char(10),
 project_name char(20),
 notebook_no integer not null,
 primary key (emp_id, project_name),
 foreign key (emp_id) references technician
 on delete cascade on update cascade,
 foreign key (project_name) references project
 on delete cascade on update cascade,
 foreign key (notebook_no) references notebook
 on delete cascade on update cascade,
 unique (emp_id, notebook_no),
 unique (project_name, notebook_no));

(1-1-1) – one project, one technican,
 one notebook
emp_id, project_name → notebook_no
emp_id, notebook_no → project_name
project_name, notebook_no → emp_id

1 1

1

OPB, ER -> SQL
 21

Ternary relationship
(1-1-N)

 Project Location

 Employee

create table employee (
 emp_id char(10),
 emp_name char(20),
 primary key (emp_id));
create table project (
 project_name char(20),
 primary key (project_name));
create table location (
 loc_name char(15),
 primary key (loc_name));

create table assigned_to (
 emp_id char(10),
 project_name char(20),
 loc_name char(15) not null,
 primary key (emp_id, project_name),
 foreign key (emp_id) references employee
 on delete cascade on update cascade,
 foreign key (project_name) references project
 on delete cascade on update cascade,
 foreign key (loc_name) references location
 on delete cascade on update cascade,
 unique (emp_id, loc_name));

assigned-
 to

(1-1-N) – one project, one location,
 more employees
emp_id, loc_name → project_name
emp_id, project_name → loc_name

1 1

N

OPB, ER -> SQL
 22

Ternary relationship
(N-N-N)

 Skill Project

 Employee

create table employee (
 emp_id char(10),
 emp_name char(20),
 primary key (emp_id));
create table skill (
 skill_type char(15),
 primary key (skill_type));
create table project (
 project_name char(20),
 primary key (project_name));

create table skill_used (
 emp_id char(10),
 skill_type char(15),
 project_name char(20),
 primary key (emp_id, skill_type, project_name),
 foreign key (emp_id) references employee
 on delete cascade on update cascade,
 foreign key (skill_type) references skill
 on delete cascade on update cascade,
 foreign key (project_name) references project
 on delete cascade on update cascade);

skill-used

(N-N-N) – skills are arbitrarily linked
 to employes and projects

N

N

N

OPB, ER -> SQL
 23

 Generalization
• Translation of a generalization hierarchy

composed of a root supertype and subtypes can
result in more than one SQL tables

• A table derived from the root supertype contains
– The key of the supertype entity, and
– All additional attributes defined for the root supertype

entity
• A table derived from the subtype entity contains

– A key of the supertype
– Only the attributes from the specific subtype entity

OPB, ER -> SQL
 24

 Generalization (2)
• Integrity after insert, update or delete operations

is achieved by updating appropriate tables
– In some cases more than one table has to be updated
– Cascade behaviour must be used for the foreign keys
– Updating the key of the root supertype requires the

updates in the hierarchy of tables
– Updating description attribute requires the change in

one table only
• Transformation rules are the same for the case of

intersecting as well as for the disjunctive subtypes

OPB, ER -> SQL
 25

Generalization (3)
• The second approach is the definition of a single

table that contains the attributes of a root entity as
well as the subtype entities
– Complete hierarchy is in one table
– NULL values have to be used

• The third approach is the creation of one table for
one subtype entity from the leafs of the hierarchy
– Include all attributes from the entities on the path to the

root entity
• There are advantages and disadvantages of each

approach

OPB, ER -> SQL
 26

Generalization (4)
• Design tools can implement all three cases
• Practical systems use classification attributes to

distinguish among the subtype entities
– If we have multi-level hierarchy then we use more

classification attributes
– The type hierarchy is implemented with the

classification attributes
• The approaches can be combined

OPB, ER -> SQL
 27

Example: Generalization hierarchy

Generalization
(ISA) Hierarchies

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_workedIf we declare A ISA B,
every A entity is also
considered to be a B
entity.

• Overlap constraints: Can Joe be an Hourly_Emps as well as a
Contract_Emps entity? (Allowed/disallowed)

• Covering constraints: Does every Employees entity also have
to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

• Reasons for using ISA:
 To add descriptive attributes specific to a subclass.
 To identify entitities that participate in a relationship.

Translating ISA hierarchy
First approach

● 3 tables: Employes, Hourly_Emps, Contract_Emps
– ON UPDATE|DELETE CASCADE
– Queries that access attributes of all employes are simple
– Queries on specific employes are more complex

Third approach:

● 2 tables: Hourly_Emps, Contract_Emps
● Updates are allways in a single table

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	ISA (`is a’) Hierarchies
	Slide 29

