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Introduction
• Basic rules for translating ER diagrams to 

relations are given
– Translating entities and relationships
– Some integrity constraints can be used to 

implement features of ER model
• NULL declarations, foreign keys, UNIQUE 

constraints, functional dependencies
• Not all features of ER model can be translated 

into SQL 
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 Translation of entities
• SQL table with the same information contents as the 

original entity from which it was developed
• Translation is used for entities with binary relationship 

– N-N
– 1-N on „one“ side
– 1-1 on both sides

• Entities that are linked with binary recursive relationship of 
type N-N 

• Entities with ternary or, in general, n-ary relationship, or, 
with the generalization hierarchy
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Dependent entities
• SQL table with nested foreign key of the parent entity  
• Transformation is done for the entities with binary 

relationship of type
– 1-N for the entity on the (child) side 
– 1-1 for one of the entities 
– For all entities with the binary recursive relationship of 

type 1-1 or 1-N 
• This is one of two ways that the design tools treat 

relationships 
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Translation of relationships
• SQL table derived from a relationship

– Contains foreign keys of all entities in relationship 

• This translation is used for 
– Binary relationships of type N-N
– Relationships that are recursive and N-N 
– Relationships that are ternary or higher order 

• This is the second most common way that the design 
tools use to treat relationships in ER and in UML
– Relationship of type N-N is always defined with a table that 

contains foreign keys of all entities in relationship
– This table can include the attributes of the original ER relationship
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The use of NULL values
• NULL values are allowed for the foreign keys that link 

optional entities
• NULL values are not allowed in SQL tables for foreign 

keys that link obligatory entities
• NULL values are not allowed for all foreign keys derived 

from a binary relationship of type N-N, and, any n-ray 
relationship where n>2 
– Only the complete rows (with all foreign keys) make sense 
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Binary relationships
• We will go through the cases of binary relationships based 

on cardinality of relationships
• How entities are translated? How to translate binary 

relationships? How to translate optional and mandatory 
relationships? Which SQL constructs are used?

• We have three types of relationships based on the type of 
the relationship: 1-1, 1-N in N-N

• Every role in relationship can be either optional or 
mandatory

• We will present Min-Max and Chen’s cardinality notations !
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Relationship 1-1 (2 x mandat.)

create table report
   (report_no integer,
    report_name varchar(256),
    primary key(report_no);
  
create table abbreviation
    (abbr_no char(6),
     report_no integer not null unique,
     primary key (abbr_no),
     foreign key (report_no) references report
     on delete cascade on update cascade);

    has-abbrReport     Abbreviation
(1,1) (1,1)

1 1
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Relationship 1-1 (1 x mandat.)

create table department
    (dept_no integer,
     dept_name char(20),
     mgr_id char(10) not null unique,
     primary key (dept_no),
     foreign key (mgr_id) references employee
           on delete set default on update cascade);

    managed-byDepartment     Employee
(1,1) (0,1)

create table employee
    (emp_id char(10),
     emp_name char(20),
     primary key (emp_id));

11 1
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Relationship 1-1 (2 x optional)

create table desktop
    (desktop_no integer,
     emp_id char(10),
     primary key (desktop_no),
     foreign key (emp_id) references engineer
     on delete set null on update cascade);

       has-alloc Engineer     Desktop
(0,1) (0,1)

create table engineer
   (emp_id char(10),
    desktop_no integer,
    primary key (emp_id));

111 1
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Relationship 1-N (2 x mandat.)

create table employee
    (emp_id char(10),
     emp_name char(20),
     dept_no integer not null,
     primary key (emp_id),
     foreign key (dept_no) references department
         on delete set default on update cascade);

    has Department     Employee
(1,N) (1,1)

create table department
    (dept_no integer,
     dept_name char(20),
     primary key (dept_no));

N1
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Relationship 1-N (1 x mandat.)

create table report
    (report_no integer,
     dept_no integer,
     primary key (report_no),
     foreign key (dept_no) references department
         on delete set null on update cascade);

    has Department     Report
(1,N) (0,1)

create table department
    (dept_no integer,
     dept_name char(20),
     primary key (dept_no));

N1
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Relationship N-N (2 x optional)

create table belongs_to
    (emp_id char(10),
     assoc_name varchar(256),
     primary key (emp_id, assoc_name),
     foreign key (emp_id) references engineer
         on delete cascade on update cascade,
     foreign key (assoc_name) references prof_assoc
         on delete cascade on update cascade);

     belongs-to Engineer     Prof-assoc
(0,N) (0,N)

create table engineer
    (emp_id char(10),
     primary key (emp_id));

create table prof_assoc
     (assoc_name varchar(256),
      primary key (assoc_name));

NN



OPB, ER -> SQL
 15

Recursive relationship
• Binary relationship defined on a single entity 

– Is the set of pairs composed of primary (foreign) keys 
of the given entity  

– Enrolment of entities from the either side of the 
relationship can be optional or mandatory

• Two possibe translations into SQL 
– Set of pairs is stored in a separate SQL table
– Set of pairs can be represented by an additional 

column of SQL table derived from the given entity 
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Recursive relationship 1-1 
(2 x optional)

create table employee
    (emp_id char(10),
      emp_name char(20),
      spouse_id char(10),
      primary key (emp_id),
      foreign key (spouse_id) references employee
      on delete set null on update cascade);

    Employee

(0,1)

(0,1)

       is-
married-to

1

1
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Recursive relationship 1-N 
(1 x optional)

create table engineer
    (emp_id char(10),
     leader_id char(10) not null,
     primary key (emp_id),
     foreign key (leader_id) references engineer
         on delete set default on update cascade);

    Engineer

(1,1)

(0,N)
       is-
group-leader
       -of

1

N
emp_id

leader_id
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Recursive relationship N-N 
(2 x optional)

create table employee
    (emp_id char(10),
     emp_name char(20),
     primary key (emp_id));

create table coauthor
     (author_id char(10),
      coauthor_id char(10),
      primary key (author_id, coauthor_id),
      foreign key (author_id) references employee
          on delete cascade on update cascade,
      foreign key (coauthor_id) reference employee
          on delete cascade on update cascade);

    Employee

(0,N)

(0,N)
       is-
   coauthor
       -with

N

N

author_id

coauthor_id
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Ternary relationships
• We will have a look at some examples of ternary 

relationship
• The constraints are important for the translation of 

ternary relationship
– Some can be expressed: participation constraints
– Some can not be expressed with SQL CREATE 

statement
– Keys in ternary relationship are always NOT NULL
– Keys must be updated and deleted 
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Ternary relationship 
(1-1-1)

   uses-
notebook  Project     Notebook

 Technician

create table technician (
    emp_id char(10),
    primary key (emp_id));
create table project (
    project_name char(20),
    primary key (project_name));
create table notebook (
    notebook_no integer,
    primary key (notebook_no));

create table uses_notebook (
    emp_id char(10),
    project_name char(20),
    notebook_no integer not null,
    primary key (emp_id, project_name),
    foreign key (emp_id) references technician
       on delete cascade on update cascade,
    foreign key (project_name) references project
       on delete cascade on update cascade,
    foreign key (notebook_no) references notebook
        on delete cascade on update cascade,
    unique (emp_id, notebook_no),
    unique (project_name, notebook_no));

(1-1-1) – one project, one technican, 
               one notebook
emp_id, project_name → notebook_no
emp_id, notebook_no → project_name
project_name, notebook_no → emp_id

1 1

1
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Ternary relationship 
(1-1-N)

  Project     Location

 Employee

create table employee (
   emp_id char(10),
   emp_name char(20),
   primary key (emp_id));
create table project (
   project_name char(20),
   primary key (project_name));
create table location (
   loc_name char(15),
   primary key (loc_name));

create table assigned_to (
    emp_id char(10),
    project_name char(20),
    loc_name char(15) not null,
    primary key (emp_id, project_name),
    foreign key (emp_id) references employee
        on delete cascade on update cascade,
    foreign key (project_name) references project
         on delete cascade on update cascade,
    foreign key (loc_name) references location
         on delete cascade on update cascade,
    unique (emp_id, loc_name));

assigned-
       to

(1-1-N) – one project, one location, 
               more employees
emp_id, loc_name → project_name
emp_id, project_name → loc_name

1 1

N
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Ternary relationship 
(N-N-N)

  Skill     Project

   Employee

create table employee (
    emp_id char(10),
    emp_name char(20),
    primary key (emp_id));
create table skill (
    skill_type char(15),
    primary key (skill_type));
create table project (
    project_name char(20),
    primary key (project_name));

create table skill_used (
    emp_id char(10),
    skill_type char(15),
    project_name char(20),
    primary key (emp_id, skill_type, project_name),
    foreign key (emp_id) references employee
        on delete cascade on update cascade,
    foreign key (skill_type) references skill
        on delete cascade on update cascade,
    foreign key (project_name) references project
        on delete cascade on update cascade);

skill-used

(N-N-N) – skills are arbitrarily linked 
                  to employes and projects

N

N

N
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 Generalization 
• Translation of a generalization hierarchy 

composed of a root supertype and subtypes can 
result in more than one SQL tables  

• A table derived from the root supertype contains 
– The key of the supertype entity, and 
– All additional attributes defined for the root supertype 

entity 
• A table derived from the subtype entity contains

– A key of the supertype 
– Only the attributes from the specific subtype entity
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 Generalization (2) 
• Integrity after insert, update or delete operations 

is achieved by updating appropriate tables  
– In some cases more than one table has to be updated
– Cascade behaviour must be used for the foreign keys 
– Updating the key of the root supertype requires the 

updates in the hierarchy of tables
– Updating description attribute requires the change in  

one table only
• Transformation rules are the same for the case of 

intersecting as well as for the disjunctive subtypes
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Generalization (3)
• The second approach is the definition of a single 

table that contains the attributes of a root entity as 
well as the subtype entities 
– Complete hierarchy is in one table
– NULL values have to be used

• The third approach is the creation of one table for 
one  subtype entity from the leafs of the hierarchy
– Include all attributes from the entities on the path to the 

root entity
• There are advantages and disadvantages of each 

approach
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Generalization (4)
• Design tools can implement all three cases  
• Practical systems use classification attributes to 

distinguish among the subtype entities
– If we have multi-level hierarchy then we use more 

classification attributes
– The type hierarchy is implemented with the 

classification attributes
• The approaches can be combined 
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Example: Generalization hierarchy



 

Generalization 
(ISA) Hierarchies

Contract_Emps

name
ssn

Employees

lot

hourly_wages
ISA

Hourly_Emps

contractid

hours_workedIf we declare A ISA B, 
every A entity is also 
considered to be a B 
entity. 

• Overlap constraints:  Can Joe be an Hourly_Emps as well as a 
Contract_Emps entity?  (Allowed/disallowed)

• Covering constraints:  Does every Employees entity also have 
to be an Hourly_Emps or a Contract_Emps entity? (Yes/no) 

• Reasons for using ISA: 
 To add descriptive attributes specific to a subclass.
 To identify entitities that participate in a relationship.



 

Translating ISA hierarchy
First approach

● 3 tables: Employes, Hourly_Emps, Contract_Emps
– ON UPDATE|DELETE CASCADE
– Queries that access attributes of all employes are simple
– Queries on specific employes are more complex 

 
Third approach: 

● 2 tables: Hourly_Emps, Contract_Emps
● Updates are allways in a single table
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