
IDB, Relational model

Relational data model

Iztok Savnik
FAMNIT

IDB, Relational model

Slides are based on

• Raghu Ramakrishnan, Johannes Gehrke,
Database Management Systems, McGraw-Hill,
3rd ed., 2007.

• Slides from „Cow Book“: R.Ramakrishnan,
http://pages.cs.wisc.edu/~dbbook/

IDB, Relational model

Why Study the Relational Model?

• The most widely used model
 Relations have a strong mathematical background
 Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
 80% of all database systems are relational

• 1985-1995: Object-oriented movement
– ObjectStore, ObjectDatabase++, GemStone/S, Versant, Ontos,

ZODB, Wakanda, ObjectDB, …
– Only a few OO DBMS products were savailable in 2000

• 1995-2000: Object-Relational Model
– Relations of objects mapped to the flat relational model
– Implementations: Oracle, DB2, Sybase, etc.
– OR model is still not used widely!

IDB, Relational model

Why Study the Relational Model?

• 2000-2010: NoSQL DBMS movement
– What happened?

• Big data, global internet info. systems, unstructured data,
semi-structured data, scientific data, pictures, videos, etc.

• Existing relational DBMS-s are not capable of scaling to
manage big data

– At the same time
• New technology: huge RAM, SSD disks, huge hard disks,

highly parallel and distributed architectures, multi-processor
and multi-core architectures, shared-nothing systems, etc.

– Result:
• Rise of No-SQL Systems!
• Products: Key/value stores, Document stores, Column stores,

Graph DBMS, In-memory DBMS, etc.

IDB, Relational model

Why Study the Relational Model?

– Existing NoSQL systems:
• MongoDB, CouchDB, Berkeley DB, Dynamo, Hbase,

Bigtable, Hypertable, Cassandra, Sybase IQ, Vertica,
ArangoDB, OrientDB, Neo4j, GraphDB, Dgraph, Virtuoso, ...

• 2010-2020: NewSQL systems
– Technology developed is used in New relational DBMS-s!
– Recent relational DBMS newcomers:

• Google: Megastore (2011), Spaner (2012), F1 (2013)
• Amazon: RDS

– Other RDBMS vendors include new technology
• Improved scalability and availability
• Oracle, DB2 (IBM), Sybase, etc.

IDB, Relational model

Why Study the Relational Model?

• New DBMSs presented in course:
– ”Database systems for big data”, M.Sc. Program, CS,

FAMNIT

• Relational systems have the largest share of
market
– ... also after the »revolution«
– After the initial excitement, the NoSQL flow calmed down
– The research area has a well organized body of knowledge
– R-DBMS features:

• consistentcy, efficient optimizer, transactions, parallel
execution, reliability, crash recovery, distribution, scalability
and availability.

IDB, Relational model

Relational Database: Definitions

• Relational database: a set of relations
• Relation: made up of 2 parts:

 Instance : a table, with rows and columns.
#Rows = cardinality, #fields = degree / arity.

 Schema : specifies name of relation, plus name
and type of each column.

• E.G. Students(sid: string, name: string, login: string,
 age: integer, gpa: real).

• Can think of a relation as a set of rows or
tuples (i.e., all rows are distinct).

IDB, Relational model

Example Instance of Students Relation

 Cardinality = 3, degree = 5, all rows distinct
 Do all columns in a relation instance have to
 be distinct?

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

IDB, Relational model

Relational Query Languages

• A major strength of the relational model:
supports simple, powerful querying of data.

• Queries can be written intuitively, and the
DBMS is responsible for efficient evaluation.
 The key: precise semantics for relational queries.
 Allows the optimizer to extensively re-order

operations, and still ensure that the answer does
not change.

IDB, Relational model

The SQL Query Language

• Developed by IBM (system R) in the 1970s
• Need for a standard since it is used by many

vendors
• Standards:

 SQL-86
 SQL-89 (minor revision)
 SQL-92 (major revision)
 SQL3 (1999, major extensions, current standard)
 SQL3: 2003, 2006, 2008, 2011, 2017, 2019

IDB, Relational model

The SQL Query Language

• To find all 18 year old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

• To find just names and logins, replace
 the first line:

SELECT S.name, S.login

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

IDB, Relational model

 Querying Multiple Relations
• What does

the following
query compute?

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid
Smith Topology112

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instances
of Enrolled and Students:

we get:

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

IDB, Relational model

Creating Relations in SQL

• Creates the Students
relation. Observe that the
type (domain) of each field
is specified, and enforced by
the DBMS whenever tuples
are added or modified.

• As another example, the
Enrolled table holds
information about courses
that students take.

CREATE TABLE Students
(sid: CHAR(20),
 name: CHAR(20),
 login: CHAR(10),
 age: INTEGER,
 gpa: REAL)

CREATE TABLE Enrolled
(sid: CHAR(20),
 cid: CHAR(20),
 grade: CHAR(2))

IDB, Relational model

Destroying and Altering Relations

• Destroys the relation Students. The schema
information and the tuples are deleted.

DROP TABLE Students

ALTER TABLE Students
ADD COLUMN firstYear: integer

• The schema of Students is altered by adding a new
field; every tuple in the current instance is extended
with a null value in the new field.

IDB, Relational model

Adding and Deleting Tuples

• Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

 Can delete all tuples satisfying some condition
(e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

 Powerful variants of these commands are available; more later!

IDB, Relational model

Integrity Constraints (ICs)

• IC: condition that must be true for any instance of the
database; e.g., domain constraints.
 ICs are specified when schema is defined.
 ICs are checked when relations are modified.

• A legal instance of a relation is one that satisfies all
specified ICs.
 DBMS should not allow illegal instances.

• If the DBMS checks ICs, stored data is more faithful to
real-world meaning.
 Avoids data entry errors, too!

IDB, Relational model

Primary Key Constraints

• A set of fields is a key for a relation if :
1. No two distinct tuples can have same values in all

key fields, and
2. This is not true for any subset of the key.
 Part 2 false? A superkey.
 If there’s >1 key for a relation, one of the keys is

chosen (by DBA) to be the primary key.
• E.g., sid is a key for Students. (What about

name?) The set {sid, gpa} is a superkey.

IDB, Relational model

Primary and Candidate Keys in SQL

• Possibly many candidate keys (specified using
UNIQUE), one of which is chosen as the primary key.

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

 “For a given student and course,
there is a single grade.” vs.
“Students can take only one
course, and receive a single grade
for that course; further, no two
students in a course receive the
same grade.”

 Used carelessly, an IC can prevent
the storage of database instances
that arise in practice!

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade))

IDB, Relational model

Foreign Keys, Referential Integrity

• Foreign key : Set of fields in one relation that is
used to `refer’ to a tuple in another relation. (Must
correspond to primary key of the second relation.)
Like a `logical pointer’.

• E.g. sid is a foreign key referring to Students:
 Enrolled(sid: string, cid: string, grade: string)
 If all foreign key constraints are enforced, referential

integrity is achieved, i.e., no dangling references.
 Can you name a data model w/o referential integrity?

• Links in HTML!

IDB, Relational model

Foreign Keys in SQL
• Only students listed in the Students relation should

be allowed to enroll for courses.
CREATE TABLE Enrolled
 (sid CHAR(20), cid CHAR(20), grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

IDB, Relational model

Enforcing Referential Integrity

• Consider Students and Enrolled; sid in Enrolled is
a foreign key that references Students.

• What should be done if an Enrolled tuple with a
non-existent student id is inserted? (Reject it!)

• What should be done if a Students tuple is deleted?
 Also delete all Enrolled tuples that refer to it.
 Disallow deletion of a Students tuple that is referred to.
 Set sid in Enrolled tuples that refer to it to a default sid.
 (In SQL, also: Set sid in Enrolled tuples that refer to it to

a special value null, denoting `unknown’ or
`inapplicable’.)

• Similar if primary key of Students tuple is updated.

IDB, Relational model

Referential Integrity in SQL

• SQL/92 and SQL:1999
support all 4 options on
deletes and updates.
 Default is NO ACTION

(delete/update is
rejected)

 CASCADE (also delete all
tuples that refer to
deleted tuple)

 SET NULL / SET DEFAULT
(sets foreign key value
of referencing tuple)

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid)
 REFERENCES Students

ON DELETE CASCADE
ON UPDATE SET DEFAULT)

IDB, Relational model

Where do ICs Come From?
• ICs are based upon the semantics of the real-world

enterprise that is being described in the database
relations.

• We can check a database instance to see if an IC is
violated, but we can NEVER infer that an IC is true by
looking at an instance.
 An IC is a statement about all possible instances!
 From example, we know name is not a key, but the assertion

that sid is a key is given to us.
• Key and foreign key ICs are the most common; more

general ICs supported too.

	Slide 1
	Slide 2
	Why Study the Relational Model?
	Slide 4
	Slide 5
	Slide 6
	Relational Database: Definitions
	Example Instance of Students Relation
	Relational Query Languages
	The SQL Query Language
	Slide 11
	Querying Multiple Relations
	Creating Relations in SQL
	Destroying and Altering Relations
	Adding and Deleting Tuples
	Integrity Constraints (ICs)
	Primary Key Constraints
	Primary and Candidate Keys in SQL
	Foreign Keys, Referential Integrity
	Foreign Keys in SQL
	Enforcing Referential Integrity
	Referential Integrity in SQL
	Where do ICs Come From?

