
IDB, Query optimization

Query optimization

Iztok Savnik, FAMNIT

IDB, Query optimization

Slides & Textbook

• Textbook:
– Raghu Ramakrishnan, Johannes Gehrke, Database

Management Systems, McGraw-Hill, 3rd ed., 2007.

• Slides:
– From „Cow Book“: R.Ramakrishnan,

http://pages.cs.wisc.edu/~dbbook/

IDB, Query optimization

Introduction to query optimization

• Contents
• Query evaluation plan
 Translate SQL into RA
 Cost estimation
 Problem definition
 Solution space
 Enumeration of plans
 Search algorithms
 System R

IDB, Query optimization

Program in DBMS

• What is program in DBMS?
– Tree of relational algebra operators

 annotated with the algorithms.
– Algorithm is determined for each

particular operation.
– Also called query evaluation plan (QEP).

• Tree of iterators
 Operators are implemented as iterators (scans)
 Interface: open(), next(), close()
 Call next() triggers calls next() at children
 Results of children are processed
 The constructed tuples are send to parents

Op3
t2=Next() T3 =Next()

Op1 Op2

t1=Next()

IDB, Query optimization

Program in DBMS

• It is a tree structured program (often pipelines)
where streams of tuples flow among operators
– At some points the flow can stop for sometime to

materialize a table.
– Disk pages are read in the leafs of query plans.
– The tuples constructed in RA operators are sent up to

the parent operators.

IDB, Query optimization

Example of RA operator tree

Reserves Sailors

sid=sid

bid=100 raing > 5

sname
Projection

Selection

Join

Relations

IDB, Query optimization

RA operator tree annotated with
algorithms (Query Evaluation Plan)

(Index nested loops)

Reserves

Sailors

sid=sid

bid=100

sname (Scan)

rating > 5

(use hash
index)

(Scan)

IDB, Query optimization

Query optimization

• How to optimize a tree of RA operators?
– Logical and physical optimization (there are many interactions!)
– Optimal query evaluation plan is the result

• Logical optimization
 Searching for logically equivalent query expressions
 To determine the cost of a query we need to have physical

QEP

• Physical optimization
 Physical algebra is used that contains only two operators: (1)

access paths and (2) joins.
 Searching for optimal methods for evaluating RA operators.
 Physical optimization intervenes with the logical optimization.

IDB, Query optimization

Translating SQL into RA

• Decompose SQL queries into blocks
– Query block is a sequence of joins.
– SQL block is treated as a procedure.
– Nested block must be called in each iteration of the

subsuming block.

• Query block is translated to a RA expression
– A block and its nested blocks are optimized separately.
– No optimization among blocks.
– Join structured queries have more chance to be properly

optimized.

IDB, Query optimization

Equivalences of RA expressions

• Query optimization of RA expressions
– Enumerate all possible equivalent RA expressions.
– Assign all possible implementations to operators.
– Estimate the cost of all query plans (QEP) and select the

best one.

• Enumerate equivalent RA expressions
– Logical algebra: the rules are presented shortly.
– Physical algebra: join re-ordering, pushing down Π and σ.

• Algebraic properties of RA operations allow
optimization.

IDB, Query optimization

Relational Algebra Equivalences
 Allow us to choose different join orders and to `push’

selections and projections ahead of joins.
 Selections: (Cascade) c cn c cnR R1 1

 c c c cR R1 2 2 1 (Commute)
 Projections: a a anR R1 1 . . . (Cascade)

 Joins: (Associative)
(Commute)

 Show that:

R ⋈ (S ⋈ T) (R ⋈ S) ⋈ T

(R ⋈ S) (S ⋈ R)

R ⋈ (S ⋈ T) (T ⋈ R) ⋈ S

IDB, Query optimization

More Equivalences
 A projection commutes with a selection that only

uses attributes retained by the projection.
 Selection based on attributes of the two arguments

of a cross-product converts cross-product to a join.
 A selection on just attributes of R commutes with ⋈.

 Similarly, if a projection follows a join, we can `push’
it by retaining only attributes of R (and S) that are
needed for the join or are kept by the projection.

 δ(R⋈ S) ≡ δ(R)⋈ S

 Π(R ⋈ S) ≡ Π (R) ⋈ S

IDB, Query optimization

Cost of a query

• Result is always an estimation.
• Statistics is stored in the system catalogs.
• Statistics is used for estimating the cost.

 Cost of query: response time, total time
 Sizes of the intermediate results

• The costs for the particular operations were
presented in previous lecture.
– Sequential scan, Index-based scan, NL join, Index NL

join, sort-merge join, itd.
• Take into account the cost of CPU and I/O.

– We use # of block read/write operations
– More and more processing in RAM recently

IDB, Query optimization

Statistics and Catalogs

• Need information about the relations and indexes
involved. Catalogs typically contain at least:
 # tuples (NTuples) and # pages (NPages) for each relation.
 # distinct key values (NKeys) and NPages for each index.
 Index height, low/high key values (Low/High) for each tree

index.

• Catalogs updated periodically.
 Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

• More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

IDB, Query optimization

Selectivity estimations for RA
operations

• Assumptions:
– Attribute values are distributed uniformly.
– Attributes and terms are mutually independent.

• Selection:
 Term A=value has SP = 1 / Nkeys(A)
 Term A1=A2 has SP = 1 / MAX(Nkeys(A1),Nkeys(A2))
 Term A>value has SP = (High(A)-value)/(High(A)-Low(A))
 SP(p(Ai)∧p(Aj)) = SP(p(Ai))*SP(p(Aj))
 SP(p(Ai)∨p(Aj)) = SP(p(Ai)) + SP(p(Aj)) – (SP(p(Ai)) * SP(p(Aj)))
 SP(A∊{value}) = SP(A= value) * card({values})

• Projection:
– Selectivity of projection is SP = 1.

IDB, Query optimization

Selectivity estimations for RA
operations

• Join:
 R ⋈A1=A2 S, A1 R and ∊ A2∊S.
 Join is defined with condition A1=A2.
 Term A1=A2 has SP = 1 / MAX(Nkeys(A1),Nkeys(A2)).
 Remember assumptions.

IDB, Query optimization

Size estimations for RA
operations

• Selection
– card(σF(R)) = SP(F) * card(R)

• Projection
– card(ΠA(R))=card(R)

• Cartesian product
– card(R x S) = card(R) * card(S)

• Join
– A is a key of R and a foreign key of S:

card(R ⋈A=B S) = card(S)
– General case: card(R ⋈ S) = SP * card(R) * card(S)

IDB, Query optimization

Size estimations for RA
operations

• Union
– Upper bound: card(R ∪ S) = card(R) + card(S)
– Lower bound: card(R ∪ S) = max{card(R), card(S)}

• Razlika
– Upper bound: card(R–S) = card(R)
– Lower bound: 0

IDB, Query optimization

Cost of access path

• Access path to a table has input data:
– Logical expression including atomic terms used as

parameters for accessing tables.
– Indexes defined on table need to be considered.
– Enumerate all possible access paths!

• Cost of an access path depends on
– Selectivity of atomic terms used for access.
– Available indexes.

• Cost of AP = cost of reading a fraction of table
from disk using an access method.
– The best AP selects the least number of tuples

IDB, Query optimization

Cost Estimates for Single-Relation Plans

 Index I on primary key matches selection:
 Cost is Height(I)[+1] for a B+ tree, about 1.2[+1] for hash

index.
 Clustered index I matching one or more selects:

 (NPages(I)+NPages(R)) * product of SP’s of matching selects.
 Non-clustered index I matching one or more selects:

 (NPages(I)+NTuples(R)) * product of SP’s of matching selects.
 Sequential scan of file:

 NPages(R).
 Note: Typically, no duplicate elimination on projections!

(Exception: Done on answers if user says DISTINCT.)

IDB, Query optimization

Cost of plans on multiple relations

• Query block:
• Maximal # tuples in the results is a product of the

sizes of the input relations.
• Selectivity of each term influences the size of the

final result.
– Size of result = Max # tuples * product of all SPs.

• Multi-relational plans are often built from a plan for a
sequence of joins by adding one more relation to
the end of a join sequence.
– Cost of join, cost of access path, estimation of size of the

result.

SELECT select-list
FROM relation-list
WHERE term1 AND...AND termk

IDB, Query optimization

Schema for Examples

 Similar to old schema; rname added for variations.
 Reserves:

 Each tuple is 40 bytes long, 100 tuples per page, 1000
pages.

 Sailors:
 Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

IDB, Query optimization

Example 1: Selectivity of an
access method

• Hash-based index H on <sid> from table Sailors
• Size of index: 160*1.25 = 200 pages

– Data entries: //ptr+int// (8+8)*40000/4000 = 160 pages

• Selection condition: “sid=19“
• Catalog: Nkeys(H), Npages(Sailors)
• Selectivity: 1/Nkeys(H) = 1/40000
• Cost estimation:

– Clustered: (200+500) * 1/40000 = 1 page
– Unclustered: (200+40000) * 1/40000 = 2 pages

IDB, Query optimization

Example 2: Cost of an access
method

• Range selectivity
• Condition: day > 12/12/12 on Reserves
• B+ tree T on attribute day: 400*1.5 = 600 pages

– 1000*100*(8+8) /4000 = 400 pages (approxim. # no index pgs)

• Selectivity: (High(T) – value)/(High(T)-Low(T))
– Assume: first reservation on 1/1/2000
– (2023-2012) / (2023-2000) = //years only// ½

• Cost
– Clustered: (600+1000) * ½ = 800 pages
– Unclustered: (600+100000) * ½ = 50300 pages

IDB, Query optimization

Query optimization - definitions

• Let q be a query issued on the database B
• Find the cheapest evaluation plan

 Optimization algorithm
• System R uses dynamic programming

 Cost estimation function computes the cost of plan.
 For each operation estimate the cost of all the algorithms

(for evaluation of op.) that can be employed; best
algorithm is selected.

 Optimization algorithms
 Exhaustive search
 Dynamic programming (System R)
 Random search, genetic algorithms, etc.

IDB, Query optimization

Query optimization - definitions

• Cost estimation function should take into account
 Number of blocks read from disk.
 CPU used for computation of RA operators (we ignore

CPU cost).
 Storing intermediate temporary tables.
 The amount of RAM used in particular algorithm.

• We use only number of read/write disk pages.

IDB, Query optimization

Abstraction of the problem
• Physical operations
• Access method query node

– Access to the tuples
– AM with index, AM with sorting, AM file scan, ...
– Includes also the selection and projection operations

• Join query node
– Various algorithms for join
– Nested loops joins, sort-merge

join, hash join, ...
– Includes also the selection

and projection operations

BA

C

D

BA

C

D

IDB, Query optimization

Solution space

• Space of equivalent query expressions
– Equivalent class of a query

• Properties of relational algebra allow transformation
of queries
– Transformed query returns the same result!
– Transformed query allows different QEP
– The algorithms for RA ops need to be determined (again)

• We are searching for an expression that
– Reads the least number of blocks
– Best (least) execution time

IDB, Query optimization

Typical relational optimizer

• Opt. algorithm based on dynamic programming
– Optimal plans are built bottom-up
– Optimal solutions to problem with n joins

• Adding optimally one join to optimal query with n-1 joins

– Restrict solution space, left-deep plans, no
materialization possible

– Exhaustive search would enumerate all permutations
– Dynamic programming is still exponential

• Optimizer of System R

IDB, Query optimization

Enumeration of Alternative Plans
 There are two main cases:

 Single-relation plans
 Multiple-relation plans

IDB, Query optimization

Queries on one relation

• Combination of selection, projection and aggregation
operations.
– No joins!

• Enumerate and check all possible access methods.
– Methods without indexes

• File scan, sorted file scan

– Methods with indexes
• Index scan, index-only, more than one index, sorted index

– Selection and projection are integrated
– Results (in sorted order) pipelined to aggregation

• Either existing ordering (last result), or sorting is used

• The method with the lowest price selected.

IDB, Query optimization

Example 3
• Tree index on attribute rating

 (1/NKeys(I)) * NRecords(R) = (1/10) * 40000 = 4000 records.
 Clustered index
 Index size: 12 //4+8// * 40000 / 4000 // page size // -> 120 *1.5 = 180
 Assume index 67% full
 (1/NKeys(I)) * (NPages(I)+NPages(R)) = (1/10) * (180+500) = 68 pages
 Unclustered index
 (1/NKeys(I)) * (NPages(I)+ NRecords(R)) = (1/10) * (180+40000) = 4018 pg

• Index on sid:
 All pages of index and file must be read !
 Hash index, size = 40000*(8 + 8)/4000 = 160 pages * 1.25 = 200 pgs
 Clustered index = 200+500 pages,

Unclustered index = 200+40000 pages, Not good !

• Sequential scan
 |Sailors| = 500 pages

SELECT M.sid
FROM Sailors M
WHERE M.rating=8

IDB, Query optimization

Queries Over Multiple Relations

• Solution space is too big so we constraint it to
some sub-space
– The use of heuristics, or restrict the structure of RA trees.
– Exhaustive search is also used... (<10 joins)

• Which part of the space we choose?
– Depends on the search algorithm
– System R uses solely left-deep plans

• Left-deep trees allow the implementation of the pipeline
• No need to store intermediate results

– Zig-zag trees, bushy trees
(also allow parallel execution)

BA

C

D

BA

C

D

IDB, Query optimization

Enumeration of Left-Deep Plans

 Left-deep plans differ only in the order of relations,
the access method for each relation, and the join
method for each join.

 Enumerated using N passes (if N relations joined):
 Pass 1: Find best 1-relation plan for each relation.
 Pass 2: Find best way to join result of each 1-relation plan

(as outer) to another relation. (All 2-relation plans.)
 Pass N: Find best way to join result of a (N-1)-relation plan

(as outer) to the N’th relation. (All N-relation plans.)
 For each subset of relations, retain only:

 Cheapest plan overall, plus
 Cheapest plan for each interesting order of the tuples.

IDB, Query optimization

Enumeration of Plans (Contd.)

 ORDER BY, GROUP BY, aggregates etc. handled as
a final step, using either an `interestingly ordered’
plan or an addional sorting operator.

 An N-1 way plan is not combined with an additional
relation unless there is a join condition between
them, unless all predicates in WHERE have been
used up.
 i.e., avoid Cartesian products if possible.

 In spite of pruning plan space, this approach is still
exponential in the # of tables.

IDB, Query optimization

Example 4

• Worst plan!
• Price: 1000+1000*500[*100] V/I blocks
• Selections can be pushed towards the

leafs.
• No indexes
• Optimization goal: Search for optimal

plan that computes the same result.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
 R.bid=100 AND S.rating>5 Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Nested loops)

(Scan)

(Scan)

RA tree:

Plan:

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

IDB, Query optimization

Plan 1
(without indexes)

• Main difference
– Push down selections.

• Price is better
– Table after selection of Reserves is small.
– Table after selection on Sailors is smaller than original.
– Join is done on small tables.

• Not all table attributes are moved among the nodes.
– Push down projections.
– Only those attributes that are needed are retained.
– Example: T1 includes the attribute sid, T2 has attributes sid and sname.
– Size of tuples contributes to the cost.

Reserves Sailors

sid=sid

bid=100

sname
(Scan)

rating > 5
(Scan+

store
in T1)

(Scan+
store
in T2)

(Merge)

IDB, Query optimization

Plan 1
(without indexes)

• Plan cost:
 Scan Reserves (1000) + write T1 (10 pages, 100 boats), unform

distribution).
 Scan Sailors (500) + write T2 (250 pages, 10 ratings).
 Sort T1 (2*2*10), sort T2 (2*3*250), merge (10+250)
 Sum: 1010+750+40+1500+260 = 3560 I/O blocks

Reserves Sailors

sid=sid

bid=100

sname
(Scan)

rating > 5
(Scan+

store
in T1)

(Scan+
store
in T2)

(Merge)

IDB, Query optimization

Plan 2 (with index)
• Speed up selection on Reserves

– Attribute bid in table Reserves is very selective (single
boat).

– Use hash index on bid (clustered/unclustered)
– Size of HI: 16*1000*100/4000->400*1.25=500

● Speed up join
● Hash index on sid from table Sailors
● Small num. of tuples from outer relation
● Projection is often joined with selection

● Access Reserves
– Clustered = (500+1000)/100=15
– Unclustered = (500+1000*100)/100=1005

● Index nested loops join
● Cost = Scan Reserves + 1000 //sel.tuples// * (1.2 [+1])
● Cost = 1215 – 3205 I/O blocks

(Inde.nested loops)

Reserves

Sailors

sid=sid

bid=100

sname (Scan)

rating > 5

(use hash
index)

(Scan)

IDB, Query optimization

Nested Queries

 Nested block is optimized
independently, with the outer
tuple considered as providing a
selection condition.

 Outer block is optimized with the
cost of `calling’ nested block
computation taken into account.

 Implicit ordering of these blocks
means that some good
strategies are not considered.
The non-nested version of the
query is typically optimized
better.

SELECT S.sname
FROM Sailors S
WHERE EXISTS
 (SELECT *
 FROM Reserves R
 WHERE R.bid=103
 AND R.sid=S.sid)

 Nested block to optimize:
 SELECT *
 FROM Reserves R
 WHERE R.bid=103
 AND S.sid= outer value

Equivalent non-nested query:
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid
 AND R.bid=103

IDB, Query optimization

Summary
 Query optimization is an important task in a relational

DBMS.
 Must understand optimization in order to understand

the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

 Two parts to optimizing a query:
 Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.
 Must estimate cost of each plan that is considered.

• Must estimate size of result and cost for each plan node.
• Key issues: Statistics, indexes, operator implementations.

IDB, Query optimization

Summary (Contd.)
 Single-relation queries:

 All access paths considered, cheapest is chosen.
 Issues: Selections that match index, whether index key has

all needed fields and/or provides tuples in a desired order.
 Multiple-relation queries:

 All single-relation plans are first enumerated.
• Selections/projections considered as early as possible.

 Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.

 Next, for each 2-relation plan that is `retained’, all ways of
joining another relation (as inner) are considered, etc.

 At each level, for each subset of relations, only best plan for
each interesting order of tuples is `retained’.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Statistics and Catalogs
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

