
IDB, Indexes

Hash-based indexes

Iztok Savnik, FAMNIT

IDB, Indexes

Slides & Textbook

• Textbook:
– Raghu Ramakrishnan, Johannes Gehrke, Database

Management Systems, McGraw-Hill, 3rd ed., 2007.

• Slides:
– From „Cow Book“: R.Ramakrishnan,

http://pages.cs.wisc.edu/~dbbook/

IDB, Indexes

Introduction

• As for any index, 3 alternatives for data entries k*:
– Data record with key value k
– <k, rid of data record with search key value k>
– <k, list of rids of data records with search key k>
 Choice orthogonal to the indexing technique

• Hash-based indexes are best for equality
selections. Cannot support range searches.

• Static and dynamic hashing techniques exist;
trade-offs similar to ISAM vs. B+ trees.

IDB, Indexes

Static Hashing
• # primary pages fixed, allocated sequentially,

never de-allocated; overflow pages if needed.
• h(k) mod M = bucket to which data entry with

key k belongs. (M = # of buckets)

h(key) mod N

h
key

Primary bucket pages Overflow pages

2
0

N-1

IDB, Indexes

Static Hashing (Contd.)

• Buckets contain data entries.
• Hash fn works on search key field of record r.

Must distribute values over range 0 ... M-1.
 h(key) = (a * key + b) usually works well.
 a and b are constants; lots known about how to tune h.

• Long overflow chains can develop and degrade
performance.
 Extendible and Linear Hashing: Dynamic techniques to

fix this problem.

IDB, Indexes

Extendible Hashing

• Situation: Bucket (primary page) becomes full.
Why not re-organize file by doubling # of buckets?
 Reading and writing all pages is expensive!
 Idea: Use directory of pointers to buckets, double # of

buckets by doubling the directory, splitting just the
bucket that overflowed!

 Directory much smaller than file, so doubling it is much
cheaper. Only one page of data entries is split. No
overflow page!

 Trick lies in how hash function is adjusted!

IDB, Indexes

Example

• Directory is array of size 4.
• To find bucket for r, take

last `global depth’ # bits of
h(r); we denote r by h(r).
 If h(r) = 5 = binary 101,

it is in bucket pointed to
by 01.

 Insert: If bucket is full, split it (allocate new page, re-distribute).

 If necessary, double the directory. (As we will see, splitting a
 bucket does not always require doubling; we can tell by
 comparing global depth with local depth for the split bucket.)

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

IDB, Indexes

Insert h(r)=20 (Causes
Doubling)

20*

00

01
10
11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001
010

011
100

101

110
111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

IDB, Indexes

Points to Note
• 20 = binary 10100. Last 2 bits (00) tell us r belongs

in A or A2. Last 3 bits needed to tell which.
 Global depth of directory: Max # of bits needed to tell

which bucket an entry belongs to.
 Local depth of a bucket: # of bits used to determine if an

entry belongs to this bucket.

• When does bucket split cause directory doubling?
 Before insert, local depth of bucket = global depth. Insert

causes local depth to become > global depth; directory is
doubled by copying it over and `fixing’ pointer to split
image page. (Use of least significant bits enables efficient
doubling via copying of directory!)

IDB, Indexes

Directory Doubling

00

01

10

11

2

Why use least significant bits in directory?
 Allows for doubling via copying!

000

001

010

011

3

100

101

110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6*

6*

6 = 110
000

100

010

110

001

101

011

111

Least Significant Most Significant

IDB, Indexes

Comments on Extendible Hashing
• If directory fits in memory, equality search

answered with one disk access; else two.
 100MB file, 100 bytes/rec, 4K pages contains 1,000,000

records (as data entries) and 25,000 directory elements;
chances are high that directory will fit in memory.

 Directory grows in spurts, and, if the distribution of hash
values is skewed, directory can grow large.

 Multiple entries with same hash value cause problems!

• Delete: If removal of data entry makes bucket
empty, can be merged with `split image’. If each
directory element points to same bucket as its split
image, can halve directory.

IDB, Indexes

Linear Hashing

• This is another dynamic hashing scheme, an
alternative to Extendible Hashing.

• LH handles the problem of long overflow chains
without using a directory, and handles duplicates.

• Idea: Use a family of hash functions h0, h1, h2, ...
 hi(key) = h(key) mod(2iN); N = initial # buckets
 h is some hash function (range is not 0 to N-1)
 If N = 2d0, for some d0, hi consists of applying h and looking

at the last di bits, where di = d0 + i.
 hi+1 doubles the range of hi (similar to directory doubling)

IDB, Indexes

Linear Hashing (Contd.)

• Directory avoided in LH by using overflow pages,
and choosing bucket to split round-robin.
 Splitting proceeds in `rounds’. Round ends when all NR

initial (for round R) buckets are split. Buckets 0 to
Next-1 have been split; Next to NR yet to be split.

 Current round number is Level.
 Search: To find bucket for data entry r, find hLevel(r):

• If hLevel(r) in range `Next to NR’ , r belongs here.
• Else, r could belong to bucket hLevel(r) or bucket

hLevel(r) + NR; must apply hLevel+1(r) to find out.

IDB, Indexes

Overview of LH File

• In the middle of a round.

Levelh

Buckets that existed at the
beginning of this round:

this is the range of

Next
Bucket to be split

of other buckets) in this round

Levelh search key value)(

search key value)(

Buckets split in this round:
If

is in this range, must use
h Level+1

`split image' bucket.
to decide if entry is in

created (through splitting
`split image' buckets:

IDB, Indexes

Linear Hashing (Contd.)
• Insert: Find bucket by applying hLevel / hLevel+1:

 If bucket to insert into is full:
• Add overflow page and insert data entry.
• (Maybe) Split Next bucket and increment Next.

• Can choose any criterion to `trigger’ split.
• Since buckets are split round-robin, long overflow

chains don’t develop!
• Doubling of directory in Extendible Hashing is

similar; switching of hash functions is implicit in how
the # of bits examined is increased.

IDB, Indexes

Example of Linear Hashing

• On split, hLevel+1 is used to
re-distribute entries.

0
hh

1

(This info
is for illustration
only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents
of the linear hashed
file)

Next=0

PRIMARY
PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

0
hh

1

Level=0

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW
PAGES

43*

00100

IDB, Indexes

Example: End of a Round

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=0
PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44*36*

37*29*

30*

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

Level=1

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

IDB, Indexes

LH Described as a Variant of
EH

• The two schemes are actually quite similar:
 Begin with an EH index where directory has N elements.
 Use overflow pages, split buckets round-robin.
 First split is at bucket 0. (Imagine directory being doubled

at this point.) But elements <1,N+1>, <2,N+2>, ... are the
same. So, need only create directory element N, which
differs from 0, now.

• When bucket 1 splits, create directory element N+1, etc.

• So, directory can double gradually. Also, primary
bucket pages are created in order. If they are
allocated in sequence too (so that finding i’th is easy),
we actually don’t need a directory! Voila, LH.

IDB, Indexes

Summary

• Hash-based indexes: best for equality searches,
cannot support range searches.

• Static Hashing can lead to long overflow chains.
• Extendible Hashing avoids overflow pages by

splitting a full bucket when a new data entry is to be
added to it. (Duplicates may require overflow
pages.)
 Directory to keep track of buckets, doubles periodically.
 Can get large with skewed data; additional I/O if this does

not fit in main memory.

IDB, Indexes

Summary (Contd.)
• Linear Hashing avoids directory by splitting buckets

round-robin, and using overflow pages.
 Overflow pages not likely to be long.
 Duplicates handled easily.
 Space utilization could be lower than Extendible Hashing,

since splits not concentrated on `dense’ data areas.
• Can tune criterion for triggering splits to trade-off

slightly longer chains for better space utilization.

• For hash-based indexes, a skewed data distribution
is one in which the hash values of data entries are
not uniformly distributed!

	Slide 1
	Slide 2
	Slide 3
	Static Hashing
	Static Hashing (Contd.)
	Extendible Hashing
	Example
	Insert h(r)=20 (Causes Doubling)
	Points to Note
	Directory Doubling
	Comments on Extendible Hashing
	Linear Hashing
	Linear Hashing (Contd.)
	Overview of LH File
	Slide 15
	Example of Linear Hashing
	Example: End of a Round
	LH Described as a Variant of EH
	Slide 19
	Slide 20

