Hash-based indexes

|ztok Savnik, FAMNIT

Slides & Textbook

e Textbook:

— Raghu Ramakrishnan, Johannes Gehrke, Database
Management Systems, McGraw-Hill, 3" ed., 2007.

e Slides:

— From ,Cow Book“: R.Ramakrishnan,
http.//pages.cs.wisc.edu/~dbbook/

IDB, Indexes

Introduction

* As for any index, 3 alternatives for data entries k*:
— Data record with key value k
— <K, rid of data record with search key value k>
— <Kk, list of rids of data records with search key k>
* Choice orthogonal to the indexing technique

 Hash-based indexes are best for equality
selections. Cannot support range searches.

e Static and dynamic hashing techniques exist;
trade-offs similar to ISAM vs. B+ trees.

IDB, Indexes

Static Hashing

* # primary pages fixed, allocated sequentially,
never de-allocated; overflow pages if needed.

* h(k) mod M = bucket to which data entry with
key k belongs. (M = # of buckets)

h(key) mod (2’ i
key 1
1 N-1-

Primary bucket pages Ooverflow pages
IDB, Indexes

Static Hashing (Contd.)

* Buckets contain data entries.
* Hash fn works on search key field of record r.
Must distribute values over range O ... M-1.
" h(key) = (a * key + b) usually works well.
" aand b are constants; lots known about how to tune h.
* Long overflow chains can develop and degrade
performance.

" Extendible and Linear Hashing. Dynamic technigues to
fix this problem.

IDB, Indexes

Extendible Hashing

* Situation: Bucket (primary page) becomes full.
Why not re-organize file by doubling # of buckets?

* Reading and writing all pages is expensive!

* Idea: Use directory of pointers to buckets, double # of
buckets by doubling the directory, splitting just the
bucket that overflowed!

* Directory much smaller than file, so doubling it is much
cheaper. Only one page of data entries is split. No
overflow page!

* Trick lies in how hash function is adjusted!

IDB, Indexes

LocaL DEPTH | 2
] 4 12* 32+ 16°
Exam ple — GLOB<\;\I1EPTH
* Directory is array of size 4. * L] v s
 To find bucket for r, take ~ * —
last "global depth’ # bits of 10 \\)
h(r); we denote r by h(r). " N 10
* It h(r) = 5 = binary 101, \
it is in bucket pointed to DIRECTORY &
by 01. 15* 7* 19*
DATA PAGES

Bucket A

Bucket B

Bucket C

Bucket D

“ Insert: If bucket is full, split it (allocate new page, re-distribute).

* If necessary, double the directory. (As we will see, splitting a

bucket does not always require doubling; we can tell by

comparing global depth with local depth for the split bucket.)

IDB, Indexes

Insert h(r)=20 (Causes

Doubling)

LOCAL DEPTH Z—

GLOBAL DEPTH " 3216

-

...... / * * * 9
00 17 5 21M3
01 — o
10]

\)
11 .
DIRECTORY

157 19*

4* 12*20*

IDB, Indexes

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(‘split image'
of Bucket A)

LOCAL DEPTH-Z—7"

GLOBAL DEPTH d

32* 167

N

Bucket A

000 41" 5" 21"13] Bucket B
001
010 7<
011 p 10* Bucket C
100 ><
101
110 315* 7* 19* | Bucket D
111
Ks
DIRECTORY Y4+ 1220 | Bucket A2
('split image'

of Bucket A)

Points to Note

e 20 = binary 10100. Last 2 bits (00) tell us r belongs
In A or A2. Last 3 bits needed to tell which.
* Global depth of directory: Max # of bits needed to tell
which bucket an entry belongs to.

* Local depth of a bucket: # of bits used to determine if an
entry belongs to this bucket.

* When does bucket split cause directory doubling?

" Before insert, local depth of bucket = global depth. Insert
causes local depth to become > global depth; directory is
doubled by copying it over and fixing’ pointer to split
Image page. (Use of least significant bits enables efficient
doubling via copying of directory!)

IDB, Indexes

Directory Doubling

Why use least significant bits in directory?
* Allows for doubling via copying!

6 =110 3 6=110 3
000 000
e 001 s 100
1 00 011 1 00 110
0| o* 01 100 0 10 001
6*
1 10 101 1 6% 01 g+ | 101
11 110 6* 11 011 6*

111 111

Least Significant VS. Most Significant

IDB, Indexes

Comments on Extendible Hashing

* |f directory fits in memory, equality search
answered with one disk access; else two.

* 100MB file, 100 bytes/rec, 4K pages contains 1,000,000
records (as data entries) and 25,000 directory elements;
chances are high that directory will fit in memory.

* Directory grows in spurts, and, if the distribution of hash
values is skewed, directory can grow large.

" Multiple entries with same hash value cause problems!

* Delete: If removal of data entry makes bucket
empty, can be merged with ‘split image’. If each
directory element points to same bucket as its split
Image, can halve directory.

IDB, Indexes

Linear Hashing

This Is another dynamic hashing scheme, an
alternative to Extendible Hashing.
L

H handles the problem of long overflow chains
without using a directory, and handles duplicates.
* Idea: Use a family of hash functions h,, h,, h,, ...
" h(key) = h(key) mod(2'N); N = initial # buckets
* his some hash function (range is not 0 to N-1)

" If N =29, for some dO, h. consists of applying h and looking
at the last di bits, where di = dO + 1.

" h.,,doubles the range of h.(similar to directory doubling)

+1

IDB, Indexes

Linear Hashing (Contd.)

* Directory avoided in LH by using overflow pages,
and choosing bucket to split round-robin.

" Splitting proceeds in rounds’. Round ends when all N,
initial (for round R) buckets are split. Buckets 0 to

Next-1 have been split; Next to N, yet to be split.
* Current round number is Level.

" Search: To find bucket for data entry r, find h,_ . (r)-
* If h,_./(r) in range Nextto N;’, r belongs here.

* Else, r could belong to bucket h, . (r) or bucket
h,.(r) + Ny mustapply h,,...(r) to find out.

IDB, Indexes

Overview of LH File

 |n the middle of a round.

Bucket to be split
Next

Buckets that existed at the

beginning of this rounds—
this is the range of

h Level

IDB, Indexes

Buckets split in this round:
Ifh Level (search key value)

is in this range, must use

h Level+1 (search key value)
to decide if entry is in
‘split image' bucket.

“split image' buckets:
created (through splitting
of other buckets) in this round

Linear Hashing (Contd.)

Insert: Find bucket by applying h,, .,/ h,,,..,
" If bucket to insert into is full:
* Add overflow page and insert data entry.
* (Maybe) Split Next bucket and increment Next.

Can choose any criterion to ‘trigger’ split.

Since buckets are split round-robin, long overflow
chains don’t develop!

Doubling of directory in Extendible Hashing Is
similar; switching of hash functions is implicit in how
the # of bits examined Is increased.

IDB, Indexes

Example of Linear Hashing

. : :
On split, hy ., IS used to
re-distribute entries.
Level=0, N=4 Level=0
h h PRIMARY h h PRIMARY OVERFLOW
1 0 | Next=0 PAGES 1 0 PAGES PAGES
) 2%44*| 36% 321
000 | 00 32744%36] 000 | 00
ext=1 N
Data entry r \
001 | o1 925758 | with h(r)=s 001 | o1 9| 2545%
~—— _
*
o010 | 10 147187104304 Primary o010 | 10 1418110430
— bucket page -
1%35% 7% 114 31%35%7*(11
011 | 11 3 011 | 11 17411 , 43
(This info (The actual contents
is for illustration of the linear hashed 100 00 447 36™
| : [
only!) 5B Indexes 1€

000

001

010

011

100

101

110

Example: End of a Round

Level=0
PRIMARY OVERFLOW

hg PAGES PAGES
00 32*
01 9* 25%*
10 66*18*10* 34*

Next=3
11 Sl31m5% 7% 11% | 43*
00 44*36*
01 5* 37%29%
10 14*30%22%*

IDB, Indexes

hy

000
001
010
011

100

101

110

111

hg

00

01

10

11

00

11

10

11

Level=1
PRIMARY OVERFLOW
PAGES PAGES
Next=0
ETY
Q% 5%
66* 18* 10* 34* 50%

43* 35* 11*

44* 36*

5* 37% 29%

14* 30%* 22*

31*7*

LH Described as a Variant of

* The two schemes are actually quite similar:
* Begin with an EH index where directory has N elements.
" Use overflow pages, split buckets round-robin.

" First split is at bucket 0. (Imagine directory being doubled
at this point.) But elements <1,N+1>, <2 N+2>, ... are the
same. S0, need only create directory element N, which

differs from O, now.
* When bucket 1 splits, create directory element N+1, etc.

* S0, directory can double gradually. Also, primary
bucket pages are created in order. If they are
allocated in sequence too (so that finding I'th is easy),
we actually don’t need a directory! Voila, LH.

IDB, Indexes

Summary

* Hash-based indexes: best for equality searches,
cannot support range searches.

e Static Hashing can lead to long overflow chains.

* Extendible Hashing avoids overflow pages by
splitting a full bucket when a new data entry is to be
added to it. (Duplicates may require overflow
pages.)

* Directory to keep track of buckets, doubles periodically.

* Can get large with skewed data; additional I/O if this does
not fit in main memory.

IDB, Indexes

Summary (Contd.)

* Linear Hashing avoids directory by splitting buckets
round-robin, and using overflow pages.
" Overflow pages not likely to be long.
* Duplicates handled easily.

" Space utilization could be lower than Extendible Hashing,
since splits not concentrated on dense’ data areas.

* Can tune criterion for triggering splits to trade-off
slightly longer chains for better space utilization.

 For hash-based indexes, a skewed data distribution
IS one In which the hash values of data entries are
not uniformly distributed!

IDB, Indexes

	Slide 1
	Slide 2
	Slide 3
	Static Hashing
	Static Hashing (Contd.)
	Extendible Hashing
	Example
	Insert h(r)=20 (Causes Doubling)
	Points to Note
	Directory Doubling
	Comments on Extendible Hashing
	Linear Hashing
	Linear Hashing (Contd.)
	Overview of LH File
	Slide 15
	Example of Linear Hashing
	Example: End of a Round
	LH Described as a Variant of EH
	Slide 19
	Slide 20

