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Introduction

* As for any index, 3 alternatives for data entries k*:
— Data record with key value k
— <K, rid of data record with search key value k>
— <Kk, list of rids of data records with search key k>
* Choice orthogonal to the indexing technique

 Hash-based indexes are best for equality
selections. Cannot support range searches.

e Static and dynamic hashing techniques exist;
trade-offs similar to ISAM vs. B+ trees.
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Static Hashing

* # primary pages fixed, allocated sequentially,
never de-allocated; overflow pages if needed.

* h(k) mod M = bucket to which data entry with
key k belongs. (M = # of buckets)

h(key) mod (2’ i
key 1
1 N-1-

Primary bucket pages Ooverflow pages
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Static Hashing (Contd.)

* Buckets contain data entries.
* Hash fn works on search key field of record r.
Must distribute values over range O ... M-1.
" h(key) = (a * key + b) usually works well.
" aand b are constants; lots known about how to tune h.
* Long overflow chains can develop and degrade
performance.

" Extendible and Linear Hashing. Dynamic technigues to
fix this problem.
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Extendible Hashing

* Situation: Bucket (primary page) becomes full.
Why not re-organize file by doubling # of buckets?

* Reading and writing all pages is expensive!

* Idea: Use directory of pointers to buckets, double # of
buckets by doubling the directory, splitting just the
bucket that overflowed!

* Directory much smaller than file, so doubling it is much
cheaper. Only one page of data entries is split. No
overflow page!

* Trick lies in how hash function is adjusted!
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LocaL DEPTH | 2
] 4 12* 32+ 16°
Exam ple — GLOB<\;\I1EPTH
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it is in bucket pointed to DIRECTORY &
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DATA PAGES

Bucket A

Bucket B

Bucket C

Bucket D

“ Insert: If bucket is full, split it (allocate new page, re-distribute).

* If necessary, double the directory. (As we will see, splitting a

bucket does not always require doubling; we can tell by

comparing global depth with local depth for the split bucket.)
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Insert h(r)=20 (Causes

Doubling)

LOCAL DEPTH Z—

GLOBAL DEPTH " 3216
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...... / * * * 9
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11 .
DIRECTORY
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4* 12*20*
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Bucket A2
(‘split image'
of Bucket A)

LOCAL DEPTH-Z—7"

GLOBAL DEPTH d

32* 167

N

Bucket A

000 41" 5" 21"13] Bucket B
001
010 7<
011 p 10* Bucket C
100 ><
101
110 315* 7* 19* | Bucket D
111
Ks
DIRECTORY Y4+ 1220 | Bucket A2
('split image'

of Bucket A)



Points to Note

e 20 = binary 10100. Last 2 bits (00) tell us r belongs
In A or A2. Last 3 bits needed to tell which.
* Global depth of directory: Max # of bits needed to tell
which bucket an entry belongs to.

* Local depth of a bucket: # of bits used to determine if an
entry belongs to this bucket.

* When does bucket split cause directory doubling?

" Before insert, local depth of bucket = global depth. Insert
causes local depth to become > global depth; directory is
doubled by copying it over and fixing’ pointer to split
Image page. (Use of least significant bits enables efficient
doubling via copying of directory!)
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Directory Doubling

Why use least significant bits in directory?
* Allows for doubling via copying!

6 =110 3 6=110 3
000 000
e 001 s 100
1 00 011 1 00 110
0| o* 01 100 0 10 001
6*
1 10 101 1 6% 01 g+ | 101
11 110 6* 11 011 6*

111 111

Least Significant VS. Most Significant
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Comments on Extendible Hashing

* |f directory fits in memory, equality search
answered with one disk access; else two.

* 100MB file, 100 bytes/rec, 4K pages contains 1,000,000
records (as data entries) and 25,000 directory elements;
chances are high that directory will fit in memory.

* Directory grows in spurts, and, if the distribution of hash
values is skewed, directory can grow large.

" Multiple entries with same hash value cause problems!

* Delete: If removal of data entry makes bucket
empty, can be merged with ‘split image’. If each
directory element points to same bucket as its split
Image, can halve directory.
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Linear Hashing

This Is another dynamic hashing scheme, an
alternative to Extendible Hashing.
L

H handles the problem of long overflow chains
without using a directory, and handles duplicates.
* Idea: Use a family of hash functions h,, h,, h,, ...
" h(key) = h(key) mod(2'N); N = initial # buckets
* his some hash function (range is not 0 to N-1)

" If N =29, for some dO, h. consists of applying h and looking
at the last di bits, where di = dO + 1.

" h.,,doubles the range of h.(similar to directory doubling)

+1
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Linear Hashing (Contd.)

* Directory avoided in LH by using overflow pages,
and choosing bucket to split round-robin.

" Splitting proceeds in rounds’. Round ends when all N,
initial (for round R) buckets are split. Buckets 0 to

Next-1 have been split; Next to N, yet to be split.
* Current round number is Level.

" Search: To find bucket for data entry r, find h,_ . (r)-
* If h,_./(r) in range Nextto N;’, r belongs here.

* Else, r could belong to bucket h, . (r) or bucket
h,.(r) + Ny mustapply h,,...(r) to find out.
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Overview of LH File

 |n the middle of a round.

Bucket to be split
Next

Buckets that existed at the

beginning of this rounds—
this is the range of

h Level
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Buckets split in this round:
Ifh Level (search key value )

is in this range, must use

h Level+1 (search key value )
to decide if entry is in
‘split image' bucket.

“split image' buckets:
created (through splitting
of other buckets) in this round



Linear Hashing (Contd.)

Insert: Find bucket by applying h,, .,/ h,,,..,
" If bucket to insert into is full:
* Add overflow page and insert data entry.
* (Maybe) Split Next bucket and increment Next.

Can choose any criterion to ‘trigger’ split.

Since buckets are split round-robin, long overflow
chains don’t develop!

Doubling of directory in Extendible Hashing Is
similar; switching of hash functions is implicit in how
the # of bits examined Is increased.
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Example of Linear Hashing

. : :
On split, hy ., IS used to
re-distribute entries.
Level=0, N=4 Level=0
h h PRIMARY h h PRIMARY OVERFLOW
1 0 | Next=0 PAGES 1 0 PAGES PAGES
) 2%44*| 36% 321
000 | 00 32744%36 ] 000 | 00
ext=1 N
Data entry r \
001 | o1 925758 | with h(r)=s 001 | o1 9| 2545%
~—— _
*
o010 | 10 147187104304 Primary o010 | 10 1418110430
— bucket page -
1%35% 7% 114 31%35%7*(11
011 | 11 3 011 | 11 17411 , 43
(This info (The actual contents
is for illustration of the linear hashed 100 00 447 36™
| : [
only!) 5B Indexes 1€
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Example: End of a Round

Level=0
PRIMARY OVERFLOW

hg PAGES PAGES
00 32*
01 9* 25%*
10 66*18*10* 34*

Next=3
11 Sl31m5% 7% 11% | 43*
00 44*36*
01 5* 37%29%
10 14*30%22%*
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Level=1
PRIMARY OVERFLOW
PAGES PAGES
Next=0
ETY
Q% 5%
66* 18* 10* 34* 50%
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31*7*




LH Described as a Variant of

* The two schemes are actually quite similar:
* Begin with an EH index where directory has N elements.
" Use overflow pages, split buckets round-robin.

" First split is at bucket 0. (Imagine directory being doubled
at this point.) But elements <1,N+1>, <2 N+2>, ... are the
same. S0, need only create directory element N, which

differs from O, now.
* When bucket 1 splits, create directory element N+1, etc.

* S0, directory can double gradually. Also, primary
bucket pages are created in order. If they are
allocated in sequence too (so that finding I'th is easy),
we actually don’t need a directory! Voila, LH.
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Summary

* Hash-based indexes: best for equality searches,
cannot support range searches.

e Static Hashing can lead to long overflow chains.

* Extendible Hashing avoids overflow pages by
splitting a full bucket when a new data entry is to be
added to it. (Duplicates may require overflow
pages.)

* Directory to keep track of buckets, doubles periodically.

* Can get large with skewed data; additional I/O if this does
not fit in main memory.
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Summary (Contd.)

* Linear Hashing avoids directory by splitting buckets
round-robin, and using overflow pages.
" Overflow pages not likely to be long.
* Duplicates handled easily.

" Space utilization could be lower than Extendible Hashing,
since splits not concentrated on dense’ data areas.

* Can tune criterion for triggering splits to trade-off
slightly longer chains for better space utilization.

 For hash-based indexes, a skewed data distribution
IS one In which the hash values of data entries are
not uniformly distributed!
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