
IDB, Eval RA

Evaluation of relational
operations
Iztok Savnik, FAMNIT

IDB, Eval RA

Slides & Textbook

• Textbook:
– Raghu Ramakrishnan, Johannes Gehrke, Database

Management Systems, McGraw-Hill, 3rd ed., 2007.
• Slides:

– From „Cow Book“: R.Ramakrishnan,
http://pages.cs.wisc.edu/~dbbook/

IDB, Eval RA

Overview of Query Evaluation
• Plan: Tree of R.A. ops, with choice of alg for each op.

 Each operator typically implemented using a `pull’ interface:
when an operator is `pulled’ for the next output tuples, it
`pulls’ on its inputs and computes them.

• Two main issues in query optimization:
 For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.
 How is the cost of a plan estimated?

• Ideally: Want to find best plan. Practically: Avoid
worst plans!

• We will study the System R approach.

IDB, Eval RA

Some Common Techniques
• Algorithms for evaluating relational operators use

some simple ideas extensively:
– Indexing: Can use WHERE conditions to retrieve small

set of tuples (selections, joins)
– Iteration: Sometimes, faster to scan all tuples even if

there is an index. (And sometimes, we can scan the data
entries in an index instead of the table itself.)

– Sorting: Many algorithms for the evaluation of relational
operations evolved from the external merge sort
algorithm: project, join, grouping, etc.

– Partitioning: By hashing, we can partition the input tuples
and replace an expensive operation by similar operations
on smaller inputs.

* Watch for these techniques as we discuss query evaluation!

IDB, Eval RA

Statistics and Catalogs
• Need information about the relations and indexes

involved. Catalogs typically contain at least:
 # tuples (NTuples) and # pages (NPages) for each relation.
 # distinct key values (NKeys) and NPages for each index.
 Index height, low/high key values (Low/High) for each tree

index.
• Catalogs updated periodically.

 Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.

• More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

IDB, Eval RA

Access Paths
 An access path is a method of retrieving tuples:

 File scan, or index that matches a selection (in the query)
 A tree index matches (a conjunction of) terms that

involve only attributes in a prefix of the search key.
 E.g., Tree index on <a, b, c> matches the selection a=5 AND

b=3, and a=5 AND b>6, but not b=3.
 A hash index matches (a conjunction of) terms that

has a term attribute = value for every attribute in the
search key of the index.
 E.g., Hash index on <a, b, c> matches a=5 AND b=3 AND c=5;

but it does not match b=3, or a=5 AND b=3, or a>5 AND b=3
AND c=5.

IDB, Eval RA

Why Sort?

• A classic problem in computer science!
• Data requested in sorted order

 e.g., find students in increasing gpa order
• Sorting is first step in bulk loading B+ tree index.
• Sorting useful for eliminating duplicate copies in a

collection of records (Why?)
• Sort-merge join algorithm involves sorting.
• Problem: sort 1Gb of data with 1Mb of RAM.

 why not virtual memory?

IDB, Eval RA

2-Way Sort: Requires 3 Buffers

• Pass 1: Read a page, sort it, write it.
 only one buffer page is used

• Pass 2, 3, …, etc.:
 three buffer pages used.

Main memory
buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

IDB, Eval RA

Two-Way External Merge Sort

• Each pass we read + write
each page in file.

• N pages in the file => the
number of passes

• So total cost is:

• Idea: Divide and

conquer: sort subfiles and
merge

=⌈ log 2N ⌉+1

2N (⌈ log2N ⌉+1)

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

IDB, Eval RA

General External Merge Sort

• To sort a file with N pages using B buffer pages:
 Pass 0: use B buffer pages. Produce sorted runs of

B pages each.
 Pass 2, …, etc.: merge B-1 runs.

⌈ / ⌉

B Main memory
buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.
.

. . .

 More than 3 buffer pages. How can we utilize them?

IDB, Eval RA

Cost of External Merge Sort

• Number of passes:
• Cost = 2N * (# of passes)
• E.g., with 5 buffer pages, to sort 108 page

file:
 Pass 0: = 22 sorted runs of 5 pages

each (last run is only 3 pages)
 Pass 1: = 6 sorted runs of 20 pages

each (last run is only 8 pages)
 Pass 2: 2 sorted runs, 80 pages and 28 pages
 Pass 3: Sorted file of 108 pages

  1 1 log /B N B

 108 5/

 22 4/

IDB, Eval RA

Number of Passes of External Sort

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

IDB, Eval RA

Relational Operations
• We will consider how to implement:

● Selection (σ) Selects a subset of rows from relation.
● Projection (π) Deletes unwanted columns from relation.
● Join (⋈) Allows us to combine two relations.
 Set-difference (/) Tuples in reln. 1, but not in reln. 2.
 Union (∪) Tuples in reln. 1 and in reln. 2.
 Aggregation (SUM, MIN, etc.) and GROUP BY

• Since each op returns a relation, ops can be
composed! After we cover the operations, we will
discuss how to optimize queries formed by composing
them.

IDB, Eval RA

Schema for Examples

• Similar to old schema; rname added for variations.
• Reserves:

 Each tuple is 40 bytes long, 100 tuples per page, 1000
pages.

• Sailors:
 Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

IDB, Eval RA

A Note on Complex Selections

• Selection conditions are first converted to
conjunctive normal form (CNF):

 (day<8/9/94 OR bid=5 OR sid=3) AND
(rname=‘Paul’ OR bid=5 OR sid=3)

• We only discuss case with no ORs; see text if you
are curious about the general case.

 (day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3

IDB, Eval RA

Using an Index for Selections
• Cost depends on #qualifying

tuples, and clustering.
 Cost of finding qualifying data

entries (typically small) plus cost
of retrieving records (could be large w/o clustering).

 In example, assuming uniform distribution of names, about 10% of
tuples qualify (100 pages, 10000 tuples). With a clustered index,
cost is little more than 100 I/Os; if unclustered, upto 10000 I/Os!

• Important refinement for unclustered indexes:
1. Find qualifying data entries.
2. Sort the rid’s of the data records to be retrieved.
3. Fetch rids in order. This ensures that each data page is looked at

just once (though # of such pages likely to be higher than with
clustering).

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

IDB, Eval RA

Two Approaches to General Selections
• First approach: Find the most selective access path,

retrieve tuples using it, and apply any remaining
terms that don’t match the index:
 Most selective access path: An index or file scan that we

estimate will require the fewest page I/Os.
 Terms that match this index reduce the number of tuples

retrieved; other terms are used to discard some retrieved
tuples, but do not affect number of tuples/pages fetched.

 Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree
index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple. Similarly, a hash index on
<bid, sid> could be used; day<8/9/94 must then be
checked.

IDB, Eval RA

Intersection of Rids
• Second approach (if we have 2 or more matching

indexes that use Alternatives (2) or (3) for data
entries):
 Get sets of rids of data records using each matching index.
 Then intersect these sets of rids (we’ll discuss intersection

soon!)
 Retrieve the records and apply any remaining terms.
 Consider day<8/9/94 AND bid=5 AND sid=3. If we have a

B+ tree index on day and an index on sid, both using
Alternative (2), we can retrieve rids of records satisfying
day<8/9/94 using the first, rids of recs satisfying sid=3
using the second, intersect, retrieve records and check
bid=5.

IDB, Eval RA

Projection
• The expensive part is removing duplicates.

– SQL systems don’t remove duplicates unless the keyword
DISTINCT is specified in a query.

• Sorting Approach: Sort on <sid, bid> and remove
duplicates. (Can optimize this by dropping unwanted
information while sorting.)

• Hashing Approach: Hash on <sid, bid> to create
partitions. Load partitions into memory one at a time,
build in-memory hash structure, and eliminate
duplicates.

• If there is an index with both R.sid and R.bid in the
search key, may be cheaper to sort data entries!

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

IDB, Eval RA

The Projection Operation

• An approach based on sorting:
 Modify Pass 0 of external sort to eliminate unwanted fields.

Thus, runs of about B (2B with opt.) pages are produced,
but tuples in runs are smaller than input tuples. (Size ratio
depends on # and size of fields that are dropped.)

 Modify merging passes to eliminate duplicates. Thus,
number of result tuples smaller than input. (Difference
depends on # of duplicates.)

 Cost: In Pass 0, read original relation (size M), write out
same number of smaller tuples. In merging passes, fewer
tuples written out in each pass. Using Reserves example,
1000 input pages reduced to 250 in Pass 0 if size ratio is
0.25

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

IDB, Eval RA

Projection Based on Hashing
• Partitioning phase: Read R using one input buffer.

For each tuple, discard unwanted fields, apply hash
function h1 to choose one of B-1 output buffers.
 Result is B-1 partitions (of tuples with no unwanted fields).

2 tuples from different partitions guaranteed to be distinct.
• Duplicate elimination phase: For each partition, read

it and build an in-memory hash table, using hash fn
h2 (<> h1) on all fields, while discarding duplicates.
 If partition does not fit in memory, can apply hash-based

projection algorithm recursively to this partition.
• Cost: For partitioning, read R, write out each tuple,

but with fewer fields. This is read in next phase.

IDB, Eval RA

Discussion of Projection
• Sort-based approach is the standard; better handling

of skew and result is sorted.
• If an index on the relation contains all wanted

attributes in its search key, can do index-only scan.
 Apply projection techniques to data entries (much smaller!)

• If an ordered (i.e., tree) index contains all wanted
attributes as prefix of search key, can do even better:
 Retrieve data entries in order (index-only scan), discard

unwanted fields, compare adjacent tuples to check for
duplicates.

IDB, Eval RA

Equality Joins With One Join Column

• In algebra: R ⋈ S. Common! Must be carefully
optimized. R x S is large; so, R x S followed by a
selection is inefficient.

• Assume: M tuples in R, pR tuples per page, N tuples in
S, pS tuples per page.
 In our examples, R is Reserves and S is Sailors.

• We will consider more complex join conditions later.
• Cost metric: # of I/Os. We will ignore output costs.

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

IDB, Eval RA

Simple Nested Loops Join

• For each tuple in the outer relation R, we scan the
entire inner relation S.
 Cost: M + pR * M * N = 1000 + 100*1000*500 I/Os.

• Page-oriented Nested Loops join: For each page of
R, get each page of S, and write out matching pairs
of tuples <r, s>, where r is in R-page and S is in S-
page.
 Cost: M + M*N = 1000 + 1000*500
 If smaller relation (S) is outer, cost = 500 + 500*1000

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result

IDB, Eval RA

Index Nested Loops Join

• If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.
 Cost: M + ((M*pR) * cost of finding matching S tuples)

• For each R tuple, cost of probing S index is about
1.2 for hash index, 2-4 for B+ tree. Cost of then
finding S tuples (assuming Alt. (2) or (3) for data
entries) depends on clustering.
 Clustered index: 1 I/O (typical), unclustered: upto 1 I/O per

matching S tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

IDB, Eval RA

Examples of Index Nested Loops
• Hash-index (Alt. 2) on sid of Sailors (as inner):

 Scan Reserves: 1000 page I/Os, 100*1000 tuples.
 For each Reserves tuple: 1.2 I/Os to get data entry in

index, plus 1 I/O to get (the exactly one) matching Sailors
tuple. Total: 220,000 I/Os.

• Hash-index (Alt. 2) on sid of Reserves (as inner):
 Scan Sailors: 500 page I/Os, 80*500 tuples.
 For each Sailors tuple: 1.2 I/Os to find index page with

data entries, plus cost of retrieving matching Reserves
tuples. Assuming uniform distribution, 2.5 reservations per
sailor (100,000 / 40,000). Cost of retrieving them is 1 or
2.5 I/Os depending on whether the index is clustered.

IDB, Eval RA

Block Nested Loops Join
• Use one page as an input buffer for scanning the

inner S, one page as the output buffer, and use all
remaining pages to hold ``block’’ of outer R.
 For each matching tuple r in R-block, s in S-page, add

<r, s> to result. Then read next R-block, scan S, etc.

. . .
. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

IDB, Eval RA

Examples of Block Nested Loops
• Cost: Scan of outer + #outer blocks * scan of inner

 #outer blocks =
• With Reserves (R) as outer, and 100 pages of R:

 Cost of scanning R is 1000 I/Os; a total of 10 blocks.
 Per block of R, we scan Sailors (S); 10*500 I/Os.
 If space for just 90 pages of R, we would scan S 12 times.

• With 100-page block of Sailors as outer:
 Cost of scanning S is 500 I/Os; a total of 5 blocks.
 Per block of S, we scan Reserves; 5*1000 I/Os.

• With sequential reads considered, analysis changes:
may be best to divide buffers evenly between R and
S.

 # /of pages of outer blocksize

IDB, Eval RA

Sort-Merge Join (R ⋈ S)
• Sort R and S on the join column, then scan them to

do a ``merge’’ (on join col.), and output result tuples.
 Advance scan of R until current R-tuple >= current S tuple,

then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.

 At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.

 Then resume scanning R and S.
• R is scanned once; each S group is scanned once per

matching R tuple. (Multiple scans of an S group are
likely to find needed pages in buffer.)

i=j

IDB, Eval RA

Example of Sort-Merge Join

• Cost: M log M + N log N + (M+N)
 The cost of scanning, M+N, could be M*N (very unlikely!)

• With 35, 100 or 300 buffer pages, both Reserves and
Sailors can be sorted in 2 passes; total join cost: 7500.

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

(BNL cost: 2500 to 15000 I/Os)

IDB, Eval RA

Refinement of Sort-Merge Join
• We can combine the merging phases in the sorting of R

and S with the merging required for the join.
 With B > √L, where L is the size of the larger relation, using

the sorting refinement that produces runs of length B (2B with
opt.) in Pass 0, #runs of each relation is < B/2.

 #runs < √L for each relation. Now suppose B > 2*√L! Allocate
1 page per run of each relation, and `merge’ while checking
the join condition.

 Cost: read+write each relation in Pass 0 + read each relation
in (only) merging pass (+ writing of result tuples).

 In example, cost goes down from 7500 to 4500 I/Os.
• In practice, cost of sort-merge join, like the cost of

external sorting, is linear.

IDB, Eval RA

Hash-Join
• Partition both

relations using hash
fn h: R tuples in
partition i will only
match S tuples in
partition i.

 Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition of
S, search for
matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
 buffer

Disk

Join Result
hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1
2

B-1
. . .

IDB, Eval RA

Observations on Hash-Join

• # partitions k < B-1 (why?), and B-2 > size of largest
partition to be held in memory. Assuming uniformly
sized partitions, and maximizing k, we get:
 k= B-1, and M/(B-1) < B-2, i.e., B must be >

• If we build an in-memory hash table to speed up the
matching of tuples, a little more memory is needed.

• If the hash function does not partition uniformly, one
or more R partitions may not fit in memory. Can apply
hash-join technique recursively to do the join of this
R-partition with corresponding S-partition.

M

IDB, Eval RA

Cost of Hash-Join

• In partitioning phase, read+write both relns; 2(M+N).
In matching phase, read both relns; M+N I/Os.

• In our running example, this is a total of 4500 I/Os.
• Sort-Merge Join vs. Hash Join:

 Given a minimum amount of memory (what is this, for
each?) both have a cost of 3(M+N) I/Os. Hash Join
superior on this count if relation sizes differ greatly. Also,
Hash Join shown to be highly parallelizable.

 Sort-Merge less sensitive to data skew; result is sorted.

IDB, Eval RA

General Join Conditions
• Equalities over several attributes (e.g., R.sid=S.sid

AND R.rname=S.sname):
 For Index NL, build index on <sid, sname> (if S is inner); or

use existing indexes on sid or sname.
 For Sort-Merge and Hash Join, sort/partition on combination

of the two join columns.
• Inequality conditions (e.g., R.rname < S.sname):

 For Index NL, need (clustered!) B+ tree index.
• Range probes on inner; # matches likely to be much higher than for

equality joins.
 Hash Join, Sort Merge Join not applicable.
 Block NL quite likely to be the best join method here.

IDB, Eval RA

Set Operations
• Intersection and cross-product special cases of join.
• Union (Distinct) and Except similar; we’ll do union.
• Sorting based approach to union:

 Sort both relations (on combination of all attributes).
 Scan sorted relations and merge them.
 Alternative: Merge runs from Pass 0 for both relations.

• Hash based approach to union:
 Partition R and S using hash function h.
 For each S-partition, build in-memory hash table (using h2),

scan corr. R-partition and add tuples to table while
discarding duplicates.

IDB, Eval RA

Aggregate Operations (AVG, MIN, etc.)
• Without grouping:

 In general, requires scanning the relation.
 Given index whose search key includes all attributes in the

SELECT or WHERE clauses, can do index-only scan.
• With grouping:

 Sort on group-by attributes, then scan relation and compute
aggregate for each group. (Can improve upon this by
combining sorting and aggregate computation.)

 Similar approach based on hashing on group-by attributes.
 Given tree index whose search key includes all attributes in

SELECT, WHERE and GROUP BY clauses, can do index-only
scan; if group-by attributes form prefix of search key, can
retrieve data entries/tuples in group-by order.

IDB, Eval RA

Impact of Buffering
• If several operations are executing concurrently,

estimating the number of available buffer pages is
guesswork.

• Repeated access patterns interact with buffer
replacement policy.
 e.g., Inner relation is scanned repeatedly in Simple

Nested Loop Join. With enough buffer pages to hold
inner, replacement policy does not matter. Otherwise,
MRU is best, LRU is worst (sequential flooding).

 Does replacement policy matter for Block Nested Loops?
 What about Index Nested Loops? Sort-Merge Join?

IDB, Eval RA

Summary
• A virtue of relational DBMSs: queries are composed

of a few basic operators; the implementation of these
operators can be carefully tuned (and it is important to
do this!).

• Many alternative implementation techniques for each
operator; no universally superior technique for most
operators.

• Must consider available alternatives for each
operation in a query and choose best one based on
system statistics, etc. This is part of the broader task
of optimizing a query composed of several ops.

	Slide 1
	Slide 2
	Slide 3
	Some Common Techniques
	Statistics and Catalogs
	Access Paths
	Why Sort?
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Number of Passes of External Sort
	Relational Operations
	Schema for Examples
	A Note on Complex Selections
	Using an Index for Selections
	Two Approaches to General Selections
	Intersection of Rids
	Projection
	The Projection Operation
	Projection Based on Hashing
	Discussion of Projection
	Equality Joins With One Join Column
	Simple Nested Loops Join
	Index Nested Loops Join
	Examples of Index Nested Loops
	Block Nested Loops Join
	Examples of Block Nested Loops
	Sort-Merge Join (R S)
	Example of Sort-Merge Join
	Refinement of Sort-Merge Join
	Hash-Join
	Observations on Hash-Join
	Cost of Hash-Join
	General Join Conditions
	Set Operations
	Aggregate Operations (AVG, MIN, etc.)
	Impact of Buffering
	Summary

