Concurrency Control

|Iztok Savnik, FAMNIT

oooooooooooooooooo

Slides & Textbook

e Textbook:

— Raghu Ramakrishnan, Johannes Gehrke, Database
Management Systems, McGraw-Hill, 3" ed., 2007.

» Slides:

— From ,Cow Book“: R.Ramakrishnan,
http.//pages.cs.wisc.edu/~dbbook/

IDB, Concur.Control

Conflict Serializable Schedules

“* Two schedules are conflict equivalent If:
* Involve the same actions of the same transactions
* Every pair of conflicting actions is ordered the
same way
“ Schedule S is conflict serializable if S is
conflict equivalent to some serial schedule.

Il 72 T1 T2
A schedule that is not R(A)) T TRA
conflict seralizable W(A) ! H,-—‘[Aj
R(A) R(A) ‘
Wi(A f
T1: R(A) W(A) R(B) (4) ;ﬁ}fg}
T2 W(A) WiE) WA)
T3 WIA) R(B) R(B)
Later we will see that it is W(B) W) | |
»view serializable” ... Comunit | Commit
Commit, Comumit

IDB, Concur.Control

Example

< A schedule that is not conflict serializable:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

A
@ @ Dependency graph

* The cycle in ¥he graph reveals the problem.
The output of T1 depends on T2, and vice-
versa.

IDB, Concur.Control

Dependency Graph

* Dependency graph: One node per Xact;
edge from Ti to Tj if Ti proceeds and conflicts
with some action from Tj.

* Theorem: Schedule is conflict serializable if
and only if its dependency graph is acyclic

IDB, Concur.Control

Primeri

T1 T2 T3
R(A)

W(A)

Commit
W(A)
Comunit

W(4)
' Commit

IDB, Concur.Control

o

\
R

‘T

\.

T1 T2

X(4)

R(A

WiAj

X(B)

R(E)

W(B)

Comumit
XA
R(A)
W ()

X [B}

R(B)
W(B)
Commit

(a)

—

/‘

"‘\E_._
. T1)

N —

ol

N

(c)

!

T1 | T2
S(4)
R(A)
S(A)
R(A)
X(B)
R(B)
W(B)
Cominit
X{C)
R(C)
W(C)
Commit
TN
le)
—

T2 |

(=)
T2

(b)

View Serializability

* Schedules S1 and S2 are view equivalent If:

If Ti reads initial value of A in S1, then Ti also reads
Initial value of A in S2

* If Ti reads value of A written by Tjin S1, then Ti also
reads value of A written by Tj in S2

" If Ti writes final value of A In S1, then Ti also writes
final value of A In S2

T1: R(A) W(A) T1: R(A),W(A)
T2: W(A) T2: W(A)
T3: W(A) T3: W(A)

IDB, Concur.Control

View Serializability

* Conflict seralizabllity is sufficient but not
always necessary condition for serializability.

e A sph_edule IS serializable if it Is view
serializable.

IDB, Concur.Control

Strict 2PL

* Strict Two-phase Locking (Strict 2PL) Protocol:

* Each Xact must obtain a S (shared) lock on object before
reading, and an X (exclusive) lock on object before write.

= All locks are released when the transaction commits.

* |f an Xact holds an X lock on an object, no other Xact can
get a lock (S or X) on that object.

* Strict 2PL allows only schedules whose precedence
graph is acyclic.

“ T1 and T2 execute in parallel
— If they do not access the same object they are

iIndependent; if they access the same objects then 2PL

starts ordering the actions serially; one of transactions will
have to walit.

IDB, Concur.Control

Strict 2PL

T1 12

ROAT

W(A)
R(A)

"(A)
R(B)
WI(R)
| Commit

R(B)

W(B)

Commit

IDB, Concur.Control

T1 T2

X(4)

RiA)

WA}

X(B)

RiB)

Wi(B)

Comumit
X(A)
R(A)
W(A)

X {B_}

R(B)
W (B)
Commit

T1 | T2

S(4)

R(A)
S(A)
R(A)
X(B)
R(B)
W(E)
Cormumit

X(C)

R

H/’{C-’:J

Commit,

Two-Phase Locking (2PL)

* (Non-strict) Two-phase locking protocol

* Each Xact must obtain a S (shared) lock on object
before reading, and an X (exclusive) lock on object
before writing.

* A transaction can not request additional locks
once it releases any locks.

" If an Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

* Cascade aborts T2 S

— T2 also must XAWA o

be aborted! X(B),W(B) R(A)

U(A) W (A)

X(A),R(A),W(A) R(B)

Abort W(B)

W(B),U(B) Cominit

IDB, Concur.Control Commit Commit Abort,

Transaction abort

If transaction T/ Is aborted then all the actions of Xact
must be undone.

— Not only this but if Tj reads objects written by Ti, then Tj
must also be aborted!

Most systems avoid cascade aborts by releleasing
locks just before the commit.

* Ti updates an object; Tj can read it after Ti commits.

DBMS writes complete log of updates.
— Aborted transactions can be undone.
— The same mechanism is used for chrash recovery.

IDB, Concur.Control

Lock Management

* Lock and unlock requests are handled by the /ock
manager.

— Locking and unlocking have to be atomic operations.
“ Transaction table
— Transaction records hold all data on transactions.

— A transaction record includes the list of locks of a
transaction.

* Lock table
— Hash table indexed by the identifier of a data object.

— Lock table entry represents: locked table, page, records;
type of locks; # Xact holding the lock; pointer to the lock
queue.

IDB, Concur.Control

Lock and unlock

* When Xact needs access to an object O
— Issues a lock request (S or X)
* Implementing lock and unlock requests
— If S request & O queue empty & no X lock on O

Then (O can still have S lock!) S lock is granted & update
lock table entry (curr S lock, then incr # S locks)

— If X request & no other locks (=> queue empty)
Then X lock granted

— Otherwise, lock request can not be granted; it is placed in a
gueue of O

IDB, Concur.Control

Lock and unlock

e After a transaction is completed the locks are
released.

— Appropriate records in lock table are updated.
— The next request is taken from the lock queue.

— If there are more S locks in the queue then they are
treated together.

— Requests for locking O have to be processed in
temporal order otherwise some transactions may
starve.

* Lock and unlock have to be atomic operations.
— Lock manager is running concurrently

— Lock synchronisation protocol (e.g., semaphor) is
used to access an object.

IDB, Concur.Control

. ock conversions

* Lock upgrade
— Xact may need X lock when having S lock
— No other Xact holds a lock => granted

— Otherwise, insert on front of queue (favoring others
leads to deadlock)

— Favoring those that already have S lock

* Lock downgrade
— Better approach: first get X then downgrade

— Downgrading does not violate 2PL if Xact did not
change the object (it is just reading)

— This reduces concurrency: getting X when not
required

IDB, Concur.Control

Deadlocks

* Deadlock: Cycle of transactions waiting for
locks to be released by each other.

“* Two ways of dealing with deadlocks:
* Deadlock prevention
* Deadlock detection

IDB, Concur.Control

Deadlock Prevention

* Assign priorities based on timestamps.
Assume Ti wants a lock that Tj holds. Two
policies are possible:

* Wait-Die: It Ti has higher priority, Ti waits for Tj;
otherwise Ti aborts

* Wound-wait: If Ti has higher priority, Tj aborts;
otherwise Ti waits

* |f a transaction re-starts, make sure it has Its
original timestamp

IDB, Concur.Control

Deadlock Detection

* Create a waits-for graph:
" Nodes are transactions

* There is an edge from Ti to Tj if Ti is waiting for Tj
to release a lock

* Periodically check for cycles in the waits-for
graph

IDB, Concur.Control

Deadlock Detection

(Continu

Example:

T1. S(A), R(A),
T2:
T3:
T4

ed)

X(B),W(B)

S(B)
S(C), R(C)

X(C)

X(B)

X(A)

Special locking technigues

 Dynamic databases
e Multiple-Granularity Locks
* Locking in B+ Trees

IDB, Concur.Control

Dynamic Databases

* Phantom problem

* If we relax the assumption that the DB is a
fixed collection of objects, even Strict 2PL will
not assure serializabllity:

" T1 locks all pages containing sailor records with
rating = 1, and finds oldest sailor (say, age = 71).

" Next, T2 inserts a new sailor; rating = 1, age = 96.

" T2 also deletes oldest sailor with rating = 2 (and,
say, age = 80), and commits.

" T1 now locks all pages containing sailor records
with rating = 2, and finds oldest (say, age = 63).

“ No consistent DB state where T1 is “correct”!

IDB, Concur.Control

The Problem

* T1 implicitly assumes that it has locked the
set of all sallor records with rating = 1.

" Assumption only holds if no sailor records are
added while T1 is executing!

" Need some mechanism to enforce this

assumption. (Index locking and predicate
locking.)

* Example shows that conflict serializability

guarantees serializability only If the set of
objects Is fixed!

IDB, Concur.Control

Index Locking A

“ If there is a dense index on the rating field using
Alternative (2), T1 should lock the index page
containing the data entries with rating = 1.

" If there are no records with rating = 1, T1 must lock the
Index page where such a data entry would be, if it
existed!

“ If there is no suitable index, T1 must lock all
pages, and lock the file/table to prevent new

pages from being added, to ensure that no new
records with rating = 1 are added.

IDB, Concur.Control

Predicate Locking

* Grant lock on all records that satisfy some
ogical predicate, e.g. age > 2*salary.
* Index locking Is a special case of predicate

ocking for which an index supports efficient
Implementation of the predicate lock.

" What is the predicate in the sailor example?

* In general, predicate locking has a lot of
locking overhead.

IDB, Concur.Control

Multiple-Granularity Locks

* Hard to decide what granularity to lock (tuples
VS. pages vs. tables).

* Shouldn’t have to decide!
“ Data “containers” are nested:

Database

. Tables
contains

Y

Pa?es

Tuples

IDB, Concur.Control

Solution: New Lock Modes,

Protocol

“ Allow Xacts to lock at each level, but with a
special protocol using new “intention” locks:

+ Alock (IS,5,X...) on an object is
also a lock on any sub-object.

+ Before locking an item, Xact
must set “intention locks” on all
Its ancestors.

* For unlock, go from specific to
general (i.e., bottom-up).

+ SIX mode: Like S & IX at the
same time.

IDB, Concur.Control

- 1IS| IX
-V V|V
IS|V [V]|V
IX|V |V |V
S|V]|V
X |V

Multiple Granularity Lock
Protocol

“ Each Xact starts from the root of the hierarchy.

“ To get S or IS lock on a node, must hold IS or IX
on parent node.

" What if Xact holds SIX on parent? S on parent?

* To get X or IX or SIX on a node, must hold IX or
SIX on parent node.

“ Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting
locks at the leaf levels of the hierarchy.

IDB, Concur.Control

Examples

* T1 scans R, and updates a few tuples:

" T1 gets an SIX lock on R, then repeatedly gets an

S lock on tuples of R, and occasionally upgrades

to X on the tuples.

“* T2 uses an index to read only part of R:
" T2 gets an IS lock on R, and repeatedly

gets an S lock on tuples of R.

“ T3 reads all of R:

" T3 gets an S lock on R.

" OR, T3 could behave like T2;
can use lock escalation to
decide which.

IDB, Concur.Control

IS

IX

NI

\/

NI

\/

N

Ni

N

N

A

N

N

N

N

N

N

1S
| IX]
'S
X

Locking In B+ Trees

* How can we efficiently lock a particular leaf
node?

" Btw, don’t confuse this with multiple granularity
locking!
* One solution: Ignore the tree structure, just lock
pages while traversing the tree, following 2PL.
* This has terrible performance!

" Root node (and many higher level nodes) become
bottlenecks because every tree access begins at the
root.

IDB, Concur.Control

Two Useful Observations

* Higher levels of the tree only direct searches
for leaf pages.

* For inserts, a node on a path from root to
modified leaf must be locked (in X mode, of
course), only if a split can propagate up to it
from the modified leaf. (Similar point holds
w.r.t. deletes.)

“* We can exploit these observations to design
efficient locking protocols that guarantee
serializability even though they violate 2PL.

IDB, Concur.Control

A Simple Tree Locking Algorithm

* Search: Start at root and go down;
repeatedly, S lock child then unlock parent.

* Insert/Delete: Start at root and go down,
obtaining X locks as needed. Once child is
locked, check If it is safe:

" If child is safe, release all locks on ancestors.
Safe node: Node such that changes will not
propagate up beyond this node.

" Inserts: Node is not full.

" Deletes: Node is not half-empty.

o

*

IDB, Concur.Control

Do:

1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

//Iﬂfll F/ar
" lv/\~\
EEIER] ey e

IDB, Concur.Control

E

A Better Tree Locking Algorithm
(See Bayer-Schkolnick paper)

“ Search: As before.
* Insert/Delete:

" Set locks as If for search, get to leaf, and set X
lock on leaf.

" If leaf Is not safe, release all locks, and restart
Xact using previous Insert/Delete protocol.

“ Gambles that only leaf node will be modified; if
not, S locks set on the first pass to leaf are
wasteful. In practice, better than previous alg.

IDB, Concur.Control

farian

IDB, Concur.Control

Do:

1)
2)
4)
5)

Delete 38*
Insert 25*
Insert 45*
Insert 45%,
then 46*

;/*

e B 38 [

Even Better Algorithm

* Search: As before.

* Insert/Delete:

" Use original
locks Instead

" Once leaf iIs

locks top-down: I.e., starting from noc
nearest to root. (Top-down reduces c
of deadlock.)

nsert/Delete protocol, but set IX

of X locks at all nodes.
ocked, convert all IX loc

KS to X
e

nances

(Contrast use of IX locks here with their use in
multiple-granularity locking.)

IDB, Concur.Control

Hybrid Algorithm

* The likelihood that we really need an X lock
decreases as we move up the tree.

* Hybrid approach

/ \-»

IDB, Concur.Control

Set S locks

Set SIX locks

Set X locks

Optimistic CC (Kung-
Robinson)

* Locking is a conservative approach in which
conflicts are prevented. Disadvantages:

_ock management overhead.
Deadlock detection/resolution.

_ock contention for heavily used objects.

* If conflicts are rare, we might be able to gain
concurrency by not locking, and instead
checking for conflicts before Xacts commit.

IDB, Concur.Control

Kung-Robinson Model

* Xacts have three phases:

" READ: Xacts read from the database, but
make changes to private copies of objects.

" VALIDATE: Check for conflicts.

" WRITE: Make local copies of changes
public.

T

modified W U W

objects new

IDB, Concur.Control

Validation

“* Test conditions that are sufficient to ensure
that no conflict occurred.

“ Each Xact is assigned a numeric id.
" Just use a timestamp.

* Xact ids assigned at end of READ phase, just
before validation begins. (Why then?)

* ReadSet(Ti): Set of objects read by Xact Ti.
* WriteSet(Ti): Set of objects modified by Ti.

IDB, Concur.Control

Test 1

* For all i and j such that Ti < T}, check that Ti
completes before Tj begins.

Ti
R Y, W 1)

IDB, Concur.Control

Test 2

* For all i and j such that Ti < T}, check that:
" Ti completes before Tj begins its Write phase +
" WriteSet(Ti)ﬂ ReadSet(Tj) is empty.

Ti

Does Tj read dirty data? Does Ti overwrite Tj's writes?

IDB, Concur.Control

Test 3

* For all 1 and j such that Ti < Tj, check that:
" Ti completes Read phase before Tj does +
" WriteSet(Ti) ﬂ ReadSet(Tj) is empty +
" WriteSet(Ti) r\| WriteSet(Tj) is empty.

Ti

T)
R vV W

Does Tj read dirty data? Does Ti overwrite Tj's writes?

IDB, Concur.Control

Applying Tests 1 & 2: Serial Validation

“* To validate Xact T:

valid = true;
/1 S = set of Xacts that committed after Begin(T)
< foreach Tsin S do{
If ReadSet(T) intersects WriteSet(Ts)
then valid = false;

}
if valid then { install updates; // Write phase

CommitT} >
else Restart T\

\) [e
end of critical section

IDB, Concur.Control

Comments on Serial
Validation

“ Applies Test 2, with T playing the role of Tj
and each Xact in Ts (in turn) being TI.
* Assignment of Xact id, validation, and the
Write phase are inside a critical section!
" |.e., Nothing else goes on concurrently.
" If Write phase is long, major drawback.

* Optimization for Read-only Xacts:

" Don’t need critical section (because there is no
Write phase).

IDB, Concur.Control

Serial Validation (Contd.)

* Multistage serial validation: Validate In stages, at
each stage validating T against a subset of the
Xacts that committed after Begin(T).

" Only last stage has to be inside critical section.
* Starvation: Run starving Xact in a critical section (!!)

* Space for WriteSets: To validate Tj, must have
WriteSets for all Ti where Ti < Tjand Ti was active
when Tj began. There may be many such Xacts,
and we may run out of space.

" TJ’s validation falils if it requires a missing WriteSet.
" No problem if Xact ids assigned at start of Read phase.

IDB, Concur.Control

Overheads in Optimistic CC

* Must record read/write activity in ReadSet and
WriteSet per Xact.

" Must create and destroy these sets as needed.

* Must check for conflicts during validation, and
must make validated writes global”.
" Critical section can reduce concurrency.

" Scheme for making writes global can reduce clustering
of objects.

* Optimistic CC restarts Xacts that fail validation.
" Work done so far is wasted; requires clean-up.

IDB, Concur.Control

~Optimistic” 2PL

* If desired, we can do the following:
" Set S locks as usual.
" Make changes to private copies of objects.

" Obtain all X locks at end of Xact, make
writes global, then release all locks.

* In contrast to Optimistic CC as in Kung-
Robinson, this scheme results in Xacts being
nlocked, waiting for locks.

" However, no validation phase, no restarts (modulo
deadlocks).

L)

L)

IDB, Concur.Control

Timestamp CC

“ Idea: Give each object a read-timestamp
(RTS) and a write-timestamp (WTS), give
each Xact a timestamp (TS) when it begins:

" If action ai of Xact Ti conflicts with action aj
of Xact T}, and TS(Ti) < TS(T)), then al
must occur before aj. Otherwise, restart
violating Xact.

IDB, Concur.Control

When Xact T wants to read
Object O

“ If TS(T) < WTS(O), this violates timestamp
order of T w.r.t. writer of O.

" So, abort T and restart it with a new, larger TS. (If
restarted with same TS, T will fail again! Contrast
use of timestamps in 2PL for ddlk prevention.)

“ If TS(T) > WTS(0):
" Allow T to read O.
" Reset RTS(0O) to max(RTS(O), TS(T))

* Change to RTS(O) on reads must be written to
disk! This and restarts represent overheads.

IDB, Concur.Control

When Xact T wants to Write
Object O

“ If TS(T) < RTS(O), this violates timestamp order
of T w.r.t. writer of O; abort and restart T.

“ If TS(T) < WTS(O), violates timestamp order of
T w.r.t. writer of O.

" Thomas Write Rule: We can safely ighore such
outdated writes; need not restart T! (T’s write iIs
effectively followed by another

write, with no intervening reads.) | T1 T2
Allows some serializable but non | R(A)
conflict serializable schedules: W(A)
“ Else, allow T to write O. Commit
W(A)
Commit

IDB, Concur.Control

Timestamp CC and —

Recoverabllity W(A)
R(A)
+ Unfortunately, unrecoverable W(B)
Commit

schedules are allowed:

“* Timestamp CC can be modified
to allow only recoverable schedules:

" Buffer all writes until writer commits (but update
WTS(O) when the write Is allowed.)

" Block readers T (where TS(T) > WTS(O)) until
writer of O commits.

* Similar to writers holding X locks until commit, but

still not quite 2PL.

IDB, Concur.Control

Multiversion Timestamp CC

“ Idea: Let writers make a “new” copy while
readers use an appropriate “old” copy:

MAIN VERSION
SEGMENT POOL
(Current Older versions that

may be useful for

versions of
some active readers.)

DB objects)

* Readers are always allowed to proceed.
- But may be blocked until writer commits.

IDB, Concur.Control

Multiversion CC (Contd.)

“ Each version of an object has its writer's TS as
its WTS, and the TS of the Xact that most
recently read this version as its RTS.

“* Versions are chained backward; we can
discard versions that are “too old to be of
Interest”.

“* Each Xact is classified as Reader or Writer.

" Writer may write some object; Reader never will.
" Xact declares whether it is a Reader when it begins.

IDB, Concur.Control

old new

WTS timeline

Reader Xact —_— — —

“ For each object to be roeay T
" Finds newest version with WTS < TS(T).

(Starts with current version in the main
segment and chains backward through
earlier versions.)

* Assuming that some version of every object
exists from the beginning of time, Reader
Xacts are never restarted.

" However, might block until writer of the
appropriate version commits.

IDB, Concur.Control

Writer Xact

* To read an object, follows reader protocol.
* To write an object:
" Finds newest version V s.t. WTS < TS(T).

" 1T RTS(V) < TS(T), T makes a copy CV of V,
, With WTS(CV) = TS(T),
RTS(CV) = TS(T). (Write is buffered until T
commits; other Xacts can see TS values but
can’t read version CV.)

" Else, reject write.

Id new
WTS 2 : -
cV
H
v ¢

IDB, Concur.Control

>~ RTS(V) T

Transaction Support in SQL-

02

“ Each transaction has an access mode, a
diagnostics size, and an isolation level.

Isolation Level Dirty |Unrepeatabl |Phantom
Read |e Read Problem
Read Mayb | Maybe Maybe
Hgacg 'Egr]%trtﬁ i(t]lted No Maybe Maybe
Repeatable Reads |No No Maybe
Serializable No No No

IDB, Concur.Control

Summary

“ There are several lock-based concurrency
control schemes (Strict 2PL, 2PL). Conflicts
between transactions can be detected Iin the
dependency graph

* The lock manager keeps track of the locks
Issued. Deadlocks can either be prevented or
detected.

* Naive locking strategies may have the
phantom problem

IDB, Concur.Control

Summary (Contd.)

* Index locking is common, and affects
performance significantly.

" Needed when accessing records via index.

" Needed for locking logical sets of records (index
locking/predicate locking).

* Tree-structured indexes:
= Straightforward use of 2PL very inefficient.

" Bayer-Schkolnick illustrates potential for
Improvement.

* In practice, better techniques now known; do
record-level, rather than page-level locking.

IDB, Concur.Control

Summary (Contd.)

Multiple granularity locking reduces the overhead
Involved in setting locks for nested collections of objects
(e.g., a file of pages); should not be confused with tree
iIndex locking!

Optimistic CC aims to minimize CC overheads in an
“optimistic” environment where reads are common and
writes are rare.

Optimistic CC has its own overheads however; most
real systems use locking.

SQL-92 provides different isolation levels that control
the degree of concurrency

IDB, Concur.Control

Summary (Contd.)

<&

D)

L)

* Timestamp CC is another alternative to 2PL; allows
some serializable schedules that 2PL does not
(although converse is also true).

* Ensuring recoverability with Timestamp CC requires
ability to block Xacts, which is similar to locking.

“* Multiversion Timestamp CC is a variant which ensures
that read-only Xacts are never restarted; they can
always read a suitable older version. Additional
overhead of version maintenance.

IDB, Concur.Control

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

