
npb9, shared-nothing
 1

SHARED-NOTHING
PARTITIONING

Iztok Savnik

npb9, shared-nothing
 2

Literature

• Sam Lightstone, Toby Teorey, Tom Nadeau,
Physical Database Design, Morgan
Kaufmann Publishers, 2007.
– Chapter 6

npb9, shared-nothing
 3

Shared-nothing architecture

• Henry Ford (1863-1947)
– Nothing is particulary hard if you divide it into

small jobs.

• Shared-nothing is a divide-and-conquer
strategy for solving
– Hard problems defined over large data sets

• Divide and conquer is a well known
technique in CS
– Large data set is split into parts
– One computer solves one part

npb9, shared-nothing
 4

Shared-nothing architecture

– One computer solves one part
• Queries are executed in a fraction of the time

– Partial results are integrated into final solution

npb9, shared-nothing
 5

Shared-nothing architecture

• Extremes of parallel-processing architecture
– Shared everything and
– Shared nothing

• Shared everything
– Single computer: shared memory, shared disk

and shared bank of CPUs
– Symetric Multiprocessor (SMP)

• Nonuniform Memory Architecture (NUMA)
• NUMA is subset of SMP

npb9, shared-nothing
 6

npb9, shared-nothing
 7

Shared-nothing architecture

• Shared nothing
– Sets of relatively independent servers working

cooperatively on subsets of a problem
– Occasionally these servers will need to share

data
• High-spead interconnect

– Ability to scale out to a very large number of
servers

npb9, shared-nothing
 8

Shared-nothing architecture

• Three major products that offer shared-
nothing architecture
– DB2, Data Partitioning Facility

• Components, servers, disks and network
interconnections

– Informix, Extended Parallel Server (XPS)
• Commodity components

– NCR Teradata
• Commodity disk servers, special hardware

interconnect

npb9, shared-nothing
 9

Shared-nothing architecture

– IBM Netezza
• Shared-nothing architecture
• Powerful business inteligence

• Shared-nothing architectures continue to
dominate the industry for large complex data
– Complex analysis is often required

npb9, shared-nothing
 10

Shared-nothing architecture

• Several servers collaborate to solve single
problem
– Each server owns a fragment of data

• No access to other disks
• Each server operates on a distinct subset of the

database
– Uses its own resources to perform analysis of the fragment

• Resultas are gathered by the designated server

– Each server is called »node« or a »partition«

npb9, shared-nothing
 11

Shared-nothing architecture

– The designated server that collects the results is
called »coordinator«

• May itself include a partition
• Gathers the results and reports to the client
• Has the deeper view of the cluster (where is what,

which nodes do which task, ...)
• Has no view on the activity of nodes except through

network communications

npb9, shared-nothing
 12

Shared-nothing architecture

• To see how this improves performance and
scalability consider the following simple
aggregation query

• If there is an index on [YEAR,SALES] the DBMS
will scan the index

npb9, shared-nothing
 13

Shared-nothing architecture

• Example database
– We have 3M entries in the database for a given range

(1.1.2004–17.11.2006)
• Single server would need to access 3M keys

– We have 10 nodes => 300K keys per node

– Each node computes sum of the 300K sales

– 10 summations are passed to the coordinator

– Each of nodes needed 1/10 of the time

• This impressive scale out has not been achieved
with other multiprocessor architectures

• Shared-nothing MPPs have several thousand
nodes

npb9, shared-nothing
 14

Shared-nothing scale out

• Casual observer could say that
– the benefits achieved are simply the result of

applying 10 times the processing power
– Perhaps the use of single server with 10 times

CPU, memory, etc. scales just as well.

• Problems with trying to increase processing
time linearly by simply buying larger servers
– First

• server with 10 times the CPU power, 10 times memory,
10 times bus bandwidth, etc. may not be possible

npb9, shared-nothing
 15

Shared-nothing scale out

• Even the largest NUMA systems are constrained by
their bus architecture

• What if num of nodes was 100 or 1000? Would it be
possible to buy 1000 times faster system?

– Second
• It is difficult to design the algorithms that scale

linearly to perform parallel processing
• If we could increase all resources by 10 on single

machine
• What could be the improvement of the algorithms?

npb9, shared-nothing
 16

Shared-nothing scale out

• There is »N2 effect« discussed later
– Natural consequence of how joins are

processed in shared-nothing systems
– Exponential gain in efficiency of join processing

npb9, shared-nothing
 17

Key concepts and terms

• Shared-nothing architecture
• Massively-parallel processing (MPP)
• Massively parallel processor (MPP)
• Cluster
• Scalability
• Linearity

npb9, shared-nothing
 18

Hash partitioning

• Most products that use shared-partitioning
distribute records to the database nodes
using hash function
– Hash function maps one or more column

values of each record to the numeric value

• Depending on the particular configuration
– Shared-nothing system can have different

number of nodes
– The hash value can not be directly converted

to node number

npb9, shared-nothing
 19

Hash partitioning

• Hash map or partition map
– Mapping from hash values of records to node

numbers
– Each time the new node is added to MPP the

hash map needs to be recomputed
– Partition map has as many or more entries

than the largest number of nodes supported

npb9, shared-nothing
 20

npb9, shared-nothing
 21

Hash partitioning

• In DB2 the partitioning columns are defined
during the table creation process
– Extension of CREATE TABLE DDL

• In Teradata the partitioning is defined by
primary index
– Can be different to primary key of table (often is)
– If primary index and primary key exist, the later

is implemented as secondary index
– User can have either unique or nonunique

primary index

npb9, shared-nothing
 22

Hash partitioning

• Design goal for good partitioning
– Minimize the data skew accross the nodes
– Maximize colocation between tables for joins

• Choosing partitioning columns
– Should have fairly large number of distinct

values
– Relatively limited data skew is a good design

practise

• More on skew and collocation

npb9, shared-nothing
 23

Pros and cons of shared nothing

• 3 most commonly mentioned architectures for
multiprocessor high transaction rate systems
– shared memory (SM)

• multiple processors shared a common central memory

– shared disk (SD)
• multiple processors each with private memory share a

common collection of disks

– shared nothing (SN)
• neither memory nor peripheral storage is shared among

processors

npb9, shared-nothing
 24

Pros and cons of shared nothing

• Michael Stonebreaker [1986]
– On the benefits and drawbacks of shared

nothing architecture
– A table comparing attributes [1..3]

• 1 is superior

• Difficulty of transaction management (1,2)
– SM – few changes
– SD – more complex, lock table hotspot
– SN – difficult, distr.deadlock det., multiphase

 commit

npb9, shared-nothing
 25

npb9, shared-nothing
 26

Pros and cons of shared nothing

• Data base design (row 3)
– SM, SD – difficult, SN – harder

• Load balancing (row 4)
– SN – hard, SM, SD - easier

• Next five points are fairly straightforward
(rows 5-9)

• Critical sections
– SM – hard, SD – less hard, SN – no problem

npb9, shared-nothing
 27

Pros and cons of shared nothing

• System images (row 10)
– SM – one image, SN, SD – one per CPU
– More administration

• Hot spots
– All susceptible to hot spots

npb9, shared-nothing
 28

Pros and cons of shared nothing

• Conclusions
– SM does not scale to a large number of CPUs
– SD excels at nothing
– Justifications of flaws of SN

• Stonebraker’s paper: problems are unlikely to be
very significant

• Recent internet DBMSs prove above

npb9, shared-nothing
 29

Pros and cons of shared nothing

• More conclusions
– SN improves bandwidth and scalability
– SN reduces susceptibility to critical sections
– Negative aspects of SM can be summarized as

»complexity«
• Harder to design and manage
• Complexity is critical limitation for mainstream?
• The ability to outperform combined with advances in

self-managing systems is shrinking these concerns

npb9, shared-nothing
 30

Pros and cons of shared nothing

– Positive aspects – what sets SM arch. apart
• Impresive linearity and scale-out from complex

bussiness inteligence workloads

• Experiment Goddard, 2005
– Single-server 24-way system, 0.5 TB
– Two-node 1 TB system, identical HW

• Each system stores 0.5 TB
• Data is hash partitioned, SN architecture

– Experimental data
• Near-linear scalability for DB build processing and

query execution performance !

npb9, shared-nothing
 31

Experiment Goddard, 2005

npb9, shared-nothing
 32

Pros and cons of shared nothing

• How to explain the dramatic difference in
scalability?

• N2 effect
– Consider computational complexity of 30x30

join
– Uniprocessor: single CPU performs 30x30
– SMP with 3 CPUs working on the problem can

be solved in 1/3 the time
– 3-way MPP can solve this in parallel on 3

nodes obtaining 10x10 join on all 3 nodes

npb9, shared-nothing
 33

Pros and cons of shared nothing

– 30-way MPP can solve this in parallel on 30
nodes obtaining 1x1 join on all 30 nodes

– We assume data has been distributed perfectly
• Join data is perfectly collocated
• Part of computation has been done by distribution
• In practice carful selection of the partitioning keys

can give good collocation

npb9, shared-nothing
 34

N2 effect

npb9, shared-nothing
 35

Skew and collocation

• First impression
– Node operates on fragment of data
– Results are merged in a trivial way
– Leading to amazing peformance

• Challenges
– Getting the design right
– The scalability is rearly perfectly linear

npb9, shared-nothing
 36

Skew and join collocation

• Most SN systems use hash partitioning
– Columns are selected as the »partitioning

keys|columns«
– Hash partitioning assigns records to nodes

• Ultimate goal of SN architecture
– Keep all nodes busy working in a linear fashion

on larger DB problems
– Minimize the degree of data sharing

• Two serious problems
– Skew and join collocation

npb9, shared-nothing
 37

Data skew

• In order for SM to be effective data must be
distributed evenly
– If some node has significantly more data,

computation will take longer
– Comp.time is limited to the slowest node
– In the case of range partitioning this is nearly

impossible
• Each data range includes different number of records
• Example: sales records partitioned by date

npb9, shared-nothing
 38

Data skew

• Even very fair hash function large density of data
at some points may seriously skew data
– Example:

• Hash partitioning sales into weeks may give huge peek in the
last week of December

• Nodes would therefore store disproportionate volume of data

• The solution
– Not improvement of the hash function

– Be careful what columns are chosen for partitioning
• Date of sale may be poor choice

• Product ID would also seriously skew the data since some
products will be more popular

npb9, shared-nothing
 39

Data skew

– To achieve even distribution select columns that:
• Have several times more unique values than the number of

nodes in the system

• Have reasonable even distribution of data

npb9, shared-nothing
 40

Collocation

• In order for SN architecture to scale well
– Communication should be kept to a minimum

• A common problem
– Tables that need to be joined are not collocated

– Data from one node needs to be shiped to another
node

– This is expensive and can cripple benefits of SN

npb9, shared-nothing
 41

Collocation between two tables

npb9, shared-nothing
 42

Collocation

• Collocation is placement of rows from different
tables that contain related data in the same DB
node
– Tables A and B (from figure) are hashed accross 3

nodes

– Shaded sections show the join data

– If data is collocated, the shaded section of A will join to
shaded sction of B

– Worst case scenario: entire data for one table has to be
shipped to other nodes for joining

npb9, shared-nothing
 43

Collocation

• Interesting and challenging design goal
– Find partitioning keys that achieve good collocation as

well as even distribution

– Rows in collocated tables with the same partitioning
key value are always placed in the same DB partition

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

