
npb9, shared-nothing
 1

SHARED-NOTHING 
PARTITIONING

Iztok Savnik



npb9, shared-nothing
 2

Literature

• Sam Lightstone, Toby Teorey, Tom Nadeau, 
Physical Database Design, Morgan 
Kaufmann Publishers, 2007. 
– Chapter 6



npb9, shared-nothing
 3

Shared-nothing architecture

• Henry Ford (1863-1947)
– Nothing is particulary hard if you divide it into 

small jobs. 

• Shared-nothing is a divide-and-conquer 
strategy for solving 
– Hard problems defined over large data sets 

• Divide and conquer is a well known 
technique in CS
– Large data set is split into parts 
– One computer solves one part



npb9, shared-nothing
 4

Shared-nothing architecture

– One computer solves one part
• Queries are executed in a fraction of the time

– Partial results are integrated into final solution
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Shared-nothing architecture

• Extremes of parallel-processing architecture 
– Shared everything and 
– Shared nothing

• Shared everything
– Single computer: shared memory, shared disk 

and shared bank of CPUs
– Symetric Multiprocessor (SMP)

• Nonuniform Memory Architecture (NUMA)
• NUMA is subset of SMP
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Shared-nothing architecture

• Shared nothing
– Sets of relatively independent servers working 

cooperatively on subsets of a problem
– Occasionally these servers will need to share 

data
• High-spead interconnect 

– Ability to scale out to a very large number of 
servers
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Shared-nothing architecture

• Three major products that offer shared-
nothing architecture
– DB2, Data Partitioning Facility

• Components, servers, disks and network 
interconnections

– Informix, Extended Parallel Server (XPS) 
• Commodity components

– NCR Teradata
• Commodity disk servers, special hardware 

interconnect
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Shared-nothing architecture

– IBM Netezza
• Shared-nothing architecture
• Powerful business inteligence

• Shared-nothing architectures continue to 
dominate the industry for large complex data
– Complex analysis is often required 
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Shared-nothing architecture

• Several servers collaborate to solve single 
problem
– Each server owns a fragment of data

• No access to other disks
• Each server operates on a distinct subset of the 

database
– Uses its own resources to perform analysis of the fragment

• Resultas are gathered by the designated server

– Each server is called »node« or a »partition«
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Shared-nothing architecture

– The designated server that collects the results is 
called »coordinator«

• May itself include a partition
• Gathers the results and reports to the client
• Has the deeper view of the cluster (where is what, 

which nodes do which task, ...)
• Has no view on the activity of nodes except through 

network communications 
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Shared-nothing architecture

• To see how this improves performance and 
scalability consider the following simple 
aggregation query

• If there is an index on [YEAR,SALES] the DBMS 
will scan the index 
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Shared-nothing architecture

• Example database
– We have 3M entries in the database for a given range 

(1.1.2004–17.11.2006)
• Single server would need to access 3M keys

– We have 10 nodes => 300K keys per node

– Each node computes sum of the 300K sales

– 10 summations are passed to the coordinator

– Each of nodes needed 1/10 of the time

• This impressive scale out has not been achieved 
with other multiprocessor architectures

• Shared-nothing MPPs have several thousand 
nodes
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Shared-nothing scale out

• Casual observer could say that 
– the benefits achieved are simply the result of 

applying 10 times the processing power
– Perhaps the use of single server with 10 times 

CPU, memory, etc. scales just as well.

• Problems with trying to increase processing 
time linearly by simply buying larger servers
– First

• server with 10 times the CPU power, 10 times memory, 
10 times bus bandwidth, etc. may not be possible
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Shared-nothing scale out

• Even the largest NUMA systems are constrained by 
their bus architecture

• What if num of nodes was 100 or 1000? Would it be 
possible to buy 1000 times faster system?

– Second
• It is difficult to design the algorithms that scale 

linearly to perform parallel processing 
• If we could increase all resources by 10 on single 

machine
• What could be the improvement of the algorithms? 
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Shared-nothing scale out

• There is »N2 effect« discussed later
– Natural consequence of how joins are 

processed in shared-nothing systems
– Exponential gain in efficiency of join processing
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Key concepts and terms

• Shared-nothing architecture
• Massively-parallel processing (MPP)
• Massively parallel processor (MPP)
• Cluster
• Scalability
• Linearity
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Hash  partitioning

• Most products that use shared-partitioning 
distribute records to the database nodes 
using hash function
– Hash function maps one or more column 

values of each record to the numeric value

• Depending on the particular configuration
– Shared-nothing system can have different 

number of nodes
– The hash value can not be directly converted 

to node number
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Hash  partitioning

• Hash map or partition map 
– Mapping from hash values of records to node 

numbers
– Each time the new node is added to MPP the 

hash map needs to be recomputed
– Partition map has as many or more entries 

than the largest number of nodes supported



npb9, shared-nothing
 20



npb9, shared-nothing
 21

Hash  partitioning

• In DB2 the partitioning columns are defined 
during the table creation process
– Extension of CREATE TABLE DDL

• In Teradata the partitioning is defined by 
primary index
– Can be different to primary key of table (often is)
– If primary index and primary key exist, the later 

is implemented as secondary index 
– User can have either unique or nonunique 

primary index
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Hash  partitioning

• Design goal for good partitioning
– Minimize the data skew accross the nodes
– Maximize colocation between tables for joins

• Choosing partitioning columns 
– Should have fairly large number of distinct 

values
– Relatively limited data skew is a good design 

practise

• More on skew and collocation
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Pros and cons of shared nothing

• 3 most commonly mentioned architectures for 
multiprocessor high transaction rate systems
– shared memory (SM)

• multiple processors shared a common central memory

– shared disk (SD)
• multiple processors each with private memory share a 

common collection of disks

– shared nothing (SN)
• neither memory nor peripheral storage is shared among 

processors
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Pros and cons of shared nothing

• Michael Stonebreaker [1986]
– On the benefits and drawbacks of shared 

nothing architecture
– A table comparing attributes [1..3]

• 1 is superior

• Difficulty of transaction management (1,2)
– SM – few changes
– SD – more complex, lock table hotspot
– SN – difficult, distr.deadlock det., multiphase      

         commit
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Pros and cons of shared nothing

• Data base design (row 3)
– SM, SD – difficult, SN – harder

• Load balancing (row 4)
– SN – hard, SM, SD - easier

• Next five points are fairly straightforward   
(rows 5-9)

• Critical sections
– SM – hard, SD – less hard, SN – no problem
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Pros and cons of shared nothing

• System images (row 10)
– SM – one image, SN, SD – one per CPU
– More administration

• Hot spots
– All susceptible to hot spots
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Pros and cons of shared nothing

• Conclusions 
– SM does not scale to a large number of CPUs 
– SD excels at nothing
– Justifications of flaws of SN

• Stonebraker’s paper: problems are unlikely to be 
very significant

• Recent internet DBMSs prove above
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Pros and cons of shared nothing

• More conclusions
– SN improves bandwidth and scalability 
– SN reduces susceptibility to critical sections
– Negative aspects of SM can be summarized as 

»complexity«
• Harder to design and manage
• Complexity is critical limitation for mainstream? 
• The ability to outperform combined with advances in 

self-managing systems is shrinking these concerns
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Pros and cons of shared nothing

– Positive aspects – what sets SM arch. apart
• Impresive linearity and scale-out from complex 

bussiness inteligence workloads

• Experiment Goddard, 2005
– Single-server 24-way system, 0.5 TB
– Two-node 1 TB system, identical HW

• Each system stores 0.5 TB
• Data is hash partitioned, SN architecture

– Experimental data
• Near-linear scalability for DB build processing and 

query execution performance !
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Experiment Goddard, 2005
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Pros and cons of shared nothing

• How to explain the dramatic difference in 
scalability?

• N2 effect
– Consider computational complexity of 30x30 

join
– Uniprocessor: single CPU performs 30x30
– SMP with 3 CPUs working on the problem can 

be solved in 1/3 the time
– 3-way MPP can solve this in parallel on 3 

nodes obtaining 10x10 join on all 3 nodes
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Pros and cons of shared nothing

– 30-way MPP can solve this in parallel on 30 
nodes obtaining 1x1 join on all 30 nodes

– We assume data has been distributed perfectly 
• Join data is perfectly collocated
• Part of computation has been done by distribution
• In practice carful selection of the partitioning keys 

can give good collocation
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N2 effect
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Skew and collocation

• First impression
– Node operates on fragment of data
– Results are merged in a trivial way
– Leading to amazing peformance

• Challenges
– Getting the design right
– The scalability is rearly perfectly linear
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Skew and join collocation

• Most SN systems use hash partitioning
– Columns are selected as the »partitioning     

keys|columns«
– Hash partitioning assigns records to nodes 

• Ultimate goal of SN architecture
– Keep all nodes busy working in a linear fashion 

on larger DB problems
– Minimize the degree of data sharing

• Two serious problems
– Skew and join collocation
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Data skew

• In order for SM to be effective data must be 
distributed evenly
– If some node has significantly more data, 

computation will take longer
– Comp.time is limited to the slowest node
– In the case of range partitioning this is nearly 

impossible 
• Each data range includes different number of records
• Example: sales records partitioned by date  
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Data skew

• Even very fair hash function large density of data 
at some points may seriously skew data
– Example:

• Hash partitioning sales into weeks may give huge peek in the 
last week of December

• Nodes would therefore store disproportionate volume of data

• The solution
– Not improvement of the hash function

– Be careful what columns are chosen for partitioning
• Date of sale may be poor choice

• Product ID would also seriously skew the data since some 
products will be more popular



npb9, shared-nothing
 39

Data skew

– To achieve even distribution select columns that:
• Have several times more unique values than the number of 

nodes in the system

• Have reasonable even distribution of data
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Collocation

• In order for SN architecture to scale well
– Communication should be kept to a minimum

• A common problem
– Tables that need to be joined are not collocated

– Data from one node needs to be shiped to another 
node

– This is expensive and can cripple benefits of SN
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Collocation between two tables
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Collocation

• Collocation is placement of rows from different 
tables that contain related data in the same DB 
node
– Tables A and B (from figure) are hashed accross 3 

nodes

– Shaded sections show the join data

– If data is collocated, the shaded section of A will join to 
shaded sction of B

– Worst case scenario: entire data for one table has to be 
shipped to other nodes for joining
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Collocation

• Interesting and challenging design goal
– Find partitioning keys that achieve good collocation as 

well as even distribution

– Rows in collocated tables with the same partitioning 
key value are always placed in the same DB partition
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