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Abstract

RDF is a data model for schema-free structured information that is gaining
momentum in the context of Semantic-Web data, life sciences, and also Web
2.0 platforms. The “pay-as-you-go” nature of RDF and the flexible pattern-
matching capabilities of its query language SPARQL entail efficiency and
scalability challenges for complex queries including long join paths. This
paper presents the RDF-3X engine, an implementation of SPARQL that
achieves excellent performance by pursuing a RISC-style architecture with
streamlined indexing and query processing.

The physical design is identical for all RDF-3X databases regardless of
their workloads, and completely eliminates the need for index tuning by
exhaustive indexes for all permutations of subject-property-object triples and
their binary and unary projections. These indexes are highly compressed, and
the query processor can aggressively leverage fast merge joins with excellent
performance of processor caches. The query optimizer is able to choose
optimal join orders even for complex queries, with a cost model that includes
statistical synopses for entire join paths. Although RDF-3X is optimized for
queries, it also provides good support for efficient online updates by means
of a staging architecture: direct updates to the main database indexes are
deferred, and instead applied to compact differential indexes which are later
merged into the main indexes in a batched manner.

Experimental studies with several large-scale datasets with more than 50
million RDF triples and benchmark queries that include pattern matching,
manyway star-joins, and long path-joins demonstrate that RDF-3X can
outperform the previously best alternatives by one or two orders of magnitude.
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1 Introduction

1.1 Motivation and Problem

The RDF (Resource Description Framework) data model has been around for
a decade. It has been designed as a flexible representation of schema-relaxable
or even schema-free information for the Semantic Web [41]. In the commercial
IT world, RDF has not received much attention until recently, but now it seems
that RDF is building up a strong momentum. Semantic-Web-style ontologies and
knowledge bases with millions of facts from Wikipedia and other sources have been
created and are available online [4, 56, 64]. E-science data repositories support
RDF as an import/export format and also for selective (thus, query-driven) data
extractions, most notably, in the area of life sciences (e.g., [7, 59]). Finally, Web
2.0 platforms for online communities are considering RDF as a non-proprietary
exchange format and as an instrument for the construction of information mashups
(24, 25, 43].

In RDF, all data items are represented in the form of (subject, predicate, object)
triples, also known as (subject, property, value) triples. For example, information
about the song “Changing of the Guards” performed by Patti Smith could include
the following triples:

(1d1, hasType, " song”),

(1d1, hasTitle, ”Changing of the Guards”),
(id1, per formedBy, id2),

(id2, hasName, ” Patti Smith”),
(1d2, bornOn, ” December 30, 1946”),
(1d2, bornin, id3),

(1d3, hasName, " Chicago”),

(1d3, locatedIn, id4),

(id4, hasName, " Illinois”),

(1d1, composedBy, idb),

(1d5, hasName, ” Bob Dylan”),

and so on.

Note that, although predicate names such as “performedBy” or “composedBy”
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resemble attributes, there is no database schema; the same database may contain
triples about songs with predicates “performer”, “hasPerformed”, “sungBy”,
“composer”, “creator”, etc. A schema may emerge in the long run (and can then
be described by the RDF Vocabulary Description Language). In this sense, the
notion of RDF triples fits well with the modern notion of data spaces and its
“pay as you go” philosophy [20]. Compared to an entity-relationship model, both
an entity’s attributes and its relationships to other entities are represented by
predicates. All RDF triples together can be viewed as a large (instance-level)
graph.

The SPARQL query language is the official standard for searching over RDF
repositories. It supports conjunctions (and also disjunctions) of triple patterns,
the counterpart to select-project-join queries in a relational engine. For example,
we can retrieve all performers of songs composed by Bob Dylan by the following
SPARQL query:

Select 7n Where {
?7p <hasName> 7?n. 7s <performedBy> 7p.
?7s <composedBy> 7c. 7c <hasName> "Bob Dylan"

}

Here each of the conjunctions, denoted by a dot, corresponds to a join. The
whole query can also be seen as graph pattern that needs to be matched in the
RDF data graph. In SPARQL, predicates can also be variables or wildcards, thus
allowing schema-agnostic queries. For example,

RDF engines for storing, indexing, and querying have been around for quite a
few years; especially, the Jena framework by HP Labs has gained significant pop-
ularity [63], and Oracle also provides RDF support for semantic data integration
in life sciences and enterprises [12, 40]. However, with the exception of the VLDB
2007 paper by Abadi et al. [1] (and very recent work presented at VLDB 2008
[37, 50, 61]), none of the prior implementations could demonstrate convincing
efficiency, failing to scale up towards large datasets and high load. [1] achieves
good performance by grouping triples with the same property name into property
tables, mapping these onto a column store, and creating materialized views for
frequent joins.

Managing large-scale RDF data includes technical challenges for the storage
layout, indexing, and query processing:

1. The absence of a global schema and the diversity of predicate names pose
major problems for the physical database design. In principle, one could rely
on an auto-tuning “wizard” to materialize frequent join paths; however, in
practice, the evolving structure of the data and the variance and dynamics
of the workload turn this problem into a complex sisyphus task.

2. By the fine-grained modeling of RDF data — triples instead of entire records
or entities — queries with a large number of joins will inherently form a large
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part of the workload, but the join attributes are much less predictable than
in a relational setting. This calls for specific choices of query processing
algorithms, and for careful optimization of complex join queries; but RDF
is meant for on-the-fly applications over data spaces, so the optimization
takes place at query run-time.

3. As join-order and other execution-plan optimizations require data statistics
for selectivity estimation, an RDF engine faces the problem that a suitable
granularity of statistics gathering is all but obvious in the absence of a
schema. For example, single-dimensional histograms on all attributes that
occur in the workload’s where clauses — the state-of-the-art approach in
relational systems — is unsuitable for RDF, as it misses the effects of long
join chains or large join stars over many-to-many relationships.

4. Although RDF uses XML syntax and SPARQL involves search patterns that
resemble XML path expressions, the fact that RDF triples form a graph
rather than a collection of trees is a major difference to the more intensively
researched settings for XML.

1.2 Contribution and Outline

This paper gives a comprehensive, scalable solution to the above problems. It
presents a complete system, coined RDF-3X (for RDF Triple eXpress), designed
and implemented from scratch specifically for the management and querying
of RDF data. RDF-3X follows the rationale advocated in [28, 55] that data-
management systems that are designed for and customized to specific application
domains can outperform generic mainstream systems by two orders of magnitude.
The factors in this argument include 1) tailored choices of data structures and
algorithms rather than supporting a wide variety of methods, 2) much lighter
software footprint and overhead, and as a result, 3) simplified optimization
of system internals and easier configuration and self-adaptation to changing
environments (e.g., data and workload characteristics).

RDF-3X follows such a RISC-style design philosophy [11], with “reduced
instruction set” designed to support RDF. RDF-3X is based on three key principles:

e Physical design is workload-independent by creating appropriate indexes
over a single “giant triples table”. RDF-3X does not rely on the success
(or limitation) of an auto-tuning wizard, but has effectively eliminated
the need for physical-design tuning. It does so by building indexes over
all 6 permutations of the three dimensions that constitute an RDF triple,
and additionally, indexes over count-aggregated variants for all three two-
dimensional and all three one-dimensional projections. Each of these indexes
can be compressed very well; the total storage space for all indexes together
is less than the size of the primary data.



e The query processor is RISC-style by relying mostly on merge joins over
sorted index lists. This is made possible by the “exhaustive” indexing of
the triples table. In fact, all processing is index-only, and the triples table
exists merely virtually. Operator trees are constructed so as to preserve
interesting orders [19] for subsequent joins to the largest possible extent;
only when this is no longer possible, RDF-3X switches to hash-based join
processing. This approach can be highly optimized at the code level, and has
much lower overhead than traditional query processors. At the same time,
it is sufficiently versatile to support also the various duplicate-elimination
options of SPARQL, disjunctive patterns in queries, and all other features
that SPARQL requires.

e The query optimizer mostly focuses on join order in its generation of execu-
tion plans. It employs dynamic programming for plan enumeration, with
a cost model based on RDF-specific statistical synopses. These statistics
include counters of frequent predicate-sequences in paths of the data graph;
such paths are potential join patterns. Compared to the query optimizer in
a universal database system, the RDF-3X optimizer is simpler but much
more accurate in its selectivity estimations and decisions about execution
plans.

Although it is reasonable to assume that most RDF databases are query-
intensive if not read-only (e.g., large reference repositories in life sciences), there
has to be support for at least incremental loading and ideally even online updates
such as inserting a new triple for annotating existing data. The challenge in
doing this efficiently is to deal with the aggressive indexing that RDF-3X employs
for fast querying. We have developed a staging architecture that defers index
updates. Updates are collected in workspaces and differential indexes, and are
later merged into the main database indexes in a very efficient batched manner.
This staging is transparent to programs; the query processor is appropriately
extended to provide this convenience with low overhead. While this approach does
not provide full-fledged ACID transactions, it includes simple but effective ways
of concurrency control and recovery and supports the read-committed isolation
level.

The scientific contributions of this work are:

1. a novel architecture for RDF indexing and querying, eliminating the need
for physical database design;

2. an optimizer for large join queries over non-schematic RDF triples, driven
by a new kind of selectivity estimation for RDF paths;

3. a new staging architecture for efficiently handling updates, with very good
performance of batched updates;



4. a comprehensive performance evaluation, based on real measurements with
three large datasets, demonstrating large gains over the previously best
engine [1] (by a typical factor of 10 and up to 100 or more for some queries).

The source code of RDF-3X and the experimental data are available for non-
commercial purposes from the Web site [42].

A previous version of this work has been presented in [37]. The current paper
extends this prior publication in two major ways: 1) we describe the algorithms
for query compilation and query optimization, which are merely sketched in [37];
2) we present a novel way of efficiently supporting updates to RDF-3X databases,
and give performance measurements for multi-user workloads.

The rest of the paper is organized as follows. Section 2 provides background
on RDF, SPARQL, and prior work on indexing and query processing. Section 3
presents our solution for the physical design of RDF repositories. Section 4
describes the architecture and algorithms of the RDF-3X query compiler and query
processor. Section 5 covers the query optimization techniques used in RDF-3X.
Section 6 discusses our solutions to selectivity estimation for SPARQL expressions.
Section 7 shows how to efficiently support online updates and incremental loading
in RDF-3X. Section 8 presents the results of our comprehensive performance
evaluation and comparison to alternative approaches.



2 Background and State of the
Art

2.1 SPARQL

SPARQL queries [52] are pattern matching queries on triples that constitute an
RDF data graph. Syntactic sugar aside, a basic SPARQL query has the form

select 7variablel 7variable2 ...
where { patternl. pattern2. ... }

where each pattern consists of subject, predicate, object, and each of these is either
a variable or a literal. The query model is query-by-example style: the query
specifies the known literals and leaves the unknowns as variables. Variables can
occur in multiple patterns and thus imply joins. The query processor needs to
find all possible variable bindings that satisfy the given patterns and return the
bindings from the projection clause to the application. Note that not all variables
are necessarily bound (e.g., if a variable only occurs in the projection and not in
a pattern), which results in NULL values.

This pattern matching approach restricts the freedom of the query engine with
regard to possible execution plans, as shown in the following example:

select 7a ?c
where { ?7a labell ?b. ?b label2 ?c }

The user is interested in all 7a and 7c that are reachable with certain edges via
?b. The value of 7b itself is not part of the projection clause. Unfortunately the
pattern matching semantics requires that nevertheless all bindings of 7b need to
be computed. There might be multiple ways from 7a to ?c, resulting in duplicates
in the output. As this is usually not what the user/application intends, SPARQL
introduced two query modifiers: the distinct keyword specifies that duplicates
must be eliminated, and the reduced keyword specifies that duplicates may but
need not be eliminated. The goal of the reduced keyword was obviously to help



RDF query engines by allowing optimizations, but with the reduced option the
query output has a nondeterministic nature.

Nevertheless, even the default mode of creating all duplicates allows some
optimizations. The query processor must not ignore variables that are projected
away due to their effect on duplicates, but it does not have to create the explicit
bindings. As long as we can guarantee that the correct number of duplicates is
produced, the bindings themselves are not relevant. We will use this observation
later by counting the number of duplicates rather than producing the duplicates
themselves.

2.2 Related Work

Most publicly accessible RDF systems have mapped RDF triples onto relational
tables (e.g., RDFSuite [2, 44], Sesame [8, 39], Jena [26, 63|, the C-Store-based
RDF engine of [1], and also Oracle’s RDF_MATCH implementation [12]). There
are two extreme ways of doing this: 1) All triples are stored in a single, giant triples
table with generic attributes subject, predicate, object. 2) Triples are grouped by
their predicate name, and all triples with the same predicate name are stored in
the same property table. The extreme form of property tables with a separate table
for each predicate name can be made more flexible, leading to a hybrid approach:
3) Triples are clustered by predicate names, based on predicates for the same
entity class or co-occurrence in the workload; each cluster-property table contains
the values for a small number of correlated predicates, and there may additionally
be a “left-over” table for triples with infrequent predicates. A cluster-property
table has a class-specific schema with attributes named after the corresponding
RDF predicates, and its width can range from a single predicate (attribute) to all
predicates of the same entity type.

Early open-source systems like Jena [26, 63] and Sesame [8, 39] use clustered-
property tables, but left the physical design to an application tuning expert.
Neither of these systems has reported any performance benchmarks with large-
scale data in the Gigabytes range with more than 10 million triples. Oracle [40]
has reported very good performance results in [12], but seems to heavily rely
on good tuning by making the right choice of materialized join views (coined
subject-property matrix) in addition to its basic triples table. The previously
fastest RDF engine by [1] uses minimum-width property tables (i.e., binary
relations), but maps them onto a column-store system. [57] gives a nice taxonomy
of different storage layouts and presents systematic performance comparisons for
medium-sized synthetic data and synthetic workload.

The scalable system of [1], published in the 2007 VLDB conference, kindled
great interest in RDF performance issues and new architectures. In contrast
to the arguments that [1] gives against the “giant-triples-table” approach, both
RDF-3X [37] and HexaStore [61] recently showed how to successfully employ a



triples table with excellent performance. The work of [50] systematically studied
the impact of column-stores (MonetDB) and row-stores (PostgreSQL) on different
physical designs and identified strengths and weaknesses under different data and
workload characteristics. The quest for scalable performance has also led to new
benchmark proposals [45] and the so-called billion triples challenge [49].

The previously best performing systems, Oracle and the C-Store-based engine
[1], rely on materialized join paths and indexes on these views. The indexes
themselves are standard indexes as supported by the underlying RDBMS and
column store, respectively. The native YARS2 system [22] proposes exhaustive
indexes of triples and all their embedded sub-triples (pairs and single values) in
6 separate BT-tree or hash indexes. This resembles our approach, but YARS2
misses the need for indexing triples in collation orders other than the canonical
order by subject, predicate, object (as primary, secondary, and tertiary sort
criterion). A very similar approach is presented for the HPRD system [6] and
available as an option (coined “triple-indexes”) in the Sesame system [39]. Both
YARS2 and HPRD seem to be primarily geared for simple lookup operations
with limited support for joins; they lack DBMS-style query optimization (e.g.,
do not consider any join-order optimizations, although [6] recognizes the issue).
[5] proposes to index entire join paths using suffix arrays, but does not discuss
optimizing queries over this physical design. [58] introduces a new kind of path
indexing based on judiciously chosen “center nodes”; this index, coined GRIN,
shows good performance on small- to medium-sized data and for hand-specified
execution plans. Physical design for schema-agnostic “wide and sparse tables” is
also discussed in [13], without specific consideration to RDF. All these methods
for RDF indexing and materialized views incur some form of physical design
problem, and none of them addresses the resulting query optimization issues over
these physical-design features.

As for query optimization, [12, 40] and [1] utilize the state-of-the-art techniques
that come with the SQL engines on which these solutions are layered. To our
knowledge, none of them employs any RDF-native optimizations. [54] outlines a
framework for algebraic rewriting, but it seems that the main rule for performance
gains is pushing selections below joins; there is no consideration of join ordering.
[23] has a similar flavor, and likewise disregards the key problem of finding good
join orderings.

Recently, selectivity estimation for SPARQL patterns over graphs have been
addressed by [54] and [31]. The method by [54] gathers separate frequency statistics
for each subject, each predicate, and each object (label or value); the frequency
of an entire triple pattern is estimated by assuming that subject, predicate, and
object distributions are probabilistically independent. The method by [31, 32] is
much more sophisticated by building statistics over a selected set of arbitrarily
shaped graph patterns. It casts the selection of patterns into an optimization
problem and uses greedy heuristics. The cardinality estimation of a query pattern
identifies maximal subpatterns for which statistics exist, and combines them with
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uniformity assumptions about super-patterns without statistics. While [54] seems
to be too simple for producing accurate estimates, the method by [31] is based on
a complex optimization problem and relies on simple heuristics to select a good
set of patterns for the summary construction. The method that we employ in
RDF-3X captures path-label frequencies, thus going beyond [54] but avoiding the
computational complexity of [31].
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3 Storage and Indexing

3.1 Triples Store and Dictionary

Although most of the prior, and especially the recent, literature favors a storage
schema with property tables, we decided to pursue the conceptually simpler
approach with a single, potentially huge triples table, with our own storage
implementation underneath (as opposed to using an RDBMS). This reflects our
RISC-style and “no-knobs” design rationale. We overcome the previous criticism
that a triples table incurs too many expensive self-joins by creating the “right” set
of indexes (see below) and by very fast processing of merge joins (see Section 4).

We store all triples in a (compressed) clustered B-tree. The triples are
sorted lexicographically in the BT-tree, which allows the conversion of SPARQL
patterns into range scans. In the pattern (literall literal2,?x) the literals specify
the common prefix and thus effectively a range scan. Each possible binding of 7z
is found during a single scan over a moderate number of leaf pages.

As triples may contain long string literals, we adopt the natural approach (see,
e.g., [12]) of replacing all literals by ids using a mapping dictionary. This has two
benefits: 1) it compresses the triple store, now containing only id triples, and
2) it is a great simplification for the query processor, allowing for fast, simple,
RISC-style operators (see Section 4.4). The small cost for these gains is two
additional dictionary indexes. During query translation, the literals occurring
in the query are translated into their dictionary ids, which can be done with a
standard BT-tree from strings to ids. After processing the query the resulting ids
have to be transformed back into literals as output to the application/user. We
could have used a BT-tree for this direction, too, but instead we implemented a
direct mapping index [16]. Direct mapping is tuned for id lookups and results in
a better cache hit ratio. Note that this is only an issue when the query produces
many results. Usually the prior steps (joins etc.) dominate the costs, but for
simple queries with many results dictionary lookups are non-negligible.
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Gap | Payload | | Delta Delta Delta
1 Bit | 7 Bits 0-4 Bytes | | 0-4 Bytes | | 0-4 Bytes
Header valuey values values

Figure 3.1: Structure of a compressed triple

3.2 Compressed Indexes

In the index-range-scan example given above we rely on the fact that the variables
are a suffix (i.e., the object or the predicate and object). To guarantee that we can
answer every possible pattern with variables in any position of the pattern triple by
merely performing a single index scan, we maintain all six possible permutations
of subject (S), predicate (P) and object (O) in six separate indexes. We can afford
this level of redundancy because we compress the id triples (discussed below). On
all our experimental datasets, the total size for all indexes together is less than
the original data.

As the collation order in each of the six indexes is different (SPO, SOP, OSP,
OPS, PSO, POS), we use the generic terminology value;, valuey, values instead
of subject, predicate, object for referring to the different columns. The triples in an
index are sorted lexicographically by (value;, valuey, values) (for each of the six
different permutations) and are directly stored in the leaf pages of the clustered
BT -tree.

The collation order causes neighboring triples to be very similar: most neigh-
boring triples have the same values in value; and values, and the increases in
valuez tend to be very small. This observation naturally leads to a compression
scheme for triples. Instead of storing full triples we only store the changes between
triples. This compression scheme is inspired by methods for inverted lists in text
retrieval systems [67], but we generalize it to id triples rather than simple ids. For
reasons discussed below, we apply the compression only within individual leaf
pages and never across pages.

For the compression scheme itself, there is a clear trade-off between space
savings and CPU consumption for decompression or interpretation of compressed
items [62]. We noticed that CPU time starts to become an issue when compressing
too aggressively, and therefore settled for a byte-level (rather than bit-level)
compression scheme. We compute the delta for each value, and then use the
minimum number of bytes to encode just the delta. A header byte denotes
the number of bytes used by the following values (Figure 3.1). FEach value
consumes between 0 bytes (unchanged) and 4 bytes (delta needs the full 4 bytes),
which means that we have 5 possible sizes per value. For three values these are
5xbxH = 125 different size combinations, which fits into the payload of the header
byte. The remaining gap bit is used to indicate a small gap: When only values
changes, and the delta is less than 128, it can be directly included in the payload
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compress((vy, ve, v3),(prevy, prevy, prevs))
// writes (vq, va,v3) relative to (prevy, prevs, prevs)
if v; = prevy A vy = prevy

if v3 — prevs < 128

write v3 — preuvs

else encode(0,0,03 — prevs — 128)
else if v; = prev,

encode(0,vy — prevy,vs)
else

encode(vy — prevy,ve,vs)

encode(dy, 0z, 03)

// writes the compressed tuple corresponding to the deltas
write 1284+ bytes(d1)*25+bytes(d2)*5+bytes(ds)

write the non-zero tail bytes of d;

write the non-zero tail bytes of d,

write the non-zero tail bytes of d3

Figure 3.2: Pseudo-Code of triple compression

byte-wise bit-wise
Barton data RDF-3X | Gamma | Delta | Golomb
6 indexes [GBytes] || 1.10 1.21 1.06 | 2.03
Decompression [s] | 3.2 44.7 425 | 82.6

Figure 3.3: Comparison of byte-wise compression vs. bit-wise compression for the
Barton dataset

of the header byte. This kind of small delta is very common, and can be encoded
by a single byte in our scheme.

The details of the compression are shown in Figure 3.2. The algorithm
computes the delta to the previous tuple. If it is small it is directly encoded in
the header byte, otherwise it computes the 9; values for each of the tree values
and calls encode. encode writes the header byte with the size information and
then writes the non-zero tail of the ¢; (i.e., it writes d; byte-wise but skips leading
zero bytes). This results in compressed tuples with varying sizes, but during
decompression the sizes can be reconstructed easily from the header byte. As all
operations are byte-wise, decompression involves only a few cheap operations and
is very fast.

We tested the compression rate and the decompression time (in seconds) of
our byte-wise compression against a number of bit-wise compression schemes
proposed in the literature [46]. The results for the Barton dataset (see Section 8)
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are shown in Figure 3.3. Our byte-wise scheme compresses nearly as good as the
best bit-wise compression scheme, while providing much better decompression
speed. The Gamma and Golomb compression methods, which are popular for
inverted lists in IR systems, performed worse because, in our setting, gaps can be
large whenever there is a change in the triple prefix.

We also experimented with the more powerful LZ77 compression on top of
our compression scheme. Interestingly our compression scheme compresses better
with LZ77 than the original data, as the delta encoding exhibits common patterns
in the triples. The additional LZ77 compression decreases the index size roughly
by a factor of two, but increases CPU time significantly, which would become
critical for complex queries. Thus, the RDF-3X engine does not employ LZ77.

An important consideration for the compressed index is that each leaf page
is compressed individually. Compressing larger chunks of data leads to better
compression (in particular in combination with the LZ77 compression), but page-
wise compression has several advantages. First, it allows us to seek (via Bt-tree
traversal) to any leaf page and directly start reading triples. If we compressed
larger chunks we would often have to decompress preceding pages. Second, the
compressed index behaves just like a normal B*-tree (with a special leaf encoding).
Thus, updates can be easily done like in a standard BT -tree. This greatly simplifies
the integration of the compressed index into the rest of the engine and preserves
its RISC nature. In particular, we can adopt advanced concurrency control and
recovery methods for index management without any changes.

3.3 Aggregated Indices

For many SPARQL patterns, indexing partial triples rather than full triples would
be sufficient, as demonstrated by the following SPARQL query:

select 7a 7c
where { ?a ?b 7c }

It computes all 7a and ?c that are connected through any predicate, the actual
bindings of ?7b are not relevant. We therefore additionally build aggregated indexes,
each of which stores only two out of the three columns of a triple. More precisely,
they store two entries (e.g., subject and object), and an aggregated count, namely,
the number of occurrences of this pair in the full set of triples. This is done for
each of the three possible pairs out of a triple and in each collation order (SP, PS,
SO, OS, PO, OP), thus adding another six indexes.

The count is necessary because of the SPARQL semantics. The bindings of
?b do not occur in the output, but the right number of duplicates needs to be
produced. Note that the aggregated indexes are much smaller than the full-triple
indexes; the increase of the total database size caused by the six additional indexes
is negligible.
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compressAggregated((vy, va),count,(prevy, prevs))
// writes (vq,va) * count relative to (prevy, prevs)
if v, = prev,
if vy — prevy < 32 A count <5
write (count — 1) % 32 4 (vy — prevy)
else
encode(0,vy — prevy,count)
else
encode(vy — prevy,vg,count)

Figure 3.4: Aggregated triple compression

Instead of (valuey, valuey, values), the aggregated indexes store (value,values,
count), but otherwise they are organized in Bf-trees just like the full-triple
compressed indexes. The leaf encoding is slightly different, as now most changes
involve a gap in value, and a low count value. The pseudo-code is shown in
Figure 3.4.

Finally, in addition to these indexes for pairs in triples, we also build all
three one-value indexes containing just (value;, count) entries (the encoding is
analogous). While triple patterns using only one variable are probably rare, the
one-value indexes are very small, and having them available simplifies query
translation.
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4 Query Translation and
Processing

4.1 Translating SPARQL Queries

The first step in compiling a SPARQL query is to transform it into a calculus
representation suitable for later optimizations. We construct a query graph
representation that can be interpreted as relational tuple calculus. It would be

simpler to derive domain calculus from SPARQL, but tuple calculus is better
suited for the query optimizer.

select 7n Where {
?p <hasName> 7n. P =(
7s <performedBy> 7p. Py=(7s,performedBy,?p)
7s <composedBy> ?c. 3=(7s,composedBy,?¢)
?c <hasName> "Bob Dylan”. P,;=(7c,hasName,Bob Dylan)

?p,hasName,’n)

e

a) SPARQL b) triples form

|>ng.s:Pg.s

VRN P, — P,

MPl p=Pa.p |>ng,.c:P4.c ‘

/ \ / \ Py =P
P P P P
¢) possible join tree d) query graph

Figure 4.1: SPARQL translation example

The translation of SPARQL queries is illustrated by an example in Figure 4.1.
While SPARQL allows many syntax shortcuts to simplify query formulation
(Figure 4.1 a), each (conjunctive) query can be parsed and expanded into a set
of triple patterns (Figure 4.1 b). Each component of a triple is either a literal
or a variable. The parser already performs dictionary lookups, i.e., the literals
are mapped into ids. Similar to domain calculus, SPARQL specifies that variable
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bindings must be produced for every occurrence of the resulting literals-only triple
in the data. When a query consists of a single triple pattern, we can use our
index structures from Section 3 and answer the query with a single range scan.
When a query consist of multiple triple patterns, we must join the results of the
individual patterns (Figure 4.1 d). We thus employ join ordering algorithms on
the query graph (Figure 4.1 ¢) representation, as discussed in Section 5.

Each triple pattern corresponds to one node in the query graph. Conceptually
each node entails a scan of the whole database with appropriate variable bindings
and selections induced by the literals. While each of these scans could be imple-
mented as a single index range scan, the optimizer might choose a different strategy
(see below). The edges in the query graph reflect joint variable occurrences: two
nodes are connected if and only if they have a (query) variable in common.

Using the query graph, we can construct an (unoptimized) execution plan as
follows:

1. Create an index scan for each triple pattern. The literals in the pattern
determine the range of the scan.

2. Add a join for each edge in the query graph. If the join is not possible (i.e.,
if the triple patterns are already joined via other edges) add a selection.

3. If the query graph is disconnected, add cross-products as necessary to obtain
a single join tree.

4. Add a selection containing all FILTFER predicates.

5. If the projection clause of a query includes the distinct option, add an
aggregation operator that eliminates duplicates in the result.

6. Finally add a dictionary lookup operator that converts the resulting ids
back into strings.

This gives us a “canonical” execution plan for any conjunctive SPARQL query,
i.e., a plan that is valid but potentially inefficient. In the RDF-3X system the
steps 1 through 4 are actually performed by the query optimizer (see Section 5),
which finds the optimal scan strategy and the optimal join order for a given query.

4.2 Handling Disjunctive Queries

While conjunctive queries are more commonly used, SPARQL also allows certain
forms of disjunctions. The UNION expression returns the union of the bindings
produced by two or more pattern groups. The OPTIONAL expressions returns the
bindings of a pattern group if there are any results, and NULL values otherwise.
In this context, pattern groups are sets of triple patterns, potentially containing
UNION and OPTIONAL expressions themselves.
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During query translation and optimization we treat pattern groups in UNION
and OPTIONAL as nested subqueries. That is, we translate and optimize the
nested pattern groups first (potentially recursively), and then treat them as
base relations with special costs and cardinalities during the translation and
optimization of the outer query. For UNION we add the union of the results of
the pattern groups as if it were a base relation, for OPTIONAL we add the result
as a base relation using an outer join.

In principle it would be possible to optimize these queries more aggressively,
but most interesting optimizations require the usage of bypass plans [53] or other
non tree-structured execution plans, which is beyond the scope of this work. And
these optimizations would only pay off for complex queries; when the disjunctive
elements are simple, our nested translation and optimization scheme produces the
optimal solution.

4.3 Preserving Result Cardinality

The standard SPARQL semantic requires that the right number of variable
bindings are produced, even if many of them are duplicates. However, from a
processing point of view, one should avoid the additional work for producing and
keeping duplicates.

We solve this issue by tracking the multiplicity of each tuple during query
processing. Scans over unaggregated indexes always produce a multiplicity of 1,
while aggregated indexes report the number of duplicates as multiplicity. Join
operators multiply the multiplicities to get the number of duplicates of each output
tuple. Note that we can optionally switch off the multiplicity tracking if we can
statically derive that it has to be 1 in a subplan. When the result is presented to
the application/user, the output operator interprets the multiplicities according
to the specified query semantics (distinct, reduced, or standard).

4.4 Implementation Issues

Our run-time system includes the typical set of algebraic operators (merge-join,
hash-join, filter, aggregation, etc.). One notable difference to other systems is
that our run-time system is very RISC-style: most operators merely process
integer-encoded ids, consume and produce streams of id tuples, compare ids, etc.
Besides simplifying the code, this reduced complexity allows neat implementation
tricks.

For example, consider an index-scan operator that uses a BT-tree iterator to
access the physical data, comparing a triple pattern against the data. Each entry
in the triple is either an id attribute that must be produced or bound to a literal,
which affects start/stop condition if it is in the prefix or implies a selection if
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unbound entries come first. Instead of checking for these different conditions at
run-time, we can handle them at query compilation time. Each entry is either an
id attribute or a literal. There are three entries in a triple, which means there
are eight possible combinations. With a single method interface that has eight
different implementations of the index scan operator, we can greatly reduce the
number of conditional branches in the system code. Besides being faster, each
specialized operator is much simpler as it now implements just the logic required
for its setting. Note that we only need to specialize the step logic, which is less
than 10 lines of code for each specialization.

This RISC-style combination of simplified type system and simple, fast op-
erators leads to very good CPU performance. In our evaluation in Section 8 we
include warm-cache times to demonstrate these effects. We realize that these
kinds of code-tuning issues are often underappreciated, but are crucial for high
performance on modern hardware.
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5 Query Optimization

The key issue for optimizing SPARQL execution plans is join ordering. There is a
rich body of literature on this problem, with solutions typically based on various
forms of dynamic programming (DP) or randomization (e.g., [14, 17, 33, 48]).
However, the intrinsic characteristics of RDF and SPARQL create join queries
with particularly demanding properties, which are not directly addressed by prior
work:

1. SPARQL queries tend to contain star-shaped subqueries, for combining
several attribute-like properties of the same entity. Thus, it is essential to
use a strategy that can create bushy join trees (rather than focusing on
left-deep or right-deep trees).

2. These star joins occur at various nodes of long join paths, often at the
start and end of a path. SPARQL queries can easily lead to 10 or more
joins between triples (see, for example, our benchmark queries in Section 8).
So exact optimization either requires very fast plan enumeration and cost
estimation or needs to resort to heuristic approximations.

3. We would like to leverage the particular strengths of our triple indexes, which
encourage extensive use of merge joins (rather than hash or nested-loop
joins), but this entails being very careful about preserving interesting orders
in the generation of join plans.

The first requirement rules out methods that cannot generate all possible star-
chain combinations. The second requirement strongly suggests a fast bottom-up
method rather than transformation-based top-down enumeration. The third re-
quirement rules out sampling-based plan enumeration (or randomized optimization
methods), as these are unlikely to generate all order-preserving plans for queries
with more than 10 joins. In fact, we expect that the most competitive execution
plans have a particular form: they would use order-preserving merge-joins as long
as possible and switch to hash-joins only for the last few operators.

Our solution is based on the bottom-up dynamic-programming (DP) framework
of [33]. It organizes a DP table by subgraphs of the query graph, maintaining
for each subgraph the optimal plan and the resulting output order. If there are
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(?a,pred;,?b)  S) =index scan[P =pred;,S — a;,0 — b]
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Figure 5.1: Example for reasoning using attribute equivalence classes

multiple plans for a subgraph none of which dominates the other, all of them are
kept in the DP table. This happens when good plans produce different output
orders.

The optimizer seeds its DP table with scans for the base relations, in our
case the triple patterns. The seeding is a two step process. First, the optimizer
analyzes the query to check which variable bindings are used in other parts of the
query. If a variable is unused, it can be projected away by using an aggregated
index (see Section 3.3). Note that this projection conceptually preserves the
cardinality through the count information in the index (see Subsection 4.3). In the
second step the optimizer decides which of the applicable indexes to use. There
are two factors that affect the index selection. When the literals in the triple
pattern form the prefix of the index key, they are automatically handled by the
range scan. Otherwise too many tuples are read and additional selections are
required. On the other hand, a different index might produce the triples in an
order suitable for a subsequent merge-join later on, which may have lower overall
costs than reading too many tuples. The optimizer therefore generates plans for
all indexes and uses the plan pruning mechanism to decide if some of them can
be discarded early on.

Pruning the search space of possible execution plans is based on estimated
execution costs. The optimizer calls the cost model for each generated plan and
prunes equivalent plans that are dominated by cheaper alternatives. This pruning
mechanism relies on order optimization [51] to decide if a plan is dominated by
another plan. As the optimizer can use indexes on all triple permutations, it can
produce tuples in an arbitrary order, which makes merge joins very attractive.
Thus some plans are kept even if they are more expensive but produce an interesting
ordering that can be used later on. Note that orderings are not only created by
index scans but also by functional dependencies induced by selections; therefore
the order optimization component is non-trivial [51]. We utilize the techniques of
[36] for this purpose.

22



6-triples 8-triples 10-triples
star patterns | star patterns | star patterns

path length 5 0.7 ms 2.4 ms 6.4 ms
path length 10 2.0 ms 4.6 ms 17.3 ms
path length 20 3.5 ms 13.0 ms 56.6 ms

Figure 5.2: Optimization times for queries with x patterns in two stars connected
by a path of length y

Starting with the seeds, larger plans are created by joining optimal solutions of
smaller problems. During this process all attribute-handling logic for comparing
values is implemented as reasoning over equivalence classes of variables instead of
individual variable bindings. Variables that appear in different triple patterns are
equivalent if they must have the same bindings to values in the final result of the
query. These equivalence classes are determined at compile-time. It is sufficient
that an execution plan produces at most one binding for each equivalence class
(and no bindings for variables that do not appear in the query output). This
simplifies implicit projections that precede pipeline breakers (e.g., hash-table
build for a hash-join) and also allows for automatic detection of transitive join
conditions (e.g., a =bAb=c=a=c).

An example for this reasoning is shown in Figure 5.1. It shows a query with
three triple patterns (Figure 5.1 a) and joins on the common attribute a between
the patterns. The first translation step creates index scans for the three patterns
(Figure 5.1 b), producing attributes aq, b, as ,c, as, and d. Note that the a; are
really different from each other in terms of their value bindings; we named them
similarly to show the connection to the original query variable. We can derive
three join operators from the query graph (Figure 5.1 ¢), but in the final join tree
(Figure 5.1 d) we use only two of them. The canonical translation would add
another 0,,—,,, but we can deduce that a; and ay are in the same equivalence
class, thus the X, _,, is sufficient. Note that equivalence classes are derived from
equality conditions, not only from join-variable names. We could perform the
same reasoning if the three patterns had no variable in common but instead joined
via FILTER conditions.

Starting with the index scans seeds, larger plans are created by joining optimal
solutions of smaller problems that are adjacent in the query graph [33]. When the
query contains additional selections due to FILTER predicates, they are placed
greedily as soon as possible, as they are usually inexpensive to evaluate. If a
selection is really expensive, it could be better to integrate it into the DP operator
placement as proposed in [10], but we did not investigate this further. The DP
method that we implemented along these lines is very fast and is able to compute
the exact cost-optimal solution for join queries with up to 20 triple patterns. We
measured optimization times (in milliseconds) for a typical SPARQL scenario
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with two entities selected by star-shaped subqueries and connected by a chain of
join patterns. The results are shown in Figure 5.2. Note that the resulting plans
are always optimal relative to the estimates by the cost model.

24



6 Selectivity Estimates

The query optimizer relies upon its cost model in finding the lowest-cost execution
plan. In particular, estimated cardinalities (and thus selectivities) have a huge
impact on plan generation. While this is a standard problem in database systems,
the schema-free nature of RDF data complicates statistics generation. We propose
two kinds of statistics. The first one, specialized histograms, is generic and
can handle any kind of triple patterns and joins. Its disadvantage is that it
assumes independence between predicates, which frequently does not hold in
tightly coupled triple patterns. The second statistics therefore computes frequent
join paths in the data, and gives more accurate predictions on these paths for
large joins. During query optimization, we use the join-path cardinalities when
available and otherwise assume independence and use the histograms.

6.1 Selectivity Histograms

While triples conceptually form a single table with three columns, histograms over
the individual columns are not very useful as most query patterns touch at least
two attributes of a triple. Instead we harness our aggregated indexes, which are
perfectly suited for the calculation of triple-pattern selectivities: for each literal
or literal pair, we can get the exact number of matching triples with one index
lookup. Unfortunately this is not sufficient for estimating join selectivities. Also,
we would like to keep all auxiliary structures for the cost model in main memory.
Therefore, we aggregate the indexes even further such that each index fits into a
single database page and includes information about join selectivity.

Just like the aggregated indexes we build six different statistics, one for each
order of the entries in the triples. Starting from the aggregated indexes, we place
all triples with the same prefix of length two in one bucket and then merge the
smallest two neighboring buckets until the total histogram is small enough. This
approximates an equi-depth histogram, but avoids placing bucket boundaries
between triples with the same prefix (which are expected to be similar).

For each bucket we then compute the statistics shown in Figure 6.1. The first
three values — the number of triples, number of distinct 2-prefixes, and number of
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Figure 6.1: Structure of a histogram bucket

distinct 1-prefixes — are used to estimate the cardinality of a single triple pattern.
Note that this only gives the scan cardinality, i.e., the number of scanned triples,
which determines the costs of an index scan. The true result cardinality, which
affects subsequent operators, could actually be lower when literals are not part of
the index prefix and are tested by selections later on. In this case we derive the
result cardinality (and obtain exact predictions) by reordering the literals such
that all literals are in the prefix.

The next values are the numbers of join partners (i.e., the result cardinality) if
the triples in the bucket were joined to all other triples in the database according
to the specified join condition. As there are nine ways to combine attributes from
two triples, we precompute nine cardinalities. For example the entry o = s is
effectively

[{b]b € current bucket} Xy, opject—t.subject {t|t € all triples}|.

These values give a perfect join-size prediction when joining a pattern that exactly
matches the bucket with a pattern without literals. Usually this is not the case,
we therefore assume independence between query conditions and multiply the
selectivities of the involved predicates. (Such independence assumptions are
standard in state-of-the-art query optimizers for tractability.)

6.2 Frequent Paths

The histograms discussed above have decent accuracy, and are applicable for
all kinds of predicates. Their main weakness is that they assume independence
between predicates. Two kinds of correlated predicates commonly occur in
SPARQL queries. First, “stars” of triple patterns, where a number of triple
patterns with different predicates share the same subject. These are used to
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select specific subjects (i.e., entities based on different attributes of the same
entities). Second, “chains” of triple patterns, where the object of the first pattern
is the subject of the next pattern, again with given predicates. These chains
correspond to long join paths (across different entities). As both of these two cases
are common, we additionally build specialized statistics to have more accurate
estimators for such queries.

To this end, we precompute the frequent paths in the data graph and keep
exact join statistics for them. Frequency here refers to paths with the same
label sequence. Note that we use the term path both for chains and stars, the
constructions are similar in the two cases. We characterize a path P by the

sequence of predicates py,...,p, seen in its traversal. Using SPARQL syntax, we
define a (chain) path P, . as
P, .p. = select 1 141 where { (11 p1 72).
(r2 p2 73). oo (T Po Tig1)}
Star paths are defined analogous, the py,...,p, are unsorted in this case. We
compute the most frequent paths, i.e., the paths with the largest cardinalities,
and materialize their result cardinalities and path descriptions py,...,p,. Using

this information we can exactly predict the join cardinality for the frequent paths
that occur in a query. Again, we want to keep these statistics in main memory
and therefore compute the most frequent paths such that they still fit on a single
database page. In our experiments we could store about 1000 paths on one 16KB
page.

Finding the most frequent paths requires some care. While it may seem
that this is a standard graph-mining issue, the prevalent methods in that line
of research [18, 60, 66|, e.g., based on the well-known Apriori frequent-itemset
mining algorithm, are not directly applicable.

Unlike the Apriori setting, a frequent path in our RDF-path sense does not
necessarily consist of frequent subpaths. Consider a graph with two star-shaped
link clusters where all end-nodes are connected to their respective star centers by
predicates (edge labels) p; and py, respectively. Now consider a single edge with
predicate p3 between the two star centers. In this scenario, the path P,, will be
infrequent, while the path P, ,, », will be frequent. Therefore we cannot simply
use the Apriori algorithm.

Another problem in our RDF setting are cycles, which could lead to seemingly
infinitely long, infinitely frequent paths. We solve this problem by two means.
First, we require that if a frequent path P is to be kept, all of its subpaths have
to be kept, too. This is required for query optimization purposes anyway, as
we may have to break a long join-path into smaller joins, and it simplifies the
frequent-path computation. Second, we rank the frequent paths not by their
result cardinalities but by their number of distinct nodes. In a tree these two are
identical, but in the presence of cycles we do not count nodes twice.

The pseudo-code of the path mining algorithm is shown in Figure 6.2. It starts
from frequent paths of length one and enlarges them by appending or prepending
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FrequentPath(k)
// Computes the k& most frequent paths
C1 = {P,|p is a predicate in the database}
sort (', keep the k£ most frequent
C=0C,i=1
do
Ciq1=10
for each p’ € C;, p predicate in the database
if top k of C' U C;11 U{P,,} includes all subpaths of p'p
Cit1 = Cip1 U{Pyp}
if top k of C'U Cj41 U {P,y} includes all subpaths of pp/
Cit1 = Cit1 U{Fy}
C = CUCj;, sort C keep the & most frequent
CiJrl :CH,lmC,Z:Z—i—l
while C; # ()
return C'

Figure 6.2: Frequent Path Mining Algorithm

predicates. When a new path is itself frequent and all of its subpaths are still kept,
we add it. We stop when no new paths can be added. Note that, although the
pseudo-code shows a nested loop for ease of presentation, we actually use a join
and a group-by operator in the implementation. For the datasets we considered
in our experiments the 1000 most frequent paths could be determined in a few
minutes.

6.3 Estimates for Composite Queries

For estimating the overall selectivity of an entire composite query, we combine the
histograms with the frequent paths statistics. A long join chain with intermediate
nodes that have triple patterns with object literals is decomposed into subchains of
maximal lengths such that only their end nodes have triple patterns with literals.
For example, a query like

?I‘l a1 V1. ?ZEl P1 ?Z’Q. ?Z‘Q P2 ?Zﬁg. ?.%'3 P3 ?x4.

?1’4 a4 Vyq. ?ZE4 P4 ?1’5. ?ZE5 D5 ?LUG. ?IL‘6 Qg Vg

with attribute-flavored predicates aq, a4, ag, literals vy, vy, vg, and relationship-
flavored predicates p; through ps will be broken down into the subchains for
p1-po-p3 and for ps-ps and the per-subject selections aq-vy, as-vy4, and ag-vg. We
use the frequent paths statistics to estimate the selectivity of the two join subchains,
and the histograms for selections. Then, in the absence of any other statistics, we
assume that the different estimators are probabilistically independent, leading to
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a product formula with the per-subchain and per-selection estimates as factors. If
instead of a simple attribute-value selection like ?z¢ ag vg we had a star pattern
such as 7xg ag ug. ?wg b vg. Txg cg we with properties ag, bg, ¢ and corresponding
object literals ug, vg, wg, we would first invoke the estimator for the star pattern,
using the frequent paths statistics for stars, and then combine them with the
other estimates in the product form.
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7 Managing Updates

So far we have solely considered static RDF databases that are bulk-loaded once
and then repeatedly queried. The current RDF and SPARQ standards [41, 52| do
not discuss any update operations, but an RDF database should support data
changes and incremental loading as well.

In designing the management of updates for RDF-3X, we make the following
assumptions about typical usage patterns:

1. Queries are far more frequent than updates, and also much more resource
consuming.

2. Updates are mostly insertions of new triples. Overwriting existing triples
(updates-in-place) are rarely needed; rather new versions and annotations
would be created.

3. Updates can usually be batched, boiling down to incremental loading.

4. It is desirable that (batched) updates can be performed concurrently with
queries, but there is no need for full-fledged ACID transactions.

Based on these assumptions, we have designed and implemented a differential
indezxing method for RDF-3X that supports both individual update operations
and entire batches. The key idea is that updates are initially applied to small
differential indexes, deferring the actual updates to the main indexes. The
differential indexes can be easily integrated into the query processor, and are thus
transparent to application programs. Periodically or after reaching a certain size,
differential indexes are merged into the main indexes in a batched manner. This
overall architecture for managing updates in RDF-3X is illustrated in Figure 7.1.

In Subsections 7.1 and 7.2 we first discuss the insertion of new triples, introduc-
ing our additional data structures, and the deletion of existing triples. Updates
to existing triples, if ever needed, must be expressed as a pairs of deletions and
insertions. Although full ACID transactions are beyond our current scope, we
do provide rudimentary support for atomic batches of operations. This will be
discussed in Subsection 7.3.
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Figure 7.1: Differential Indexes in RDF-3X
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7.1 Insert Operations

Inserting new triples into a database is a performance challenge because of the
aggressive indexing on which RDF-3X is based. In principle, the indexes can
be easily updated as they are standard B*-trees, but each new triple would
incur access to 15 indexes. Furthermore, the updates are computationally more
expensive than usual due to the compressed leaf pages. This makes direct updates
to indexes unattractive.

To avoid these costs, we use a staging architecture with deferred index updates.

All updates are first collected in workspaces, and all their triples are indexed
separately from the main database in differential indezes. Periodically, or when
the size of the differential indexes exceeds a specified limit, all staged changes are
integrated into the main indexes described in Section 3. During query processing,
the query compiler adds additional merge joins with the, usually very small,
differential indexes to transparently integrate deferred updates if they satisfy
query conditions. The principles of this architecture resemble the rationale of the
multi-component LSM-tree [38] and similar data structures with batched updates
such as [15, 35, 27, 47]. In the following we present more details on 1) workspace
management, 2) differential indexes, 3) extended query processing.
Workspace Management. Each application program that interacts with the
RDF-3X engine has a private workspace in memory. We expect that the following is
the most typical update pattern: a program loads a new RDF file into the database,
generating a large number of new triples without any queries. Additionally but
much less frequently, programs can mix updates and queries, deriving new triples
from existing ones. But in this case, we expect that the number of generated
triples is much smaller.

With consideration to these two usage patterns, we index the new triples lazily.
Initially we just store them in an in-memory heap as they arrive. Only when we
need a certain triple ordering for query processing, we generate the desired index
by sorting the triples in the workspace. For programs that interleave queries and
updates, we expect bursts of insertions (i.e., many new triples derived from a
query result). Therefore, we do not maintain the indexes but simply invalidate
the indexes after a new update and rebuild them from scratch when needed for a
later query. When the program terminates (or at a program-specified “commit
point”, see below), we build indexes for all six triple orderings and merge them
into the corresponding differential indexes that are shared across all programs.
In addition, the workspace manager for each program also maintains a string
dictionary for new strings. We generate temporary string ids for each program,
which are later resolved into final ids during the merge with the differential index.
This technique avoids the need for concurrency control on the globally shared
string dictionary, and is safe as the ids are not visible at the application level.
Differential Indexes. The differential indexes, which are shared by all programs,
are an intermediate layer between the programs’ private workspaces and the
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full indexes of the main database. This intermediate indexing allows us to
improve update throughput by aggregating many new triples into bulk operations
against the main indexes. We keep differential indexes in main memory in our
implementation, which simplifies their maintenance. When they exhaust a given
memory budget, we initiate a merge process into the main indexes to release
memory. For recoverability after soft crashes that lose memory content, newly
created triples are written to a disk-resident log file in their plain form (i.e., only
once, not in six different orders). Alternatively, we could store the differential
indexes in flash RAM.

The differential indexes are B -trees for the different triple orderings, similarly
to the main indexes of Section 3. However, there are some differences. First, we
only build the six full indexes for the different attribute permutations; there is
no need for building the binary or unary aggregation indexes. As all data is in
main memory, we can inexpensively construct aggregated indexes on the fly when
needed, by using sort-based group-by operators. Furthermore, the indexes are not
compressed, as we want to be able to modify them as fast as possible. Finally,
we use a read-copy-update (RCU) mechanism [21] to allow queries to perform
scans on the differential indexes without any concurrency control. This is similar
to Bli"k_tree-style techniques [30] but simpler and not as powerful. When a tree
page is modified, we first copy the page, modify the page, and then change all
pointers to the old page to point to the new page. Note that this only maximizes
concurrency for read operations; write operations on the tree have to latch pages
to protect the tree from becoming inconsistent because of concurrent writers.
Further note that while the RCU mechanism allows for concurrent operations, it
does not provide transaction isolation. Similarly to the workspace management,
the differential index management also includes maintaining a string dictionary
for new strings, but here the string ids are already the final ones that will later be
used in the disk-resident main indexes. The string dictionary also uses an RCU
mechanism to allow lock-free reads, so queries are never blocked.

Merging the six differential indexes into the corresponding main indexes of the
database is I/O-intensive and thus expensive, but relatively simple. Some care is
needed because of the compression in the main indexes, but as compressed pages
are self-contained and never need any other pages for uncompression, we can
perform the merge page by page. Each of the six index merges can be performed
independently. Overall, the merge process works pretty much like a standard bulk
insertion of sorted data into a B*-tree.

The string dictionary of the main database is updated as well, but here
the merging is even simpler because of the absence of compression and the
monotonicity of string ids (which means that without deletions new entries are
always appended).

Query Processing. All queries are run on the union of the main indexes, the
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differential indexes, and the workspace of the program that invokes the query:
SPOIery = SPO U SPOYT U SPOPTI

As all three indexes are sorted in the same way, we use merge-joins with union
semantics (X)?%) to combine the indexes. For example the triple pattern

(90, ?a, ?b) would be translated into the following expression:

(05=00(SPO)) NI (05-90(SPO™))
MGLE'/‘QE (0_5290 (SPOpTOg))

These join operators are very cheap and require no additional memory, but
cause some small CPU overhead due to additional comparisons. This is slightly
troublesome, as each triple pattern in a query generates two of these extra joins.
Most of these joins will turn out to be unnecessary, namely, whenever there are
no new triples in the differential indexes or workspace that match a given triple
pattern. The RDF-3X system therefore tries to eliminate unnecessary joins of
this kind. One way to detect unnecessary scans of the differential indexes is to
check for relevant triples during query compilation, as the differential indexes are
in main memory anyway. Unfortunately, this approach faces complications when
queries contain selections that are pushed down below joins by the query optimizer.
Instead, we implemented the X9 operator such that at query execution time
it removes itself from the execution plan once one of its inputs (differential index

or workspace) is or becomes empty.

7.2 Delete Operations

The algorithms for handling deletions and for running queries in the presence of
deletions are very similar to the described case of insertions. When deleting a
triple, we “insert” the triple into the workspace and differential indexes with a
deletion flag. During queries, the X{/“"9 operator interprets this flag and behaves
like an anti-join when encountering deleted triples, eliminating matching triples
on the other side. When merging the differential indexes into the main indexes,
triples marked for deletion cause the deletion of their counterparts in the main
indexes and are discarded after the entire merge completes.

While deleting the triples themselves is simple, maintaining a compact string
dictionary is more challenging. Ideally we want to eliminate strings that are
no longer referenced by any triple, to avoid monotonic growth of the dictionary.
When deleting a single triple we do not know a priori if the strings used by the
triple occur in any other triples. We can find this out by checking the fully
aggregated indexes of RDF-3X, which implicitly give the number of occurrences
for each string, but checking these for each triple would be expensive. Fortunately
we do not have to check for each triple, but only when we eliminate an entry
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from an aggregated unary index. Assume that we want to delete the SPO triples
(1,2,3) and (1,4,5). When merging the corresponding differential index entries
into the main indexes, the aggregated unary index for S will be looked up with
value S = 1. The count entry for 1 is decreased by two to reflect two eliminated
triples. Only if the count reaches zero the whole entry is eliminated, and only in
this case do we check if the value 1 occurs in the other two unary indexes for P
and O. If none of the unary indexes signals the presence of the value 1, we can
remove 1 from the dictionary.

Alternatively to the immediate checking of all unary indexes, we could periodi-
cally run a garbage collector to eliminate strings with zero references. This can be
implemented by a single merge scan over the three unary aggregation indexes and
the string dictionary. It depends on the data and the update behavior whether
this is more efficient or not. If we assume that deletions are very infrequent, it is
cheaper to perform the checks immediately as described above.

7.3 Support for Atomicity and Weak Isolation

The above procedures provide proper isolation between individual operations,
but no transactional ACID guarantees for entire blocks of operations. While
full-fledged transactions are beyond the scope of this paper, we have successfully
added support for the atomicity of programs and a weak form of isolation level
among concurrent program executions.

In the first stage of our staging architecture, programs that contain only
update operations (and no queries) are automatically isolated by using their
private workspaces. A program’s termination can thus be easily viewed as a
“commit point”. Alternatively, a program can specify multiple commit points
during its run-time; each commit point prompts a merge with the globally shared
differential indexes. During merges with the differential indexes and with the
main indexes, the consistency of the index trees is guaranteed by latching and
the RCU mechanism. When a program merges its workspace into a differential
index, it latches index leaf pages in a lock-coupling manner, always holding latches
for two successive leaf pages at the same time. As all write programs have the
very same page access order during such a merge, the lock-coupling technique
guarantees serializability between such write-only programs. The merges are
naturally idempotent, so we obtain crash-resilience for free: an interrupted merge
can simply be restarted and would then ignore inserted triples that are already
present in the merge target.

Programs that issue only queries can run against both the differential indexes
and the main indexes without any locking or latching (even the latter is avoided
because of the RCU mechanism for concurrent writers). Of course, it is impossible
to guarantee transactional serializability between readers and writers this way,
and even snapshot isolation is not feasible this way. However, no query will
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ever see a non-committed update, as merges from workspaces into differential
indexes start only after commit points. Thus, our staging architecture provides
the read-commaitted isolation level, which seems sufficient for many applications
outside enterprise-business I'T. This property also holds for programs that mix
queries and updates: all their queries see committed data and their updates are
properly serialized against concurrent read-write programs.

Overall, the deferred update handling has the following salient properties:

1. Query execution times are unaffected if there are no updates that satisfy
any triple patterns in the query, and have very small overhead otherwise.

2. Updates to the main indexes are aggregated into efficient bulk operations.

3. We provide support for atomic batches of update operations. Queries never
have to wait; they run at the read-committed isolation level (which is weaker
than serializability or snapshot isolation).

We will report on performance measurements for updates in Section 8.5.
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8 Evaluation

8.1 (General Setup

For evaluating the performance of RDF-3X, we used three large datasets with
different characteristics and compared the query run-times to other approaches
(discussed below). All experiments were conducted on a Dell D620 PC with a 2
Ghz Core 2 Duo processor, 2 GBytes of memory, and running a 64-bit Linux 2.6.24
kernel. For the cold-cache experiments we used the /proc/sys/vm/drop_caches
kernel interface to drop all filesystem caches before restarting the various systems
under test. We repeated all queries five times (including the dropping of caches
and the system restart) and took the best result to avoid artifacts caused by OS
activity. For warm caches we ran the queries five times without dropping caches,
again taking the best run-time.

Our primary comparison is against the column-store-based approach presented
in [1], which has already been shown to be highly superior to all other DBMS-
based approaches in that paper. We implemented the approach as described in
[1], but used MonetDB 5.2.0 [34] as a backend instead of C-Store because C-Store
is no longer maintained and does not run on our hardware/OS platform. The
C-Store web page [9] suggests using MonetDB instead, and MonetDB worked fine.
Note that our setup uses substantially weaker hardware than [1]; in particular
the hard disk is about a factor of 6 slower than the very fast RAID used in [1],
transfering ca. 32 MB/s in sequential reads. Taking this factor of 6 into account,
the performance numbers we got for MonetDB are comparable to the C-Store
numbers from [1]. For one query (Q6) MonetDB was significantly faster than a
factor of 6 (14s vs. 10s), while for another (Q7) significantly slower (61s vs. 1.4s),
but overall MonetDB performed as expected given the slower hard disk.

As a second opponent to RDF-3X, we used PostgreSQL 8.3 as a triple store
with indexes on the string dictionary and on (subject, predicate, object), (predicate,
subject, object), and (predicate, object, subject). This emulates a Sesame-style
8] storage system. We also tried out the current release of a leading commercial
database system with built-in RDF support, but could not obtain acceptable
performance anywhere near the run-times of the other systems. When using its
own RDF query language and despite trying several of its auto-tuning options, it
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Barton Yago Librarything

Load time | DB size | Load time | DB size | Load time | DB size

RDF-3X 13 min | 2.8 GB 25 min | 2.7 GB 20 min | 1.6 GB

MonetDB 11 min | 1.6 GB 21l min | 1.1 GB 4 min | 0.7 GB

PostgreSQL 30 min | 8.7 GB 25 min | 7.5 GB 20 min | 5.7 GB

Figure 8.1: Database load after triple construction

performed significantly slower than the PostgreSQL triple store even for simple
queries, and failed to execute more complex queries in reasonable time. We
therefore omitted it from the presentation.

In addition to these DBMS-based opponents, we tried several systems from the
semantic web community that are available as open-source code. Unfortunately
none of them scaled to the dataset sizes that we used. We first tried the popular
Jena2 system [63] which came out of the HP Labs Semantic Web Programme. We
used Jena version 2.5.5 with the SDB 1.0 wrapper and Apache Derby 10.3.2.1, but
were unable to import any of our three datasets in 24 hours. Judging from the file
growth, the system became continuously slower and did not seem to terminate in
a reasonable time. We also tried Yars2 [22, 65], but again were unable to import
any of our datasets in 24 hours. Finally, we tried Sesame 2.0 [8, 39], which is
supposed to be one of the fastest semantic web systems. Sesame 2.0 was able to
import the Barton dataset in 13 hours, but then needed ca. 15 minutes for each
of the first two queries and crashed due to excessive memory usage for the more
complex queries.

Note that both MonetDB and RDF-3X could import the data sets in less than
half an hour, and could run the queries in the order of seconds. Other semantic
web approaches usually assume that the RDF data fits into main memory, which
is not the case here. All experiments below therefore only consider RDF-3X, the
column-stored-based approach on top of MonetDB, and the PostgreSQL-based
triples store.

Independently of the database system, each of the datasets discussed below
is first brought into a factorized form: one file with RDF triples represented
as integer triples and one dictionary file mapping from integers to literals. All
three systems use the same files as inputs, loading them into fact table(s) and
dictionary. The load times of this second phase and the database sizes are shown
in Figure 8.1. The MonetDB sizes are the initial sizes after loading. After running
the benchmark the sizes were 2.0 / 2.4 / 6.9 GB. Apparently MonetDB builds
some index structures on demand.
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8.2 Barton Dataset

For the first experiment we used the Barton Library dataset and the queries
proposed as a benchmark in [1]. We processed the data as described in [1],
converting it into triple form using the Redland parser, and then imported the
triples into our RDF-3X system. In [1] the authors pruned the data due to C-Store
limitations (they dropped all triples containing strings longer than 127 bytes and
some triples with a huge number of join partners). We left the complete data as
it was and imported it directly into all three systems. Overall the data consists of
51,598,328 distinct triples, and 19,344,638 distinct strings. The original data was
4.1 GB in RDF (XML) format, 7.7 GB in triple form, and 2.8 GB in our RDF-3X
store including all indexes and the string dictionary.

\ Q1 \ Q2 \ Q3 \ Q4 \ Q5 \ Q6 \ Q7 \ geom. mean

cold caches

RDF-3X 0.14 3.10 | 31.49 | 11.57 | 18.82 2.75 | 32.61 5.9

MonetDB 566 | 11.70 | 54.66 | 34.77 | 80.96 | 14.14 | 61.52 26.4

PostgreSQL | 28.32 | 181.00 | 291.04 | 224.61 | 199.07 | 207.72 | 271.20 167.8
warm caches

RDF-3X 0.001 1.17 2.22 1.58 0.49 1.20 1.26 0.4

MonetDB 0.65 1.41 3.63 9.59 | 77.53 1.86 2.48 3.8

PostgreSQL | 8.15 | 174.41 | 286.76 | 26.80 8.77 | 206.46 | 231.79 64.3

Figure 8.2: Query run-times in seconds for the Barton dataset

We used the queries from [1] for our experiment, but as they were given in
SQL we had to reformulate them in SPARQL for RDF-3X. Appendix A shows all
queries. The results of our measurements are shown in Figure 8.2. We include also
the geometric mean of the query set, which is often used as a workload-average
measure in benchmarks (e.g., TPC) and is more resilient to extreme outliers than
the arithmetic average.

The first observation is that RDF-3X performs much better than MonetDB
for all queries, and MonetDB itself performs much better than PostgreSQL (as
reported in [1]). We first discuss the results for RDF-3X vs. MonetDB. When
comparing the cold-cache times and the warm-cache times, it becomes clear that
disk I/O has a large impact on the overall run-times. RDF-3X simply reads
less data due to its highly compressed index structures, therefore outperforming
MonetDB in the cold-cache case by a typical factor of 2 to 5, and sometimes
by more than 10. In the warm-cache case the differences are typically smaller
but still substantial (factor of 2, sometimes much higher). An interesting data
point is query Q4, which is relatively expensive in terms of constructed join pairs,
and where RDF-3X performs very well even in CPU-dominated warm-cache case.
Furthermore, we observe that a third critical aspect besides I/O and CPU usage is
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memory consumption. Query Q5 has a very large intermediate result. MonetDB
apparently materializes parts of these intermediate results in main memory. As a
consequence only few database pages can be buffered, which significantly hurts
warm-cache behavior.

PostgreSQL has problems with this dataset, due to the nature of the queries for
this benchmark. Nearly all queries are aggregations queries (usually aggregating
by predicate), and the result cardinality is large which entails expensive dictionary
lookups. For other, more natural, kinds of RDF queries, PostgreSQL performs
much better, as we will see in the next two subsections.

To get an idea how a Yars2-style system could scale we experimentally disabled
all aggregated indices. This increased the geometric means to 9.52s (cold) and
1.04s (warm), which is significantly slower than RDF-3X. This is still much faster
than the other systems, though, in particular due to our runtime system and
query optimizer.

8.3 Yago Dataset

The Barton dataset is relatively homogeneous, as it describes library data. As
a second dataset we therefore used Yago [56] which consists of facts extracted
from Wikipedia (exploiting the infoboxes and category system of Wikipedia) and
integrated with the WordNet thesaurus. The Yago dataset contains 40,114,899
distinct triples and 33,951,636 distinct strings, consuming 3.1 GB as (factorized)

triple dump. RDF-3X needs 2.7 GB for all indexes and the string dictionary.

As queries we considered three different application scenarios — entity-oriented,
relationship-oriented, and queries with unknown predicates — and derived eight
benchmark queries, shown in Appendix A. These queries are more "natural” than
the Barton queries, as they are standard SPARQL without any aggregations and
with explicitly given predicates. On the other hand, the queries are much larger
(requiring more many-to-many joins) and thus more difficult to optimize and
execute.

| A1] A2] A3] B1| B2| B3| (1| (2] geom. mean

cold caches

RDF-3X 029 | 0.28 | 1.20| 0.28 0.99 | 0.33 2.23 4.23 0.73

MonetDB 43.55 | 44.13 | 55.49 | 62.94 | 182.39 | 72.22 | 101.66 | 157.11 78.29

PostgreSQL | 1.62 | 6.31 | 546 | 3.04 | 117.51 | 4.71 | 29.84 | 59.64 10.66
warm caches

RDF-3X 0.02| 0.02| 0.02] 0.01 0.05| 0.01 0.61 1.44 0.04

MonetDB 36.92 | 32.96 | 34.72 | 49.95 | 64.84 | 52.22 | 84.41 | 131.35 54.62

PostgreSQL | 0.08 | 0.43 | 0.20 | 0.11 7.33 | 0.12 0.31 | 50.37 0.56

Figure 8.3: Query run-times in seconds for the Yago dataset
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The results are shown in Figure 8.3. Again, RDF-3X clearly outperforms the
other two systems for both cold and warm caches, by a typical factor of 5 to
10. Here PostgreSQL performed much better than MonetDB. This is most likely
caused by the poor join orderings in MonetDB. The warm-cache run-times are
nearly as high as the cold-cache times, which indicates that MonetDB creates
large intermediate results.

In general this dataset is much more challenging for the query optimizer, as
queries are more complex and selectivity estimates are important. While testing
our system, we noticed that selectivity mis-estimations can easily cause slowdown
by a factor of 10-100 on this dataset. RDF-3X shows excellent performance
regarding both the run-time execution and the choice of execution plans by the
optimizer.

8.4 LibraryThing Dataset

As a third dataset we used a partial crawl of the LibraryThing book-cataloging
social network [29]. It consists of 9989 users, 5,973,703 distinct books (personally
owned by these users), and the tags that the users have assigned to these books.
Overall the dataset consists of 36,203,751 triples and 9,352,954 distinct strings,
consuming 1.8 GB in its original form and 1.6 GB in RDF-3X. One particularity
of this dataset is that is has a heterogeneous link structure. In our RDF represen-
tation, each tag is mapped to a predicate, linking the user to the book she tagged.
As the number of different tags is very large, the dataset contains 338,824 distinct
predicates, whereas the other two datasets contained only 285 and 93 distinct
predicates, respectively. While other mappings onto RDF may be possible, we
used this extremely non-schematic approach as a stress test for all competing
systems.

This data makes compression more difficult for RDF-3X, and causes serious
problems for MonetDB. MonetDB was unable to handle 338,824 tables, creating
millions of files in the file system and swapping all the time. We therefore used a
hybrid storage scheme for MonetDB for this dataset. We partitioned the 1000
most commonly used predicates as described in [1], and placed the remaining
triples (ca. 12%) in one big triples table. We again constructed three kinds of
queries: book-oriented, user-oriented, and navigating book and user chains (see
Appendix A). In contrast to the Yago dataset, there were few predicates that
occurred in millions of triples, which lowered the impact of join-ordering decisions.
On the other hand, the data itself is very inhomogeneous so that selectivities are
more difficult to predict.

The results are shown in Figure 8.4. RDF-3X performs very well, outperforming
the opponents by a typical factor of at least 5 and more than 30 in some cases.
Between MonetDB and PostgreSQL there is no clear winner. Overall MonetDB
seems to perform better, but it crashed two times. It refused to execute query B3
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| Al] A2 A3| Bl| B2| B3| Cl1 | C2 | geom. mean
cold caches
RDF-3X 0.28 | 1.01 21.85(0.14 [ 0.34 | 4.17 0.28 1.21 0.89
MonetDB 2.14 | 1.41 | 1220.09 | 1.63 | 2.20 * 1.66 | >15min/x >8.16
PostgreSQL | 20.78 | 1.43 | 715.64 | 0.88 | 2.13 | > 8h | 5108.01 1031.63 >93.91
warm caches
RDF-3X 0.05 | 0.15 0.95]0.010.12| 1.61 0.03 0.26 0.13
MonetDB 0.82 | 0.77 | 1171.82 | 0.56 | 0.63 * 0.59 | >15min/x >4.39
PostgreSQL | 12.31 | 0.05 | 611.41 | 0.02 | 0.66 | > 8h | 5082.34 1013.01 >30.43

x system crashed, see description

Figure 8.4: Query run-times in seconds for the LibraryThing dataset

’ batch size | max. differential index size ‘

100,000 | 500,000 | 1,000,000
100,000 | 23,059 | 25,391 | 24,701
500,000 25,972 | 23,407

1,000,000 23,490

Figure 8.5: Insertion rates in triples/second for varying batch and differential
index sizes

("too many variables”), probably because it included three patterns with variable
predicates (and thus at least 3000 scans). In query C2 it crashed after 15 minutes
due to lack of disk space, as it had materialized a 20 GB intermediate result
(which is more than 10 times the size of the whole database).

The query A3 stands out by its high run-times. It performs many joins with
relatively unselective predicates (book authors, etc.), which are expensive. The
other "difficult” queries (B3, C1, C2) are not that difficult per se, they just
require the right choice of execution plans. B3, for example, finds all users with
books tagged as English, French, and German. PostgreSQL starts this query by
collecting all pairs of books a user has, which is prohibitively expensive. The
optimizer of RDF-3X, on the other hand, chooses a plan that collects for each tag

the users with such books and then joins the results, which is much more efficient.

8.5 Updates

We studied the update performance by “steady state” measurements as follows.

Inserting new triples into an empty or very small database is clearly cheap as the
merge is trivial and the database fits into main memory. We therefore took the
full database for the Barton dataset, which does not fit into the available memory
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on our test machine, and initiated insert operations for all triples of the dataset.
As these very same triples already exist in the main indexes, the merge process
actually discards the new triples. But initially, the new triples are added to a
workspace and the differential indexes. Moreoever, the attempted merging into
the main indexes touches the entire database, causes a recomputation of every
index page, and we even force the writing of the “modified” pages back to disk.
This way, we emulate a heavy upload load, while keeping the overall database size
constant.

We ran this experiment with a single (single-threaded) program and varied
two parameters: 1) the batch size, i.e., the number of inserted triples after which
we periodically generate a “commit point” and merge the workspace into the
differential indexes, and 2) the maximum differential index size at which we a
force a merge into the main indexes (measured in numbers of indexed triples).
Note that having a batch size larger than the maximum differential index hardly
ever makes sense (and would only cause additional merges but no fundamental
change of disk I/O behavior), so we ignore it here.

The throughput results of this experiment are shown in Figure 8.5. We consis-
tently achieved a sustained throughput of more than 20,000 inserts per second,
which is remarkably high given that RDF-3X is primarily designed and optimized
for queries. The differences in insertion rates for different parameter settings are
not that large, but exhibit trends that we confirmed by additional experiments on
different machines. First, increasing the maximum differential index size obviously
tends to improve the performance. Second and also unsurprisingly, inserting in
larger batches tends to be faster than inserting in many smaller batches. But
there are exceptions to these trends: in our specific setup, a maximum differential
index size of 500,000 triples outperformed the index with 1,000,000 triples. The
reason for this is memory pressure. Both the differential index and the page buffer
manager require memory; by increasing the size of the differential index we reduce
the available buffer space and thus incur more disk I/0’s during index merges.
The optimal size of the differential index depends on the machine resources and
configuration. In experiments on a machine with more main memory, the larger
index was indeed faster, but as the differences are not that large one can select
a conservative size (e.g., 100,000 triples) and obtain good performance without
affecting the rest of the system. Ideally the buffer manager would keep track of
the I/O rate and adjust the space available for the differential index dynamically,
but such auto-tuning is beyond the scope of this work.

Overall the insertion rates in Figure 8.5 are fairly good. For comparison, the
insertion rates reached by our initial database bulk load are about 80,000 triples
per second, which is a factor of 3 to 4 better. But our setting here is much more
complex than the initial bulk load, as we have to integrate the changes into the
existing database (which has to be read for the integration and does not fit into
main memory). Therefore, a slowdown by 3x seems acceptable. Note that our
experiment is a stress test, as every inserted triple already exists and we therefore

43



no updates | irrelevant updates | relevant updates
1 thread | 0.63s 0.63s 0.69s
2 threads | - 0.64s 0.70s

Figure 8.6: Effect of updates on warm-cache query performance

have to read and touch everything. Inserting completely new data that is just
appended and not combined with the existing triples is much faster and achieves
more or less the same throughput as the initial bulk load procedure.

Next we studied the effect of updates on query performance. The first ob-
servation is that the differential index has nearly no impact on the cold-cache
case, as the queries are then dominated by I/O costs and the differential index
is in main memory. We therefore concentrate on the warm-cache case. We ran
the query (?a,type,?b), (?a,type,?c) (a simplified version of the query Q2 of the
Barton benchmark) in different scenarios. We used a relatively simple query, as
in more complex queries the CPU costs of joins and aggregations potentially hide
the differences that we want to measure.

The first scenario is the static database, running the query without any updates.
In the second scenario, we performed updates in parallel to the query, but ensured
that the updates do not match any condition of the query. In the third and
last scenario, we inserted query-relevant triples (which satisfy at least one query
condition). The new triples used ids that follow those of any existing triple in the
sort order, thus forcing the merge joins with workspaces and differential indexes
to continue to the end. For all three scenarios, we ran a single-threaded and a
two-threaded experiment (on a two-cores machine with true parallelism). With a
single thread, query and update operations are alternated over a long time period.
With two threads, one thread keeps repeating the query while the other performs
update operations in parallel. The single-thread experiment studies the overhead
of having to consider workspaces and differential indexes by additional merge
joins in query processing. The two-threads experiment additionally reflects the
overhead of maintaining differential indexes in parallel to ongoing queries. The
batch size and maximum differential index size were set to 500,000. We report
the median of the measured response times.

The results are shown in Figure 8.6. Our extended query processor discussed
in Section 7.1 performs extremely well in the case of query-irrelevant updates.
The first two scenarios have almost identical run-times. The third scenario, on the
other hand, exhibits slightly increased query response times. However, the overall
CPU overhead of merge joins with the differential indexes is small. Although
queries never have to wait for locks or latches, there is some moderate amount of
CPU and I/O contention that leads to query response times increasing by about
10 percent. This is a very moderate overhead for a fairly demanding stress-test
experiment.
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9 Conclusion

This paper has presented the RDF-3X engine, a RISC-style architecture for exe-
cuting SPARQL queries over large repositories of RDF triples. As our experiments
have shown, RDF-3X outperforms the previously best systems by a large mar-
gin. In particular, it addresses the challenge of schema-free data and, unlike its
opponents, copes very well with data that exhibits large diversity of property
names. The salient features of RDF-3X that lead to these performance gains
are 1) exhaustive but very space-efficient triple indexes that eliminate the need
for physical-design tuning, 2) a streamlined execution engine centered around
very fast merge joins, 3) a smart query optimizer that chooses cost-optimal join
orderings and can do this efficiently even for long join paths (involving 10 to 20
joins), 4) a selectivity estimator based on statistics for frequent paths that feeds
into the optimizer’s cost model. In addition, although RDF database are most
likely query-intensive, RDF-3X provides decent support of updates, for both incre-
mental loading in batched mode and individual insert or delete operations. This
is achieved by a staging architecture with deferred index maintenance, provides
good update throughput, and incurs only small overhead on concurrent queries.

Our future work includes various extensions and optimizations. First, we plan
to further improve the query processor and optimizer (e.g., based on magic sets)
and provide support for RDF search features that go beyond the current SPARQL
standard. Along the latter lines, one direction is to allow more powerful wild-card
patterns for entire paths, in the spirit of the XPath descendants axis but for graphs
rather than trees. Proposals for extending SPARQL have been made [3], but there
is no implementation yet. Second, we are interested in providing ranked query
results, based on application-specific scoring models. This calls for top-k query
processing and poses challenging issues for algorithms and query optimization.
Third, full SPARQL support requires some additional information, in particular
typing information. We feel that this can be included in the dictionary, but
determining the best encoding relative to runtime performance and compression
rate needs more work. Fourth and last, we believe that our current support
for atomicity and read-committed isolation can be further extended towards
transactional guarantees. In particular, we want to pursue adding versioning and
snapshot isolation to the RDF-3X engine.
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Appendix A SPARQL Queries

For completeness we include the SPARQL queries used in our evaluation.

Barton Dataset. As the queries in [1] were given in SQL, we had to refor-
mulate them in SPARQL. We abbreviate some constants here, the queries are
discussed in [1]. We had to extend the SPARQL projection clause a bit to get
equivalent queries. count is like distinct but includes the number of occurances.
duplicates is like count but only returns bindings that are produced at least twice.

Q1: select count ?c where { 7a a 7c }

Q2: select count ?bp where { 7as a <Text>; ?bp 7bo. filter (?bp in <predicate
list>)}

Q3: select duplicates ?bp ?bo where { 7as a <Text>; 7bp 7bo. filter (?bp in
<predicate list>) }

Q4: select duplicates 7bp ?bo where { 7as a <Text>; ?bp 7bo; <language>
<is0639-2b/fre>. filter (?bp in <predicate list>) }

Q5: select 7as ?co where { 7as <origin> <marcorg/DLC>; <records> 7bo.
?bo a ?co. filter (7co |= <Text>) }

Q6: select count ?ap where { {7as a <Text>} union {7as <records> [[; a
<Text>} ?as 7ap [|. filter (?ap in <predicate list>)}

QT: select 7as 7bo 7co where { 7as <point> "end”; <encoding> ?bo; a ?co }

Yago Dataset. We grouped the queries thematically into three groups. The
first group consists of oriented facts, e.g.: ”scientists from Switzerland with a
doctoral advisor from Germany” (A1l). The second group is relationship oriented,
e.g. "two actors from England playing together in the same movie” (B1). The
third group examines relationships with unknown predicates, e.g. ”two scientists
related to the same city” (C1).

A1: select 7gn ?fn where { 7gn <givenNameOf> ?p. ?fn <familyNameOf> 7p.
7p <type> "scientist”; <bornlnLocation> ?city; <hasDoctoralAdvisor> 7a. 7a
<bornInLocation> 7city2. ?city <locatedIn> ”Switzerland”. ?city2 <locatedIn>
?Germany”. }

A2: select 7n where { 7a <isCalled> 7n; <type> "actor”; <livesIn> ?city;
<actedIn> ?ml; <directed> 7m2. Zcity <locatedIln> 7s. 7s <locatedIn>
"United_States”. ?ml <type> "movie”; <producedInCountry> ”Germany”. ?m2

o1



<type> "movie”; <producedInCountry> ”Canada”. }

A3: select distinct 7n 7co where { 7p <isCalled> n. { ?p <type> "actor” }
union { 7p <type> "athlete” } ?p <bornInLocation> 7c. ?c¢ <locatedIn> 7s. 7s
<locatedIn> 7co. 7p <type> 7t. filter(?t reaches ”politician” via <subClassOf>)

}

B1: select distinct ?nl ?n2 where { 7al <isCalled> 7nl; <livesIn> 7cl;
<actedIn> ?movie. 7a2 <isCalled> 7n2; <livesIn> ?7¢2; <actedIn> ?movie. 7cl
<locatedIn> "England”. 7¢2 <locatedIn> ”"England”. filter (7al != 7a2) }

B2: select 7nl 7n2 where { 7pl <isCalled> 7"nl; <bornlnLocation> 7city;
<isMarriedTo> ?p2. 7p2 <isCalled> 7n2; <bornlnLocation> ?city. }

B3: select distinct 7nl 7n2 where { 7nl <familyNameOf> 7pl. "n2 <family-
NameOf> 7p2. 7pl <type> "scientist”; <hasWonPrize> 7award; <bornInLoca-
tion> 7city. 7p2 <type> "scientist”; <hasWonPrize> 7award; <bornlnLocation>
Tcity. filter (7pl 1= 7p2) }

C1: select distinct ?nl ?n2 where {7nl <familyNameOf> 7pl. 7n2 <family-
NameOf> 7p2. 7pl <type> "scientist”; [| “city. 7p2 <type> "scientist”; [| “city.
Tcity <type> <site> filter (7pl != 7p2) }

C2: select distinct ?7n where { 7p <isCalled> n; [] 7cl. [] 7c2. 7cl <type>
<village>; <isCalled> ”London”. 7¢2 <type> <site>; <isCalled> "Paris”. }

LibraryThing Dataset. Similar to the Yago setting we used three query
groups. First queries on books (e.g., Al "books tagged with romance, love,
suspense, mystery” ), second queries on users (e.g., Bl "users who like crime novels
and Arthur Conan Doyle and have friends who like romances and Jane Austen”),
and third queries with chains over books and users (e.g., C1 "books tagged with
romance by users who have friends or friends of friends who have tagged books
with documentary which have also been tagged with thriller”).

A1: select distinct 7title where { 7b <hasTitle> 7title. [] <romance> 7b. |]
<love> ?b. [| <suspense> ?b. [| <mystery> 7b. }

A2: select distinct 7title where { 7b <hasTitle> ?title. 7u <romance> 7b;
<love> 7b; <suspense> 7b. }

A3: select distinct 7title where { 7b <hasTitle> 7title; <hasAuthor> 7a. 7u
<mystery> 7b; <romance> [|. ?b2 <hasAuthor> 7a. [| <children> 7b2. }

B1: select distinct 7u where { 7u <crime> [|; <hasFavoriteAuthor> ” Arthur
Conan Doyle”; <hasFriend> 7f. ?f <romance> [|; <hasFavoriteAuthor> " Jane
Austen” . }

B2: select distinct ?7u where { { 7u <documentary> ?bl; <suspense> 7bl
} union { 7u <biography> ?b2; <suspense> ?b2 } union { ?u <documentary>
?b3; <mystery> 7b3 } union { 7u <biography> ?b4; <mystery> 7b4 } }

B3: select distinct 7u where { 7u [|] 7bl; [] 7b2; [] 7b3. [] <english> ?b1. []
<german> ?b2. [| <french> 7b3. }

C1: select distinct 7u where { { 7u <romance> 7bl; <hasFriend> ?7fl. ?f1
<biography> 7b2. [| <thriller> 7b2. } union { 7u <romance> 7bl. <hasFriend>
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?f1. 7fl <hasFriend> 7f2. ?f2 <biography> 7b2. [] <thriller> 7b2. } }

C2: select distinct 7u 7u2 where { 7u <hasFavoriteAuthor> 7al; <america>
J; <hasInterestingLibrary> ?u2. 7bl <hasAuthor> ?al. [] <europe> ?bl. 7u2
<hasFavoriteAuthor> ?7a2; <europe> [|]. 7b2 <hasAuthor> 7a2. [| <america>
7h2. }
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