
Key-Value Stores

Iztok Savnik, FAMNIT

November, 2022.

1

Literature

Paper:

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapa, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall and Werner Vogels, Amazon’s Highly‐
Available Key‐Value Store, SOSP, 2007.

Presentatiton:

Je Avery, CS 848: Modern Database Systems, 2015.ff

Outline

• Motivation
• Requirements
• Design
• Architecture
• Implementation

Motivation: KV stores

• “Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e- ‐commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. “

• “Customers should be able to view and add items to their shopping
cart even if disks are failing, network routes are flapping, or data
centers are being destroyed by tornados.“

• “There are always a small but significant number of server and
network components that are failing at any given time. As such
Amazon’s software systems need to be constructed in a manner
that treats failure handling as the normal case without impacting
availability or performance.”

 - DeCandia (2007)

Motivation: RDBMS Replication

“It is di cult to create redundancy and parallelism with ffi
relational databases, so they become a single point of
failure. In particular, replication is not trivial.”

DynamoDB Approach

• Challenge
– Designing a highly- available system that can scale to millions

of users, while meeting service‐level SLA.

• Problem
– Traditional systems perform synchronous replica coordination

in order to provide strongly consistent data, at the cost of
availability.

– Network and hardware failures mean that strong consistency
and high data availability cannot be achieved simultaneously.

• Solution
– Sacrifice strong consistency for high availability.
– Give users the “ability to trade‐o cost, consistency, durability ff

and performance, while maintaining high ‐availability.”

Requirements: System
• ACID

– ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties
that guarantee that database transactions are processed reliably.

– Dynamo targets applications that operate with weaker consistency (the
“C” in ACID) if this results in high availability.

• Query Model
– Simple read and write operations to a data item that is uniquely identified

by a key.

– No operations span multiple data items and there is no need for relational
schema.

• E ciency ffi
– The system needs to function on a commodity hardware infrastructure.

– Services must be able to configure Dynamo to consistently achieve
latency and throughput requirements.

• Facing
– Dynamo is used only by Amazon’s internal services.

Requirements: SLA

• Service Level Agreements

• Contract where a client and a
service agree on system‐
related characteristics.
– Promises bounded time for a

response.

• Every dependency in the
platform needs to deliver with
even higher bounds.

• At Amazon, SLAs are
expressed and measured at
the 99.9th percentile of the
distribution (i.e. the edge‐
cases can represent critical
customers).

Design: Distributed storage

• Remove the
database as the
bottleneck.

• Distributed storage
nodes share the
burden.

• Requests are routed
to the storage node
holding the data.

Design: Optimistic Replication

• Optimistic replication allows changes to
propagate asynchronously. Availability is
increased, but the risk is that you have multiple,
conflicting versions of data in the system.

• Conflicts aren’t prevented, but resolved.
– Notion of an “eventually consistent data store” and

delaying reconciliation.
– When to resolve: resolving conflicts during reads, not

writes (e.g. shopping cart example, cannot reject
writes).

– Who to resolve: tradeo between system and ff
application level resolution.

Design: Key Principles

• Incremental scalability: Dynamo should be able to scale
out one storage host (henceforth, referred to as “node”) at
a time

• Symmetry: Every node in Dynamo should have the same
set of responsibilities as its peers; there should be no
distinguished node or nodes that take special roles or
extra set of responsibilities.

• Decentralization: An extension of symmetry, the design
should favor decentralized peer- to ‐peer techniques

• Heterogeneity: The system needs to be able to exploit
heterogeneity (i.e. work allocated is proportional to the
characteristics of the hardware).

Architecture: Dynamo Techniques

Problem Technique

Partitioning and replication Consistent hashing (notions of “eventually

 consistent” and delayed reconciliation).

Consistency Object versioning. Quorum- ‐like techniques
 used to maintain consistency.

Recovering from failures Merkle trees used to quickly detect
 inconsistencies.

Membership Gossip- ‐based membership protocol, also
 used for failure detection.

Decentralized Minimal need for manual administration
 (i.e. no manual partitioning required)

Architecture: System Interface

• Focus on simple query model.
• Key- value storage of objects:

– get() : for a given key, returns a single object or list of
objects with their context (metadata including version).

– put() : writes replicas (versions) to disk.

Architecture: Partitioning

• Scale incrementally by
dynamic partitioning across
all available nodes.

• Consistent hashing:
the output range of the hash
function returns is a bounded,
circular region.
– Newly added nodes are

randomly assigned a
key/positon.

– Nodes are responsible for the
values ranging from the
previous node to themselves.

Partitioning: Virtual Nodes

• The Problem with Consistent
Hashing:
– Random positioning leads to

non- uniform load distribution

– Oblivious to the heterogeneity in
the performance of nodes

• Solution:
– Each node gets assigned to

multiple positions in the ring
(positions called tokens)

– These nodes are also called
"virtual nodes"

Partitioning: Virtual Nodes

• Solution: (cont.)
– This allows for failover when a

node is (un)available, or load
rebalancing in extreme cases.

• node unavailable: the load is
evenly dispersed across the
remaining nodes.

• node available again (or new): it
accepts a roughly equivalent
amount of load from each of the
other available nodes

• # of virtual nodes assigned based
on capacity and physical node
infrastructure

– Virtual nodes are easier to
reallocate!

Partitioning: Replication

• To achieve high- ‐reliability,
Dynamo replicates data across
nodes.
– Each data item is replicated at N

hosts, where N is a parameter
configured “per-instance”!

– Each key is assigned a
“coordinator” node that is
responsible for handling
replication.

– The coordinator, in turn, handles
replication for all items that fall
within its range.

– The coordinator replicates these
keys at the N- 1 clockwise
successor nodes in the ring.

Partitioning: Replication

– This list of key‐owners is called
the preference list (and is
circulated around the system).

– Every node can determine which
nodes should be in this list for any
particular key

– Since virtual nodes used: N succ.
positions may be owned by less
than N distinct physical nodes

– The preference list for a key
skipps positions so that list
contains only distinct physical
nodes

Architecture: Consistency

• Dynamo guarantees “eventual consistency”.
Updates are propagated asynchronously, so there’s
no guarantee that replicas are always in- sync.

• Multiple versions of a particular key-value pair may
exist at any given time (e.g. one node returns a value
before a replica has propagated an update).

• To handle this use data versioning:
– Each modification results in a new version being created.
– Most of the time, new versions replace old versions.
– When versions cannot be reconciled automatically, vector

clocks are used to order the versions and atempt to
reconcile version histories.

Consistency: Vector Clocks

Consistency: Vector Clocks

• A vector clock is effectively a
list of (node, counter) pairs.

• One vector clock is
associated with every version
of every object.

• Having two versions of object
we can determine:
– Parallel branches or causal

ordering

– Counters of Vc1 are ≤ than the
correlated counters of Vc2 then
Vc1 is an ancestor of Vc2

– Otherwise, parallel updates:
object versions in conflict and
require reconciliation.

Consistency: Vector Clocks

• Upon update request:
– Must specify a version (from the context that it obtained during

the initial get() operation).

– Any updates to data will result in the node creating a new
version (with a new vector clock timestamp).

• Upon read request:
– May reconcile and collapse versions

– If multiple branches that cannot be (syntactically) reconciled, it
will return all objects at leaves with version info in the contex

Architecture: get() and put()

• First base case.
• Normal operations look like this:

– get() and put() operations from the application need to
be sent to the appropriate node.

– Two strategies to locate this node:
• Allow a load- balancer to select the appropriate node
• Use a partition- aware library that knows which nodes are

responsible for a given key. This pushes responsibility for node
selection onto the application.

– A node handling a read or write operation is known as
the coordinator. Typically, this is the first among the
top N nodes in the preference list.

Handling Failures: Data Consistency

• What happens when storage nodes disagree?
– Dynamo uses a quorum‐based consistency protocol. This

means that a number of storage nodes must “agree” on
result.

• For a series of N nodes, there are two configurable
values for a given request:
– R : the minimum number of nodes that must participate in a

read request
– W : the minimum number of nodes that must participate in a

write request

• Use:
– R + W > N : Quorum

– R + W ≤ N : Not‐Quorum (but better latency!)

Handling Failures: Quorum Use

• Examples
– put(): The coordinator node will

• Create a new version.
• Send the data to N healthy nodes.
• If W- 1 respond, treat the write as successful.

– get(): The coordinator node will
• Request versions of that data from N highest ‐ranked

reachable nodes in the preference list.
• Waits for R responses before returning the result to the client.

If it receives multiple versions, it will reconcile and write- back a
new version (superseding the previous ones).

Handling Failures: Hinted Hando ff
Dynamo uses a “sloppy quorum”, where the first N
available, healthy nodes are used to determine quorum.
This increases durability for writes.
• Hinted handoff occurs when a node is unavailable,

and the next replica handles the request. This node
tracks the node that was unavailable, and when it
comes back online, delivers the replica.

• Value of W determines durability:
– W=1: allows any writes as long as a single node is available

to process it.
– W>1: in practice, we usually aim slightly higher than 1.

Handling Failures: Replica Sync

• To detect inconsistencies between replicas faster,
and decrease timme required, Dynamo uses
Merkle trees.
– A Merkle tree is a hash tree where leaves are hashes

of the individual leaves. Parent nodes higher in the tree
are hashes of their children.

– Each branch can be checked for membership without
traversing the entire tree. Less data needs to be
passed around when checking status.

• Each node maintains a Merkle tree for each key
range it hosts. To compare values with another
node, they just exchange root nodes for that tree.

Ring Membership & Failure Detection

• Node outage (or manual error) rarely signifies a permanent
departure
– Should not result in rebalancing of the partition assignment or

repair of the unreachable replicas

– Therefore, use explicit mechanism to initiate add/remove of nodes
from ring (to avoid trashing)

• Gossip- based protocol propagates changes
automatically:
– Maintains an eventually consistent view of membership

– Each node contacts another random node and they exchange
membership information.

Ring Membership: Gosip Protocol

4 rounds of
the protocol

Ring Membership & Failure Detection

• Adding new nodes
– New nodes are assigned a set of tokens (virt. nodes) and gossip

– Map nodes to their respective token sets and make mapping
persistent

– Partitioning and placement information also propagates via the
gossip-based protocol. Therefore, each node is aware of token
ranges handled by its peers

– Seed nodes prevent new nodes from becoming isolated (logical
partitions)

• Node- mappings are also propagated though gossip!

• Unresponsive nodes are also flagged and gossiped- about.

Implementation: Storage Node

Built in Java.
Each storage node has three main components:
• Request coordination

– Multi ‐stage messaging pipeline, built using Java NIO
channels.

– Each client requests results in the creation of a single state
machine to handle that request.

• Membership and failure detection
• Local persistence engine

– Pluggable, supports many di erent engines (incl. Berkeley ff
Database (BDB) Transactional Data Store, MySQL, in-
memory).

– Most use BDB Transactional Data Store.

Implementation: Usage Patterns

Dynamo is used by a number of services with drastically
di erent usage patterns: ff
• Business logic specific reconciliation: Many- node replication,

with client handling reconciliation. e.g. shopping cart logic.

• Timestamp based reconciliation: “Last write wins”. e.g.
customer session service.

• High‐performance read engine: Services with a high read‐
request rate, small number of updates. e.g. product catalogs.

Value in allowing applications to tune R and W (a ecting ff
consistency, durability, availability)

– Common: (N:3, R:2, W:2)
– High- performance read: (N:3, R:1, W:3)
– High- performance write: (N:3, R:3, W:1) – dangerous

Implementation: Performance Tradeo s ff
“A typical SLA required of services that use Dynamo is that
99.9% of the read and write requests execute within 300ms.“
• Commodity hardware makes I/O challenging.

• Multiple storage nodes constrains performance to the slowest
node.

To achieve higher- performance
on writes, an optional writer
thread can be used to bu er ff
writes.
• Improves latencies at the risk of

losing data (i.e. server crash).

• Can mitigate by having a node
assigned to “durable writes”.

Implementation: Load Distribution

• Dynamo uses consistent hashing to partition it’s
key space across all of the available nodes.
– This results in a semi- uniform distribution.
– The assumption is that there are enough nodes at

either end of the distribution to handle any skewed
access patterns (i.e. “popular” requests at peak times).

• Is there a better way of partitioning keys?

Load Distribution Strategies

1) T random tokens per node and partition by token value
● New nodes need to “steal” key ranges from exiting nodes. Changing key ranges

invalidates Merkle trees. Di cult to archive.ffi
2) T random tokens per node and equal-sized partitions

● Decoupling of partitioning and partition placement. Enables the possibility of
changing the placement scheme at runDme.

3) Q/S tokens per node, equal-sized partitions
● When a node leaves the system, its tokens are randomly distributed to the

remaining nodes. When a node joins the system it "steals" tokens from other nodes.

Load Balancing E ciency ffi

• Strategy 2 is the worst, Strategy 3 is the best.

• Compared to Strategy 1, Strategy 3 achieves better e ciency and ffi
reduces the size of membership information maintained at each node
by three orders of magnitude.

• Strategy 3 is faster to bootstrap (fixed partitions) and archive.

Divergent Versions

• Divergent versions of a data item occur when
– Failures are happening, such as node or data center failures.
– A large number of writes against the same data are

happening, and multiple nodes are handling the updates.

• The number of versions returned to the shopping cart
service was profiled for a period of 24 hours.

Coordination

There are two ways of locating a node to service a request:
• A load- balancer can determine the node for a given key/request.

The burden is on the load ‐balancer/system.

• The client can periodically sample a random node (every 10
seconds), grab its membership state and use that to query nodes
directly.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

