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Motivation: KV stores

• “Reliability at massive scale is one of the biggest challenges we 
face at Amazon.com, one of the largest e- ‐commerce operations in 
the world; even the slightest outage has significant financial 
consequences and impacts customer trust. “ 

• “Customers should be able to view and add items to their shopping 
cart even if disks are failing, network routes are flapping, or data 
centers are being destroyed by tornados.“ 

• “There are always a small but significant number of server and 
network components that are failing at any given time. As such 
Amazon’s software systems need to be constructed in a manner 
that treats failure handling as the normal case without impacting 
availability or performance.”

                                                                         - DeCandia (2007)



Motivation: RDBMS Replication

“It is di cult to create redundancy and parallelism with ffi
relational databases, so they become a single point of 
failure. In particular, replication is not trivial.” 



DynamoDB Approach

• Challenge 
– Designing a highly- available system that can scale to millions 

of users, while meeting service‐level SLA. 

• Problem 
– Traditional systems perform synchronous replica coordination 

in order to provide strongly consistent data, at the cost of 
availability. 

– Network and hardware failures mean that strong consistency 
and high data availability cannot be achieved simultaneously. 

• Solution  
– Sacrifice strong consistency for high availability.  
– Give users the “ability to trade‐o  cost, consistency, durability ff

and performance, while maintaining high ‐availability.” 



Requirements: System
• ACID 

– ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties 
that guarantee that database transactions are processed reliably.  

– Dynamo targets applications that operate with weaker consistency (the 
“C” in ACID) if this results in high availability.  

• Query Model 
– Simple read and write operations to a data item that is uniquely identified 

by a key.

– No operations span multiple data items and there is no need for relational 
schema.  

• E ciency ffi
– The system needs to function on  a commodity hardware infrastructure.   

– Services must be able to configure Dynamo to consistently achieve 
latency and throughput requirements.  

• Facing 
– Dynamo is used only by Amazon’s internal services.  



Requirements: SLA

• Service Level Agreements

• Contract where a client and a 
service agree on system‐
related characteristics. 
– Promises bounded time for a 

response. 

• Every dependency in the 
platform needs to deliver with 
even higher bounds.  

• At Amazon, SLAs are 
expressed and measured at 
the 99.9th percentile of the 
distribution (i.e. the edge‐
cases can represent critical 
customers). 



Design: Distributed storage

• Remove the 
database as the 
bottleneck. 

• Distributed storage 
nodes share the 
burden. 

• Requests are routed 
to the storage node 
holding the data. 



Design: Optimistic Replication 

• Optimistic replication allows changes to 
propagate asynchronously. Availability is 
increased, but the risk is that you have multiple, 
conflicting versions of data in the system.  

• Conflicts aren’t prevented, but resolved. 
– Notion of an “eventually consistent data store” and 

delaying reconciliation. 
– When to resolve: resolving conflicts during reads, not  

writes (e.g. shopping cart example, cannot reject 
writes). 

– Who to resolve: tradeo  between system and ff
application level resolution. 



Design: Key Principles

• Incremental scalability: Dynamo should be able to scale 
out one storage host (henceforth, referred to as “node”) at 
a time 

• Symmetry: Every node in Dynamo should have the same 
set of responsibilities as its peers; there should be no 
distinguished node or nodes that take special roles or 
extra set of responsibilities.  

• Decentralization: An extension of symmetry, the design 
should favor decentralized peer- to ‐peer techniques  

• Heterogeneity: The system needs to be able to exploit 
heterogeneity (i.e. work allocated is proportional to the 
characteristics of the hardware). 



Architecture: Dynamo Techniques

Problem                        Technique 

Partitioning and replication   Consistent hashing (notions of “eventually 

                                              consistent” and delayed reconciliation). 

Consistency                          Object versioning. Quorum- ‐like techniques  
                                              used to maintain consistency. 

Recovering from failures      Merkle trees used to quickly detect                 
                                              inconsistencies. 

Membership                          Gossip- ‐based membership protocol, also     
                                              used for failure detection. 

Decentralized                        Minimal need for manual administration        
                                              (i.e. no manual partitioning required) 



Architecture: System Interface 

• Focus on simple query model. 
• Key- value storage of objects: 

– get() : for a given key, returns a single object or list of 
objects with their context (metadata including version). 

– put() : writes replicas (versions) to disk. 



Architecture: Partitioning

• Scale incrementally by 
dynamic partitioning across 
all available nodes. 

• Consistent hashing:            
the output range of the hash 
function returns is a bounded, 
circular region.  
– Newly added nodes are 

randomly assigned a 
key/positon. 

– Nodes are responsible for the 
values ranging from the 
previous node to themselves. 



Partitioning: Virtual Nodes 

• The Problem with Consistent 
Hashing:  
– Random positioning leads to 

non- uniform load distribution

– Oblivious to the heterogeneity in 
the performance of nodes 

• Solution:
– Each node gets assigned to 

multiple positions in the ring 
(positions called tokens)

– These nodes are also called 
"virtual nodes"



Partitioning: Virtual Nodes 

• Solution: (cont.)
– This allows for failover when a 

node is (un)available, or load 
rebalancing in extreme cases. 

• node unavailable: the load is 
evenly dispersed across the 
remaining nodes.

• node available again (or new): it  
accepts a roughly equivalent 
amount of load from each of the 
other available nodes 

• # of virtual nodes assigned based 
on capacity and physical node 
infrastructure 

– Virtual nodes are easier to 
reallocate! 



Partitioning: Replication 

• To achieve high- ‐reliability, 
Dynamo replicates data across 
nodes.  
– Each data item is replicated at N 

hosts, where N is a parameter 
configured “per-instance”!

– Each key is assigned a 
“coordinator” node that is 
responsible for handling 
replication. 

– The coordinator, in turn, handles 
replication for all items that fall 
within its range. 

– The coordinator replicates these 
keys at the N- 1 clockwise 
successor nodes in the ring.  



Partitioning: Replication 

– This list of key‐owners is called 
the preference list (and is 
circulated around the system).

– Every node can determine which 
nodes should be in this list for any 
particular key

– Since virtual nodes used: N succ. 
positions may be owned by less 
than N distinct physical nodes

– The preference list for a key 
skipps positions so that list 
contains only distinct physical 
nodes



Architecture: Consistency

• Dynamo guarantees “eventual consistency”. 
Updates are propagated asynchronously, so there’s 
no guarantee that replicas are always in- sync.  

• Multiple versions of a particular key-value pair may 
exist at any given time (e.g. one node returns a value 
before a replica has propagated an update).  

• To handle this use data versioning: 
– Each modification results in a new version being created.  
– Most of the time, new versions replace old versions. 
– When versions cannot be reconciled automatically, vector 

clocks are used to order the versions and atempt to 
reconcile version histories. 



Consistency: Vector Clocks 



Consistency: Vector Clocks 

• A vector clock is effectively a 
list of (node, counter) pairs.

• One vector clock is 
associated with every version 
of every object.

• Having two versions of object 
we can determine: 
– Parallel branches or causal 

ordering

– Counters of Vc1 are ≤ than the 
correlated counters of Vc2 then   
Vc1 is an ancestor of Vc2

– Otherwise, parallel updates: 
object versions in conflict and 
require reconciliation.



Consistency: Vector Clocks 

• Upon update request: 
– Must specify a version (from the context that it obtained during 

the initial get() operation).    

– Any updates to data will result in the node creating a new 
version (with a new vector clock timestamp).  

• Upon read request: 
– May reconcile and collapse versions

– If multiple branches that cannot be (syntactically) reconciled, it 
will return all objects at leaves with version info in the contex



Architecture: get() and put()

• First base case.
• Normal operations look like this: 

– get() and put() operations from the application need to 
be sent to the appropriate node.  

– Two strategies to locate this node: 
• Allow a load- balancer to select the appropriate node 
• Use a partition- aware library that knows which nodes are 

responsible for a given key. This pushes responsibility for node 
selection onto the application. 

– A node handling a read or write operation is known as 
the coordinator. Typically, this is the first among the 
top N nodes in the preference list.  



Handling Failures: Data Consistency 

• What happens when storage nodes disagree?  
– Dynamo uses a quorum‐based consistency protocol. This 

means that a number of storage nodes must “agree” on 
result. 

• For a series of N nodes, there are two configurable 
values for a given request:  
– R : the minimum number of nodes that must participate in a 

read request 
– W : the minimum number of nodes that must participate in a 

write request 

• Use:  
– R + W > N : Quorum 

– R + W ≤ N : Not‐Quorum (but better latency!) 



Handling Failures: Quorum Use

• Examples 
– put(): The coordinator node will  

• Create a new version. 
• Send the data to N healthy nodes. 
• If W- 1 respond, treat the write as successful. 

– get(): The coordinator node will 
• Request versions of that data from N highest ‐ranked 

reachable nodes in the preference list. 
• Waits for R responses before returning the result to the client. 

If it receives multiple versions, it will reconcile and write- back a 
new version (superseding the previous ones). 



Handling Failures: Hinted Hando  ff
Dynamo uses a “sloppy quorum”, where the first N 
available, healthy nodes are used to determine quorum. 
This increases durability for writes. 
• Hinted handoff occurs when a node is unavailable, 

and the next replica handles the request. This node 
tracks the node that was unavailable, and when it 
comes back online, delivers the replica. 

• Value of W determines durability: 
– W=1: allows any writes as long as a single node is available 

to process it. 
– W>1: in practice, we usually aim slightly higher than 1. 



Handling Failures: Replica Sync 

• To detect inconsistencies between replicas faster, 
and decrease timme required, Dynamo uses 
Merkle trees. 
– A Merkle tree is a hash tree where leaves are hashes 

of the individual leaves. Parent nodes higher in the tree 
are hashes of their children. 

– Each branch can be checked for membership without 
traversing the entire tree. Less data needs to be 
passed around when checking status. 

• Each node maintains a Merkle tree for each key 
range it hosts. To compare values with another 
node, they just exchange root nodes for that tree. 



Ring Membership & Failure Detection 

• Node outage (or manual error) rarely signifies a permanent 
departure 
– Should not result in rebalancing of the partition assignment or 

repair of the unreachable replicas

– Therefore, use explicit mechanism to initiate add/remove of nodes 
from ring (to avoid trashing)

• Gossip- based protocol propagates changes 
automatically: 
– Maintains an eventually consistent view of membership

– Each node contacts another random node and they exchange 
membership information. 

 



Ring Membership: Gosip Protocol

4 rounds of 
the protocol



Ring Membership & Failure Detection 

• Adding new nodes
– New nodes are assigned a set of tokens (virt. nodes) and gossip

– Map nodes to their respective token sets and make mapping  
persistent

– Partitioning and placement information also propagates via the 
gossip-based protocol. Therefore, each node is aware of token 
ranges handled by its peers

– Seed nodes prevent new nodes from becoming isolated (logical 
partitions)

• Node- mappings are also propagated though gossip!  

• Unresponsive nodes are also flagged and gossiped- about. 



Implementation: Storage Node

Built in Java.  
Each storage node has three main components: 
• Request coordination 

– Multi ‐stage messaging pipeline, built using Java NIO 
channels.  

– Each client requests results in the creation of a single state 
machine to handle that request. 

• Membership and failure detection 
• Local persistence engine 

– Pluggable, supports many di erent engines (incl. Berkeley ff
Database (BDB) Transactional Data Store, MySQL, in- 
memory).  

– Most use BDB Transactional Data Store. 



Implementation: Usage Patterns 

Dynamo is used by a number of services with drastically 
di erent usage patterns: ff
• Business logic specific reconciliation: Many- node replication, 

with client handling reconciliation. e.g. shopping cart logic. 

• Timestamp based reconciliation: “Last write wins”. e.g. 
customer session service. 

• High‐performance read engine: Services with a high read‐
request rate, small number of updates. e.g. product catalogs.  

Value in allowing applications to tune R and W (a ecting ff
consistency, durability, availability) 

– Common: (N:3, R:2, W:2) 
– High- performance read: (N:3, R:1, W:3)  
– High- performance write: (N:3, R:3, W:1) – dangerous 



Implementation: Performance Tradeo s ff
“A typical SLA required of services that use Dynamo is that 
99.9% of the read and write requests execute within 300ms.“ 
• Commodity hardware makes I/O challenging. 

• Multiple storage nodes constrains performance to the slowest 
node. 

To achieve higher- performance 
on writes, an optional writer 
thread can be used to bu er ff
writes. 
• Improves latencies at the risk of 

losing data (i.e. server crash). 

• Can mitigate by having a node 
assigned to “durable writes”. 



Implementation: Load Distribution 

• Dynamo uses consistent hashing to partition it’s 
key space across all of the available nodes.  
– This results in a semi- uniform distribution.  
– The assumption is that there are enough nodes at 

either end of the distribution to handle any skewed 
access patterns (i.e. “popular” requests at peak times). 

•  Is there a better way of partitioning keys? 



Load Distribution Strategies 

1) T random tokens per node and partition by token value
● New nodes need to “steal” key ranges from exiting nodes. Changing key ranges 

invalidates Merkle trees. Di cult to archive.ffi  
2) T random tokens per node and equal-sized partitions

● Decoupling of partitioning and partition placement. Enables the possibility of 
changing the placement scheme at runDme.

3) Q/S tokens per node, equal-sized partitions
● When a node leaves the system, its tokens are randomly distributed to the 

remaining nodes. When a node joins the system it "steals" tokens from other nodes. 



Load Balancing E ciency ffi

• Strategy 2 is the worst, Strategy 3 is the best.  

• Compared to Strategy 1, Strategy 3 achieves better e ciency and ffi
reduces the size of membership information maintained at each node 
by three orders of magnitude.  

• Strategy 3 is faster to bootstrap (fixed partitions) and archive. 



Divergent Versions 

• Divergent versions of a data item occur when 
– Failures are happening, such as node or data center failures. 
– A large number of writes against the same data are 

happening, and multiple nodes are handling the updates. 

• The number of versions returned to the shopping cart 
service was profiled for a period of 24 hours.  



Coordination

There are two ways of locating a node to service a request:  
• A load- balancer can determine the node for a given key/request. 

The burden is on the load ‐balancer/system. 

• The client can periodically sample a random node (every 10 
seconds), grab its membership state and use that to query nodes 
directly.  
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