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Outline

• Introduction to GDM
• Storage level representations
• Data distribution 
• Query procesing



Introduction to                     
Graph Data Model 



Graph Data Model 

• Graph database 
– Database uses graphs for the representation of data and 

queries

• Vertexes 
– Represent things, books, events, persons, concepts, classes, 

types, ...

• Arcs 
– Represent properties, relationships, associations, ...
– Arcs have labels !

• Various names of a graph database
– Triplestore, RDF database, Linked data, Linked open data, 

Knowledge bases and Knowledge graphs
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Position of graph databases

• Key-value model
• Baseline graph data model
• Relational data model
• Knowledge graphs

Simple

Complex
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Graph Data Model (GDM)

• Baseline: Graph representation!
– More complex than KV data model
– More simple and uniform than relational model

• Graph representation + KR dictionary 
– Turns GDM into Knowledge Representation Language 
– Adding schema level to GDM 

• RDF Schema -> adding types to KR representation 

• Represents alternative to AI Frames (KR lang) 

• Triples are more popular recently (see Cyc system)

– Adding logic level to GDM
• OWL; description logic; fragments of predicate calculus.

– More expressive than the relational model.
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Graph Data Model (GDM)

Query models: 
– Key-Value, Graph and Relational models

1. Key-value model + MapReduce (Sparc)
– Simple put/get interface

2. Graph data model + SPARQL
– Algebra of sets of triples

3. Relational model + SQL
● Relational algebra and relational calculus



RDF
• Resource Description Framework

– Tim Berners Lee, 1998, 2009 ...

• What is behind ?
– Graphs are fundamental representation language.
– Can represent data and knowledge!
– Can be used for representation of data on the Internet
– Can be used as medium for the exchange of scientific data 
– Can be extended with logic (see OWL, DL)

• Novel applications require some form of reasoning
– Intelligent assistants, recommendation systems, system 

diagnostics, …
– Data and knowledge will be integrated in novel applications
– Many reasoners use triples (graphs) to represent knowledge and 

data



RDF



Name spaces

• Using short names for URL-s
– Long names are tedious

• Simple but strong concept
• Defining name space:

prefix rdf:, namespace URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#

prefix rdfs:, namespace URI: http://www.w3.org/2000/01/rdf-schema#

prefix dc:, namespace URI: http://purl.org/dc/elements/1.1/

prefix owl:, namespace URI: http://www.w3.org/2002/07/owl#

prefix ex:, namespace URI: http://www.example.org/ (or http://www.example.com/)

prefix xsd:, namespace URI: http://www.w3.org/2001/XMLSchema# 



<http://example.org/bob#me> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<http://example.org/bob#me> <http://xmlns.com/foaf/0.1/knows> <http://example.org/alice#me> .
<http://example.org/bob#me> <http://schema.org/birthDate> "1990-07-04"^^<http://www.w3.org/2001/XMLSchema#date> .
<http://example.org/bob#me> <http://xmlns.com/foaf/0.1/topic_interest> <http://www.wikidata.org/entity/Q12418> .
<http://www.wikidata.org/entity/Q12418> <http://purl.org/dc/terms/title> "Mona Lisa" .
<http://www.wikidata.org/entity/Q12418> <http://purl.org/dc/terms/creator> <http://dbpedia.org/resource/Leonardo_da_Vinci> .
<http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619> <http://purl.org/dc/terms/subject> 

N-Triples

01    BASE   <http://example.org/>
02    PREFIX foaf: <http://xmlns.com/foaf/0.1/>
03    PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
04    PREFIX schema: <http://schema.org/>
05    PREFIX dcterms: <http://purl.org/dc/terms/>
06    PREFIX wd: <http://www.wikidata.org/entity/>
07 
08    <bob#me>
09        a foaf:Person ;
10        foaf:knows <alice#me> ;
11        schema:birthDate "1990-07-04"^^xsd:date ;
12        foaf:topic_interest wd:Q12418 .
13   
14    wd:Q12418
15        dcterms:title "Mona Lisa" ;
16        dcterms:creator <http://dbpedia.org/resource/Leonardo_da_Vinci> .
17  
18    <http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619>
19        dcterms:subject wd:Q12418 .

Turtle

N3, TVS, Turtle, TriG, N-Triples
RDF/XML, RDF/JSON



Additional RDF Constructs

• Complex values
– Bags, lists, trees, graphs

• Empty nodes
• Types of atomic values
• Types of nodes
• Reification



RDF Schema

• RDFS (KR language)
– Not just graph any more !
– AI Frames, Object Model

• Small dictionary for RDFS 
– rdfs:class, rdfs:subClassOf, rdfs:type, rdfs:property, 

rdfs:subPropertyOf, rdfs:domain, rdfs:range



Classes

ex:MotorVehicle rdf:type rdfs:Class . 
ex:PassengerVehicle rdf:type rdfs:Class . 
ex:Van rdf:type rdfs:Class . 
ex:Truck rdf:type rdfs:Class . 
ex:MiniVan rdf:type rdfs:Class . 

ex:PassengerVehicle rdfs:subClassOf ex:MotorVehicle . 
ex:Van rdfs:subClassOf ex:MotorVehicle . 
ex:Truck rdfs:subClassOf ex:MotorVehicle . 

ex:MiniVan rdfs:subClassOf ex:Van . 
ex:MiniVan rdfs:subClassOf ex:PassengerVehicle . 



SPARQL

• SPARQL Protocol and RDF Query Language

• SPARQL query
– Graph can include variables in place of constants 

• Operations
– JOIN (natural, left-join)

– AND, FILTER, UNION, OPTIONAL

• Commercial DBMS-s 
– Implement RDF and SPARQL



Example SPARQL query
 

PREFIX 

   abc: <http://mynamespace.com/exampleOntology#> 

SELECT ?capital ?country 

WHERE { ?x abc:cityname ?capital. 

        ?y abc:countryname ?country. 

        ?x abc:isCapitalOf ?y. 

        ?y abc:isInContinent abc:africa. } 

?x

?y

?capital
abc:cityname

abc:isCapitalOf

?country

abc:countryname

abc:africa

abc:isInContinent



Logic - OWL

• Ontology language
– Knowledge representation + Logic

• Based on description logic
– Fragments of predicate calculus
– Hierarchy of DL languages 

• OWL reasoners
– FaCT++, HermiT, RacerPro, Pellet, ...



Collective graph databases

• Datasets gathered in the form of a graph
• Wordnet

– Princeton's large lexical database of English.
– Cognitve synonims: 117,000 synsets

• Synonymy, hyponymy (ISA), meronymy (part-whole), antonymy

• Linked Open Data
– Wikipedia, Wikibooks, Geonames, MusicBrainz, WordNet, 

DBLP bibliography
– Science community, Governments, Publishing, Media, ...
– Active community

• http://en.wikipedia.org/wiki/Open_Data
• https://en.wikipedia.org/wiki/Linked_data



Collective graph databases

• Wiki Data
– https://www.wikidata.org/

• Knowledge graphs
– Freebase, Google KG
– Microsoft, Yahoo KGs
– Yago (MPI)
– Semantic search engines

https://www.wikidata.org/


http://lod-cloud.net/

LOD



Storage level



Relational representation

• Extending relational DBMS
– Virtuoso, Oracle, IBM, ...

• Statistics does not work
– Structure of triple-store is more complex than bare 3-

column table  

• Extensions of relational technologies
– Adding RDF data type in SQL
– Virtuoso indexes store statistics
– Quad table is represented by two covering indexes

• GSPO and OGPS 



Property table

• Property table in relational DBMS 
– Jena, DB2RDF, Oracle, ...

• Sets of objects with common properties (triples) 
stored in a relational tables

• Advantages
– All properties read at once (star queries)

• Drawbacks 
– Property tables can have complex schemata
– The values of some attibutes may be rare 



Index-based representation

• Covering indexes 
– RDF-3X, YAR2, 4store, Hexastore, ...

• RDF-3X (MPI, 2009)
– Compressed clustered B+-tree

• 6 indexes for each permutation of S, P and O
• Triples are sorted in lexicographical order! 

– Sorted lexicographically for range scans
– Compression based on order of triples
– Aggregate indexes

• Two keys + counter
• One key + counter



Index-based representation

• Hexastore (Uni Zuerich, 2008)
– Treats subjects, properties and objects equally
– Every possible ordering of 3 elements is materialized

• SPO, SOP, PSO, POS, OSP, and OPS
• The result is a sextuple indexing scheme

• 3-level special index 
– Appropriate for some types of joins (sort-merge), set operations
– 5-fold increase of DB size

SPO index entry S



Columnar representation
• Vertical partitioning                                                  

of RDF (Yale, 2009)
– Triple table is stored into                                                                

n two-column tables 

• Advantages 
– Reduced I/O: reading only the needed properties
– Optimizations: column compression, fixed-length tuples, direct 

access to sorted files.
– Optimized column merge code (e.g. merge join)
– Column-oriented query optimizer.
– Materialized path expressions

• Disadvantages
– Increased number of joins
– Insertions incure higher overhead (multiple col.)



Graph-based representation

• Native graph representation
– Nodes with associated adjacency lists
– Subgraph matching (NP)

• Examples of systems
– gStore, Neo4j, Trinity.RDF

• Example: gStore
– Works directly on the RDF graph and the SPARQL query graph
– Use a signature-based encoding of each entity and class vertex to 

speed up matching
• Get all class instances, all subjects with a given property, … speeding up some 

basic operations.

– Filter-and-evaluate
• Queries --> query graphs; false positive algorithm to prune nodes and obtain a set 

of candidates; Evaluation of joins between candidate sets

– Use an index (VS*-tree) over the data signature graph (has light 
maintenance load) for efficient pruning



Data distribution



Horizontal partitioning in GDB

• Basic hash partitioning
– Hash partition triples across multiple machines

• Hash all triples using one of S, P, O, SP, SO, PO, SPO, ...
• Some structure can be retained e.g. props of objects

– Parallelize access to these machines 
• All servers return results at the same time
• Synchronization and data transfer may be bottleneck 

• Locality preserving partitioning
– Triples are distributed in locality-based partitions

• Queries are split into sub-queries 
• Sub-queries are executed on servers with data



Horizontal hash partitioning

• Hash partitioning on S part of triples
– Object oriented view 

• Objects are represented by groups of triples having 
the same S part 

• Triples representing objects are hashed into the 
same node numbers

– This is random partitioning
• There are no correlations among objects mapped to 

a given node number
– Systems

• SHARD, 4store, YARS2, Virtuoso, TDB, ...



Locality-based horizontal partitioning

• Use of min-cut graph partitioning
– METIS algorithms are often used
– Nodes are partitioned into k partitions

• The multilevel graph partitioning schemes
– METIS, Karypis and Kumar (SIAM J. of Comp., 1998) 
1)Reduces the size of a graph by collapsing the vertices to 

obtain an abstract graph
2)Graph is then min-cut partitioned and 
3)Finally un-coarsened to enumerate the members of the 

graph partitions. 
– Very efficient in practical applications, such as, finite 

element methods, linear programming, VLSI, and 
transportation.

•



Locality-based horizontal partitioning

• Placement of triples into partitions follows the 
partitioning of nodes
– Therefore, subject-based partitioning
– Partitions are replicated as in key-value systems to obtain 

better availability
– Query is decomposed; query fragments posed to partitions

• Originaly proposed by
– Scalable SPARQL Querying of Large RDF Graphs, Huang, 

Abadi, VLDB, 2011.



Locality-based horizontal partitioning

• TriAD (MPI, 2014)
– Summary graph is computed first

• METIS algorithm is used for graph partitioning
• Supernodes are constructed from the data graph

– Link between supernodes if there exist triples connecting them

• Intuition: processing query on summary graph eliminates 
partitions that are not addressed

– Locality information provided by the summary graph 
leads to sharding

• Entire partitions are hashed to nodes
• Triples on the edge between two partitions are placed in 

both partitions
• Join-ahead prunning of partitions



N-hop guarantee horizontal 
partitioning
• H-RDF-3X

– Huang, Abadi, Ren: Scalable SPARQL Querying of Large RDF 
Graphs, VLDB, 2011

• Partitioning the data across nodes 
– Aim = accelerate query processing through locality 

optimizations
– METIS used for min-cut vertex graph partitioning

• rdf:type triples are removed before 

– Edge partitioning needed (not node partitioning) 
• Triple placement

– We have vertex graph partitioning
– Simple conversion: use S part partition for complete triple
– Triples on the borders are replicated



N-hop guarantee horizontal 
partitioning

– More replication results less communication
– Controlled amount of replication

• Directed n-hop guarantee
• Start with 1-hop guarantee and then proceed to 2-hop 

guarantee, ...
• Partitions are extended to conform n-hop guarantee

• Decomposing SPARQL queries into high performance 
fragments
– Take advantage of how data is partitioned in a cluster.

• Query fragments are parallelizable without communiction 
(PWoC)

– How partitions are handled for querying is presented in 
the last part on Query processing



Self Evolving Partitioning

• SEDGE, Uni. California at Santa Barbara, 2012
– S. Yang, X. Yan, B. Zong, and A. Khan. Towards Effective Partition 

Management for Large Graphs. SIGMOD, 2012.
– Minimize inter-machine communication during graph query 

processing in multiple machines
– Implemented on top of Pregel

• Using normalized cut algorithm                                
(METIS)
– Split the graph using minimum cut 
– Partitions should be as balanced as possible

• Complementary primary partitions 
– Repartition a graph such that original                                             

cross-partition edges become internal ones
– New partition set can handle graph queries                                       

that have trouble  in the original partition set



Self Evolving Partitioning
• Primary partition set 

● Each primary partition set is self complete
● For queries uniformly distributed in graph
● Many primary partition sets can be stored in DB

• Dynamic secondary partitions
– Primary partition set not good at                                                       

dealing with unbalanced query workload
• Intensive work-loads on two shaded areas 

1) Replicate partitions (load-balance)
2) Generate a new overlapping partition                                                     

(cover complete query)
– Maintain links between vertices in                                                  

secondary and primary partitions

• Dynamic partitioning
– Partition replication & Cross-partition Hotspots
– Monitor query workload

• Checking hotspots
• Track cross-partition queries



Semantic-Aware Partitioning
● big3store (Yahoo! Japan & Uni. of Primorska)

● Savnik, Nitta: Method of Big-Graph Partitioning Using a Skeleton Graph, 
Springer, 2019.

● Storing knowledge graph not just graph! Should benefit from the schema 
level representation

● big3store: a distributed graph database system
● Storing knowledge graphs (RDF+RDFS models)
● Erlang programming environment

● Ordering the space of triple-patterns 
● Types of triple-patterns are ordered in a poset
● Schema graph of a KG: types of graph edges
● Pre-computed statistics of edge types

1) Cluster the data on the schema level
● Compute skeleton graph (incl types of approp size) 

● Edge types that serve as fragments
● Partition the skeleton graph! Use any partitioning method.

2) Distribute the extensions of schema partitions
● Placing partitions to nodes



big3store: Skeleton graph

... ...
... ...

...

... ...... ... ... ... ...

Top of schema 
triple hierarchy

= edges of the skeleton 
   graph

(owl:Thing,rdf:Property,owl:Thing)

= “is more specific triple”

= schema triples that have 
   the interpretation of 
   appropriate size

= schema triple

(employee,worksAt,organization)

(person,worksAtr,organization)

(person,worksAtr,company)

(employee,worksAt,company)(engineer,worksAt,organization)

...

... ...

...



big3store:
Clustering SG
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•  Statistics of TS
•  Skeleton graph Gs

Distance between edges e1and e2 
•  Estimate the number of path p instances
•  Estimate the cardinality of joins in 
   a path p by using the statistics of TS

Use any clustering algorithm
•  Strongly connected edge types
   are clustered together
•  Maximize average strength of 
   the paths among all different 
   pairs of nodes from a partition
   (see problem definition, page 7)
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Query processing



Graph algebra

• Logical algebra of sets of graphs
• Sets of graphs are input and output of operations

– A triple is a very simple graph
– Graph is a set of triples

• Logical algebra operations
– Triple-pattern
– Select
– Project
– Join
– Union, Intersect, Difference
– Leftjoin



Logical algebra

• Triple-pattern is an access method
– tp1 = (?x,p,o)

• tp1 retrieves all triples with given p and o
– tp2 = (s,p,?y)

• tp2 retrieves all triples with given s and p 
– tp3 = (?x,p,?y)

• tp3 retrieves all triples with given p 
– ...

• Triple pattern syntax
– S – subjects, V – variables, P – predicates, O - objects
– TP ::= (S | V,P | V,O | V)



Logical algebra
• Join operation

– Joins all graphs from outer sub-tree with graphs from 
inner triple-pattern

– Common variables from outer and inner graphs must 
match

• Syntax: 
– GP ::= join(GP,GP) 
– Second argument is TP in 

left-deep trees

join
GP

TP
GP



Logical algebra

join( join( tp(?c,<hasArea>,?a),
                tp(?c,<hasLatitude>,?l)),
        tp(?c,<hasInflation>,?i))

Operation join

Triple-pattern 

 tp(?c,<hasArea>,?a) 

SPARQL query language

SELECT * WHERE {
       ?c,<hasArea>,?a . 
       ?c,<hasLatitude>,?l .
       ?c,<hasInflation>,?i .
}



Physical operations

• Access method (AM)
– Triple-pattern operation 
– Includes select and project operations
– Methods: File scan (DFS), Key-value store, B+ index, 

Custom index 

• Join, Leftjoin
– Logical join operation 
– Includes select and project operations
– Algorithms: Index NL join, merge-join, hash join, main 

memory joins

• Union, intersect and difference
– Retain the schema of parameters



Query structures
• Star queries

– Objects and their properies
– Similar to relations
– Often units of optimization
– Often a target to process locally

• Path queries 
– Sequence of joins that form the path
– Often interconnect star queries
– Shortest path queries

• Large search space
– O(n×2n) star queries, O(3n) path queries

• Cost-based static optimization 
– For both cases



Graph patterns 
• Basic graph patterns

– Set of triple-patterns linked by joins

• Graph-patterns are units of optimization
– Optimization can be based on dynamic programming 
– Bottom-up computation of execution plans

• Graph-patterns similar to SQL blocks
– Operations select and project packed into joins and TPs
– Operations select and project pushed-down to leafs of a query 
– Joins can now freely shift -> Join re-ordering



Centralized systems

• Single server system 
• Based on the relational database 

technology
• Best of breed example:

– RDF-3X (MPI)
– Classical query optimization
– Multiple index approach



Example: RDF-3X

• Query optimization
– Bottom-up dynamic programming algorithm

• Classical approach! (similar to System R)
• Keeps track of a set of the plans for interesting orders 

– Cost-based query optimization
• Statistics (histograms) stored in aggregate indexes
• Plan prunning based on cost estimation (heuristics)

– Join re-ordering in bushy trees
• Possible large number of joins
• Star-shaped sub-queries are the primary focus

• Query evaluation
– Extensive use of Sort-Merge join (all orderings are available)
– Uses also a variant of hash join



Clusters of servers

• Usually shared-nothing servers
– May also be shared disk or shared memory
– A federated database system 

• Transparently maps multiple autonomous database 
systems into a single federated database

• Parallel database systems
– Custom implementation of all DBMS components
– Storage manager: custom, KV store, ...

• Typically: coordinator nodes and data nodes
• Not all nodes have the same functionality

• Examples:
– H-RDF-3X, TriAD, WARP, EAGRE, Trinity.RDF



Query parallelism

• Partitioned parallelism 
• Pipelined parallelism
• Independent parallelism



Query parallelism

• TP processing is distributed 
– Data addressed by a TP is distributed 
– Processing TP in parallel 

• Left-deep trees form pipelines 
– Each join on separate core, processor, server?

• Join runs on the same machine as its inner TP

– Faster query evaluation

• Bushy trees
– Parallel execution of sub-trees and operations

• Split joins to smaller parallel joins 
– Exploiting multiple processors and cores
– Parallel execution of joins

Pipelined
parallelism

Partitioned
parallelism

Independent
parallelism



Example: H-RDF-3X, 2011

• Huang, Abadi, Ren: Scalable SPARQL Querying 
of Large RDF Graphs, VLDB, 2011

• Architecture
– RDF-3X used as centralized 

local triple-store
– Hadoop is linking 

distributed data stores
– Master server and 

slave data stores

• Close to distributed Ingres
– See lecture on Distributed 

query processing



Example: H-RDF-3X, 2011

• Locality-based partitioning
– METIS used for min-cut graph partitioning
– Partitioning helps accelerate query processing 

• Through locality optimizations  

– Placement with n-hop replication

• Partitioning presented in section on graph DB 
partitioning



Example: H-RDF-3X, 2011

• Algorithm for automatically decomposing queries 
into parallelizable chunks
– Concept of PWoC queries

• PWoC=Parallelizable without communiction
• Concept of central vertex in query graph

– Minimal “distance of farthest edge” (DoFE)

• Central vertex is native in a partition with n-hop guarantee
– DoFE < n => PWoC query 

– Non-PWoC queries
• Decompose into PWoC subqueries
• Minimal edge partitioning of a graph into subgraphs of 

bounded diameter (well studied problem in theory)
– Heuristics: Choose decomposition with minimal number of PWoC 

components
– More PWoC components more work for Hadoop



Example: TriAD, 2014

• Federated centralized system
– Extension of centralized RDF-3X to distributed 

environment
– Based on asynchronous message passing

• System architecture
– System R* style (see lecture on Distr.query proc.)
– Master-slave, shared-nothing model
– Master node

• Metadata about indexed RDF facts stored in local indexes
• Summary graph, bidirectional dictionaries, global statistics, 

query optimizer 

– Slave nodes
• Include local indexes, local query processor
• Exchange intermediate results with asynchronous messages



Example: TriAD, 2014



Example: TriAD, 2014

• Construction of summary graph
– Nodes are partitioned in disjunctive partitions 

(supernodes) 
• Graph partitioning with METIS
• Edges with distinct labels are choosen among supernodes
• Optimal number of partitions is determined

– Cost model optimization of summary and data graph querying

• Summary graph is indexed at the master node

– Horizontal partitioning of data triples
• Locality defined by summary graph is preserved

– Hashing summary graph partitions into the grid-like distribution scheme
– Hashing based on S and O together with supernodes
– Triples belonging to the same supernode are placed on the same 

horizontal partition



Example: TriAD, 2014
• Query processing

– “Pruning stage”, is performed entirely at master node
• Executing queries on summary graph (at master)

– Bindings of supernode identifiers to query variables (exploratory-based)
– Determine the best exploration order using a first DP-based optimizer over 

the summary graph statistics

• Eliminates unneeded partitions – partition prunning

– Distribution aware query optimizer
• Bottom-up dynamic programming (determine join order)

– Consider locality of the index structures at the slave nodes
– Shipping cost of intermediate join results
– Option to execute sibling paths of query plan in a multi-threaded fashion

• Global query plan generated at the master is then communicated 
to all slaves

– Multi-Threaded, asynchronous plan execution
– Process the query against the data graph which is distributed

• Determine locally best join order by using second DP optimizer
– Precise statistics is used



Some research directions

• Data manipulation in main memory
– Huge main memory is available currently
– Most queries are executed much faster in main 

memory 

• Careful construction of localized partitions
– Data that is frequently queried together is stored in one 

partition 
– Network communication is significantly reduced

• Utilization of the schema in triple-stores
– All novel triple-stores have rich schemata provided as 

RDFS triples
– Schemata can be used for speeding up queries and for 

semantic-aware partitioning



Some research directions

• Abstracting the data graph 
– Construction of the abstract graph by 

• Data mining algorithms that group similarly structured sub-
graphs

• Employing graph partitioning for the construction of the 
abstract graphs

– Abstract graph can be exploited for 
• Construction of well-localized partitions 
• Directing the evaluation query

• Workload-aware partitioning 
– Exploiting workload for the definition of partitions
– Dynamical run-time adjustment of the partitions 
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