
Column-Stores – Google Bigtable

Iztok Savnik, FAMNIT

November, 2022.

1

Literature

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber,
Bigtable: A Distributed Storage System for Structured Data, OSDI, 2006.

Romain Jacotin, Lecture: The Google Bigtable, Google Research, 2014.

Outline

• Introduction
• Data model
• API
• Building blocks
• Implementation
• Refinements
• Performance evaluation
• Experience
• Conclusions

Introduction

Abstract:
– Bigtable is a distributed storage system for managing

structured data
• Designed to scale to a very large size: exabytes of data across

thousands of commodity servers.
• It is not a relational database, it is a sparse, distributed,

persistent multi-dimensional sorted map (key/value store).

– Many projects at Google store data in Bigtable
• Web indexing, Google earth and Google finance, …
• Di erent data sizes: URL, web pages, satellite imagery, … ff
• Di erent latency requirements: backend bulk processing to ff

real-time data serving.

– Bigtable is a flexible, high performance solution

Data model

API

• Tablet server
– AddServer(tabletServer) / RemoveServer(tabletServer)!

• Table
– CreateTable(table) / DeleteTable(table)!

• Column family
– CreateColumnFamily(columnFamily) /

DeleteColumnFamily(columnFamily)!

• Table access control rights and metadata
– SetTableFlag(table, flags) / . . .!

• Colum family access control rights and metadata
– SetColumnFamilyFlag(table, colfamily, flags) / . . .!

API (2)

• Cell value
– Put(rowkey, columnkey, value)

– Get(rowkey, columnkey)

– Delete(rowkey, columnkey)!

• Look up value from individual row
– Has(rowkey, columnfamily), ...

• Look up values from table (=MapReduce like RPC)
– Scan(rowFilter, columnFilter, timestampFilter)!

• Can iterate over multiple column families

• Can limit rows/colums/timestamps

• Single-row transactions (atomic read-modify-write sequence)

• No support for general transactions across row keys

API (3)

• Cells can be used as integer counters
– Increment(rowkey, columnkey, increment)

• Execution of read-only client-supplied scripts in the address
spaces of the servers: Sawzall
– http://research.google.com/archive/sawzall.html

• Bigtable can be used with MapReduce (for input and/or
output)

Building blocks

• Google File System (GFS)
– Bigtable uses the fault-tolerant

and scalable distributed GFS
file system to store log and data
files

– metadata = METADATA tablets (store
tablets location)

– data = SSTables collection by tablet

– log = Tablet logs

• Google SSTable file format
(Sorted String Table)
– Used to store table data in GFS

• Persistent, ordered immutable map
from keys to values

Building blocks

• Google SSTable file format (Sorted String Table)
– Contains a sequence of 64 KB Blocks (size configurable)

• Optionally, Blocks can be completely mapped into memory (= lookups and scans
without touching disk)

• Block index stored at the end of the file
– Used to locate blocks

– Index loaded in memory when the SSTable is opened

– Lookup with a single seek
• Find the appropriate block by performing a binary search in the in-memory index

• Reading the appropriate block from disk

Building blocks

• Google Chubby
– Chubby service consists of 5 active replicas with

one master to serve requests (PAXOS consensus)

– Chubby provides a namespace that contains
directories and small files (<256 KB)

• Each directory or file can be used as a lock

• Reads and writes to a file are atomic

• Chubby client library provides consistent
caching of Chubby files

• Each Chubby client maintains a session
with a Chubby service

• Client’s session expires if is unable to renew its session
lease within the lease expiration time.

• When a client’s session expires, it loses any locks and open
handles.

• Chubby clients can also register callbacks on Chubby files
and directories for notification of changes or session
expiration.

Building blocks

• Google Chubby
– Bigtable uses Chubby for a variety

of tasks
• To ensure there is at most one active

master at any time

• To store the bootstrap location of Bigtable
data (Root tablet)

• To discover tablet servers and finalize
tablet server deaths

• To store Bigtable schema information
(column family information for each table)

• To store access control lists (ACL)

– Chubby unavailable =
Bigtable unavailable

• 14 Bigtable clusters spanning 11 Chubby
instances: average % server hours
unavailability = 0,0047%

Implementation
• Major components

– One master server

– Many tablet servers

– A library linked into every client

• Master
– Assigning tablets to tablet servers

– Detecting addition and expiration of
tablet servers

– Balancing tablet server load

– Garbage collecting of files in GFS

– Handling schema changes
(table creation, column family creation/deletion

• Tablet server
– manages a set of tablets

– Handles read and write request to the tablets

– Splits tablets that grow too large (100-200 MB)

• Client
– Do not rely on master for tablet location information

– Communicates directly with tablet servers for reads and writes

Implementation

Implementation

• Tablet Assignment
– Each tablet is assigned to one tablet server at a time

– Master keeps tracks of
• the set of live tablet servers (tracking via Chubby)

• the current assignment of tablets to tablet servers

• the currently unassigned tablets

– When a tablet is unassigned, the master assigns the tablet to an available
tablet server by sending a tablet load request to that tablet server

• Tablet Server discovery
– When a tablet server starts, it creates, and acquires an exclusive lock on

uniquely-named file in a specific Chubby directory (“servers” directory)

– Master monitors this directory to discover tablet servers

– A tablet server stops serving its tablets if it loses its exclusive Chubby lock

– If the Chubby file no longer exists, then the tablet server will never be able to
serve again, so it kills itself

Implementation

• Tablet Server monitoring
– Master is responsible for detecting when a tablet server is no longer

serving its tablets, and for reassigning those tablets

– Master periodically asks each tablet server for the status of its lock to
detect when a tablet server is no longer serving its tablets

– If a tablet server reports that it has lost its lock, or if the master was
unable to reach a server during its last attempts, the master attempts to
acquire the lock for the Chubby file

• If the master is able to acquire the lock then Chubby is live and the tablet server is dead
or isolated, the master deletes its server file to ensure that the tablet server can never
serve again

• Then master can move all the tablets that were previously assigned to this tablet server
into the set of unassigned tablets

Implementation

• Master isolated
– To ensure that a Bigtable cluster is not vulnerable to networking issues

between the master and Chubby, the master kills itself if its Chubby
session expires (master failures do not change the assignment of tablets
to tablet servers)

• Master startup
– When a master is started by the cluster management system, it needs to

discover the current tablet assignments before it can change them:
1) Master grabs a unique master lock in Chubby to prevent concurrent master

instantiations

2) Master scans the servers directory in Chubby to find the live tablet servers

3) Master communicate with every live tablet servers to discover what tablets are
already assigned to each server

4) Master adds the root tablet to the set of unassigned tablets if an assignment for the
root tablet is not discovered in step 3,

5) Master scans the METADATA tablets to learn the set of tablets (and detect
unassigned tablets).

Implementation

• Tablet : merging / splitting
– The set of existing tablets only change when:

• A table is created or deleted

• Two existing tablets are merged to form one larger tablet

• Existing tablet is split into two smaller

– Master initiates Tablets merging

– Tablet server initiate tablet spliting
• Commit the split by recording information for new tablet in the METADATA table

• After committed, the tablet server notifies the master

Implementation
• Tablet Serving

– Write operation
• Server checks that the request is well-formed

• Server checks that the sender is authorized to write (list of permitted writers in a
Chubby file)

• A valid mutation is written to the commit log that stores redo records (group commit
to improve throughput)

• After the mutation has been committed, its contents are inserted into the memtable
(= in memory sorted bu er) ff

Implementation

• Tablet Serving
– Read operation

• Server checks that the request is well-formed

• Server checks that the sender is authorized to read (list of permitted readers
from a Chubby file)

• Valid read operation is executed on a merged view of the sequence of
SSTables and the memtable

Implementation

• Tablet Serving
– Tablet Recovery

1) Tablet server reads its metadata from the METADATA table (lists of SSTables
that comprise a tablet and a set of a redo points, which are pointers into any
commit logs that may contain data for the tablet)

2) The tablet server reads the indices of the SSTables into memory and
reconstructs the memtable by applying all of the updates that have a
committed since the redo points

Implementation

• Compactions
– Minor compaction

• When memtable size reaches a threshold, memtable is frozen, a new
memtable is created, and the frozen memtable is converted to a new SSTable
and writen to GFS

• Two goals: shrinks the memory usage of the tablet server, reduces the amount
of data that has to be read from the commit log during a recovery

Implementation

• Compactions
– Merging compaction

• Problem: every minor compaction creates a new SSTable (=> arbitrary number
of SSTables !)

• Solution: periodic merging of a few SSTables and the memtable

Implementation

• Compactions
– Major compaction

• It is a major compaction that rewrites all SSTables into exactly one SSTable
that contains no deletion information or deleted data

• Bigtable cycles throught all of it tablets and regularly applies major compaction
to them (=reclaim ressources used by deleted data in a timely fashion)

Refinements

• Locality groups
– Clients can group multiple column families together into a locality

group => more e cient reads!ffi
• A separate SSTable is generated for each locality group in each tablet

• In-memory
– A locality group can be declared to be in-memory => no need for

disk access!

• Compression
– Clients can control wether or not the SSTables for a locality group

are compressed
• Compression format is applied to each SSTable block (64KB)

• Two-pass Compression: fist pass uses Bentley and McIlroy’s scheme, second
pass uses a fast compression that looks for repetions in 16 KB window of the
data (encode rate = 100-200 MB/s, decode rate = 400-1000 MB/s)

Refinements

• Caching for read performance
– Tablet servers use two levels of caching

• The Scan Cache : high level cache for key-value pairs returned by the
SSTable interface to the tablet server code

• The Block Cache : low level cache for SSTables blocks read from GFS

Refinements

• Bloom filters
– Problem: read operation has to read from all SSTables

that make up the state of a tablet
• Lot of disk access

– Solution: use Bloom filers for each SSTable in a
particular locality group

• Bloom filter uses a small amount of memory and permit to
know if a SSTable doesn’t contain a specified row/column pair

• Most lookups for non existent rows or columns do not need to
touch disk.

Refinements
• Commit-log implementation

– Problem: If we kept the commit log for each tablet in a separate log
file, a very large number of files would be written concurrently

• in GFS = large number of disk seeks to write to di erent physical log files … ff

– Solution: Append mutations to a single commit log per tablet server,
co-mingling mutations for di erent tablets in the same physical log file ff

• One log provides significant performance benefits during normal operation

• Using one log complicates recovery … ! Sorting commit-log in a distributed way
before reassigned the tablets

Refinements

• Speeding up tablet recovery
– If Master moves a tablet from one tablet server to another, the

source tablet server first does minor compaction on that tablet

– After this compaction, the source tablet server stops serving
the tablet

– Before unloads the tablet, the source tablet server does
another (very fast) minor compaction to eliminate any
remaining un-compacted state in the tablet server’s log that
arrived while the first minor compacon was being performed

– Tablet can now be loaded on another tablet server

Refinements

• Exploiting immutability
– Various parts of the Bigtable system have been simplified by

the fact that all of the SSTables generated are immutable
• No need for synchronization when reading from SSTables => easy

concurrency control over rows

• The only mutable data structures accessed by both reads and writes
is the “memtable” => each memtable row use copy-on-write and allow
reads and writes to proceed in parallel

– Garbage collection on obsolete SSTables
• Master removes obsolete SSTables (in the METADATA table) as a

mark-and-sweep garbage collection over the sate of SSTables

– Immutability of SSTables permit to split tablets quickly
• Child tablets share the SSTables of the parent tablet

Performance evaluation (2006)

• Bigtable cluster
– 500 tablet servers

• Configured to use 1 GB RAM

• Dual-core Opteron 2 GHz, Gigabit Ethernet NIC

• Write to a GFS cell (1786 machines with 2 x 400 GB IDE)

– 500 clients

– Network round-trip time between any machine < 1 millisecond

Performance evaluation (2006)

• Sequential writes
– Used R row keys partitioned and assigned to N clients

– Single unique random string row key (uncompressible)

• Random writes
– Similar to Sequential writes except row key hashed modulo R

• Sequential reads
– Used R row keys partitioned and assigned to N clients

• Random reads
– Similar to Sequential reads except row key hashed modulo R

• Random reads (memory)
– Similar to Random reads benchmark except locality group that contains the data is

marked as in-memory

• Scans
– Similar to Random reads but uses support provided by Bigtable API for

scanning over all values in a row range (reduces RPC)

Performance evaluation (2006)

• Reads

• Writes

• Scans

Experience (2006)
• Real applications

– Currently in use: (2022)
• Jan 2022: BT manages over 10 Exabytes of

data, 5 billion requests per second

• Google indexing, Gmail, Google Analytics,
Google Maps, Google Books, Google Earth,
Personalized search, … also Youtube

– Use in 2006:

Experience (2006)

• Lessons
– Large distrib. systems are vulnerable to many types of failures

• memory and network corruption

• large clock skew

• hung machines

• extended and asymmetric partitions

• bugs,

• overflow

• planned and unplanned hardware maintenance, …

– Importance of proper system-level monitoring
• lock contention detection on tablet data structures

• slow writes to GFS while committing Bigtable mutations

• stuck access to METADATA when METADATA tablets unavailable

• track down all clusters via Chubby

– The value is in simple design

Experience

• When to use
– Low latency access to big data

– Good for > 1TB of data, data elems < 10MB

– Map-reduce, Spark applications

– Real-time analytics

– Not for interactive SQL queries

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

