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Spanner



Introduction

• Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database.
– First system to distribute data at global scale and 
– Support externally-consistent distributed transactions.

• A novel time API that exposes clock uncertainty is 
critical to provide:
– External consistency

• If T1 commits before T2 starts, then ts(T1)<ts(T2), and T2 must see 
T1's writes, globally.

– Non-blocking reads in the past, 
– Lock-free read-only transactions, and 
– Atomic schema changes.



Introduction

• Shards data across many sets of Paxos state 
machines in data-centers spread globally.
– Replication is used for global availability and geographic 

locality; 
• Clients automatically failover between replicas.

• Managing cross-datacenter replication is main focus.

– Spanner automatically:
• Reshards data across machines on the changed amount of data or 

number of servers.

• Migrates data across machines to balance load and in response to 
failures.

– Spanner has evolved from a Bigtable-like versioned key-
value store into a temporal multi-version database.



Implementation

• Spanner deployment is                                               
called a universe                                                               
(there are only a few universes)

• Spanner is organized as a set of zones.
– Unit of physical isolation: one or more zones in a data center (DC).

• Analog of a deployment of Bigtable servers.

– Unit of administrative deployment.

– Locations across which data can be replicated.

– 1 zonemaster – [100,1000*n] spanservers, n~10
• zonemaster assigns data to spanservers; 

• spanservers serve data to clients.

– Universemaster: console displaying status of zones; debugging.

– Placement driver: automated movement of data across zones on 
the timescale of minutes.



Spanserver Software Stack

• How replication and distributed txns are layered?
– Onto BigTable-based storage manager.

• Each sserver responsible for 100-1000 tablets
• Tablet = A bag of mappings: 

– (key:string,TS:int64)→string
– Similar to BigTable tablet
– Multi-version database (not KV) 
– Tablet stores 

• B-tree-like files and a WAL (log)

• For replication, each sserver
– Implements single Paxos state                                               

machine on each tablet



Spanserver Software Stack

• Paxos implementation:
– Each state machine stores its metadata and log in its corresp. tablet.

– Long-lived leaders with time-based leader leases (10s)

– Logs every Paxos write twice: tablet’s and Paxos log

– Writes to slave replicas are applied by Paxos in a timestamp order 

• Paxos implements consistently replicated bag of 
mappings
– KV mapping state of ∀ replica is stored in corresponding tablet.

– Writes must initiate the Paxos protocol at the participant leader.
• Other participants are slaves.

– Reads access state directly from the tablet at any replica.

– Set of replicas is collectively a Paxos group.



Spanserver Software Stack

• A leader spanserver 
– Uses a lock table to implement concurrency control.
– Implem. a transaction manager to support distributed txns.

• Distributed, eager replication (see lecture on Replication)

– If txn involves only one Paxos group, it can bypass TM.
• Lock tables provide transactionality

– If txn involves more than one Paxos group
• Groups’ leaders coordinate to perform 2PC
• One of the participant groups is chosen as coordinator leader.
• Slaves in that group are called coordinator slaves.



Directories and                             
Placement
• Bucketing abstraction called                                       

a directory
– Set of contiguous keys that share common prefix (~50MB).
– Directories allow apps to control locality of their data

• Choosing the keys carefully.
• Keys in directory have the same prefix (see Data model)

• A directory is the unit of data placement.
– Data in directory has the same replication configuration.
– Placement of dirs can be specified by an application.

• Placement-specification language allows admin to specify
– the number and types of replicas, and 
– the geographic placement of those replicas.



Directories and Placement

• A Paxos group is a set of directories.
– Directories in PG are often accessed together.
– This is how we obtain locality of data.
– Movement between Paxos groups is in directories

• To shed load from Paxos group; to put dirs frequently accessed 
together into the same group; or to move a directory into a group 
that is closer to its ancessors.

• Movedir moves the data in the background 
– Only last part is moved in txn (to update metadata).

• Spanner tablet is different from BigT tablet
– Can include different ranges (directories) of KV pairs.
– Colocate multiple dirs that are freq accessed together.



Spanner Data Model

• What Spanner exposes to applications?

• Semi-relational tables & syncronous replication
– Lead by the popularity of Megastore (300 apps but low performance)

• Megastore apps: Gmail, Picasa, Calendar, Android Market, and AppEngine

– Simpler data model & support for sync replication across DC

• SQL-like query language 
– The need to include a SQL-like query language supported by popularity of 

Dremel (an interactive data-analysis tool)

• General-purpose transactions.
– Lead by lack of cross-row transactions in BigT.

• 2PC too expensive? Performance or availability problems?

– Better that apps programmers deal with performance problems.
• Use snapshot read, careful organization of data, overuse of txns, ... 

– Running 2PC over Paxos mitigates the availability problems.



Spanner Data Model

• Spanner’s data model is semi-relational
– Every row is named with ordered set of primary-key columns.
– A relation is a mapping from PK columns to non-key clmns.
– This is where Spanner still looks like a key-value store.



Spanner Data Model

• Example schema:
– Photo metadata on per-user, per-album basis.

• Schema language is similar to Megastore’s.

– Every database must be partitioned by clients into one or 
more hierarchies of tables.

• INTERLEAVE IN

• ON DELETE CASCADE

– This allows clients to                                                               
describe the locality                                                         
relationships that exist                                                       
between multiple tables.

• Necessary for good                                                                          
performance in a sharded,                                                            
distributed database. 



TrueTime

• TrueTime represents time as a TTinterval
– Interval with bounded time uncertainty!

• Endpoints of a TTinterval are of type TTstamp.

– Define the instantaneous error bound as ε.
• Half of the TTinterval width; the average error bound as ε.

– Guaranteed: 
• tt = TT.now()  =>  tt.earliest ≤ tabs (enow ) ≤ tt.latest

– Time references: GPS and atomic clocks.
• Synchronisation among clocks every 30s 
• ε is usually a sawtooth function of time: it varies from 1ms to 

7ms; ε is about 4ms (sawtooth bounds).
• Drift rate is set at 200 μs/s (micros).

_

_



Concurrency Control

• TrueTime is used to guarantee the correctness 
properties in concurrency control.

• Those properties are used to implement features:
1) externally consistent transactions, 
2) lock-free read-only transactions, and 
3) non-blocking reads in the past.

●  We will distinguish writes as seen by 
1) Paxos, from 
2) Spanner client writes.



Timestamp                                
Management
• Read/Write transaction

– Uses Paxos and 2PC

• Read-only transaction                                                   
has performance benefits of snapshot isolation
– It must be predeclared as not having any writes.
– Reads execute without locking, at a system-chosen timestamp, 

so that incoming writes are not blocked.

• Snapshot read is a read in the past 
– Executes without locking.
– A client specifies a timestamp, or provide an upper bound on 

TS’s staleness.
– Read proceeds at any replica that is sufficiently up-to-date.



Paxos Leader Leases

• Paxos uses timed leases to make leadership       
long-lived (10s)

• Potential leader sends requests for timed lease 
votes.
– When receiving a quorum of votes, leader has a lease.
– Lease is extended on a successful write; and, leader requests 

lease extensions if near expiration.

• Leader’s lease interval 
– Starting when it discovers it has a quorum of lease votes, and 
– Ending when it no longer has a quorum of lease votes



Paxos Leader Leases

• Spanner depends on disjointness invariant:
– For each Paxos group, each Paxos leader’s lease interval 

is disjoint from every other leader’s.

• Paxos implementation allows leader to abdicate
– Leader releases slaves from its lease 

• Spanner constrains when abdication is permissible.
– Leader must wait until TT.after(smax) = true.



Assigning TS to RW Transactions

• Transactional reads and writes use two-phase locking.
– TS can be assigned after all locks acquired, but before any 

locks have been released. 
– Spanner assigns TS to txn that Paxos assigns to the Paxos 

write for the txn commit.

• Spanner depends on the monotonicity invariant:
– Within each Paxos group, Spanner assigns TS to Paxos writes 

in monotonically increasing order, even across leaders.
– This invariant is enforced across leaders by making use of the 

disjointness invariant: 
• Leader must only assign TS within the interval of leader’s lease.



Assigning TS to RW Transactions

• External-consistency invariant: 
– If the start of T2 occurs after the commit of T1, then the commit 

TS of T2 must be greater than the commit TS of T1 .
• tabs(e1

commit) < tabs (e2
start)  s⇒ 1 < s2, s1=TS(T1), s2=TS(T2), ei event of Ti

• Commit request at the coordinator leader (abbr. CL)
– Arrival of commit request for a write Ti is the event ei

server.
– start  rule:  CL for a write Ti assigns a commit TS si no less 

than the value of TT.now().latest, computed after ei
server

• "start" rule ensures:  tabs(ei
server) < si.

– commit wait rule:  CL ensures that clients cannot see any 
data committed by Ti until TT.after(si) is true. 

• "commit wait" rule ensures:  si < tabs(ei
commit).



Assigning TS to RW Transactions

• Proof of the external consistency invariant.
– s1=TS(T1), s2=TS(T2)
– tabs(e1commit) < tabs (e2start) ⇒ s1 < s2



Serving Reads at a Timestamp

• Is replica’s state sufficiently up-to-date to read?
– To determine this Spanner uses monotononicity invariant. 
– Every replica tracks a value at tsafe = max TS up-to-date.

• Replica can satisfy a read at a timestamp t if t <= tsafe.
– Define tsafe = min(tsafe

Paxos
, tsafe

TM)

• tsafe for Paxos
– Tsafe

Paxos = TS of highest-applied Paxos write

– Judgement:

TS-s increase monotonically + Writes applied in order ⟹ 

Writes will no longer occur at or below Tsafe
Paxos.



Serving Reads at a Timestamp

• tsafe for TM.

–  Tsafe
TM = ∞

• IF there are no prepared, but not commited txns (between 2P of 2PC)

• This means any TS can be used (also current time)

–  Tsafe
TM = mini (si,g

prepare)-1
• IF there are any prepared txns that are not commited.
• State affected by prepared txns is indeterminate.

– It is not known if txns will commit.

• Every coordinator leader (for a group g) for a txn Ti assigns a prepare 
TS si,g

prepare to its prepare record 

– Coordinator leader ensures: Commit TS si  ≥ si,gprepare for all g.

• Therefore, for every replica in a group g, over all transactions Ti 
prepared at g, Tsafe

TM = mini (si,g
prepare)-1 over all transactions prepared at g.



Assigning TS to RO Transactions

• A read-only txn executes in two phases:
– Assign a timestamp sread to txn, and 
– Execute the txn’s reads as snapshot reads at sread.

• Snapshot reads execute at any replicas sufficiently up-to-date.

• Simple assignment of sread = TT.now().latest 
– Assign at any time after a transaction starts. 
– Preserves external consistency by an argument analogous to 

that presented for writes.
– Txn may block at sread, if tsafe has not advanced sufficiently.
– To reduce the chances of blocking, Spanner should assign the 

oldest TS that preserves external consistency.



Distributed database system F1



Distributed DBMS F1 
• F1 is a distributed relational database system 

– Supports the AdWords business

– Filial 1 hybrid: cross mating NoSQL and RDBMS systems 
• Scalability of NoSQL systems like Bigtable

• Consistency and usability of traditional SQL databases

• The key goals of F1’s design are
– Scalability, availabiity, consistentcy and usability

– These design goals were considered mutually exclusive

• F1 inherits from Spanner
– Extremely scalable data storage

– Synchronous cross-datacenter replication

– Strong consistency



Distributed DBMS F1 

• Features of F1
– Extremely scalable data storage (from Spanner, Bigtable)

– Synchronous replication using 2PC and Paxos
• Implies higher commit latency

– Hierarchical schema model with structured data types
• F1 schema makes data clustering explicit

• Asynchronous schema changes

– Distributed SQL query engine
• Asynchronous reads, Optimistic transactions, Transactionally consistent 

secondary indexes

– Automatic change tracking and publishing

• Experiences with AdWords
– 100s of apps, 1000s users (in Ads), 100TB DB, 

– Availability 99.999%, latency same as in old MySQL



Basic architecture

• Interfaces: F1 client library

• Avoid unnecessarily 
increasing request latency

– Requests may transparently go to 
the remote Dcs

• F1, Spanner collocated in DC
– F1 servers can also use Spanner 

servers in remote Dcs

• Sservers access data in CFS
– Never from remote DC

• F1 srvrs are mostly stateless
– Except for 2PC txn lock table

– Can be added, removed quickly

• Shared slave pool
– Runs parts of query plans (F1 

processes)



Data model

• F1 data model is very similar to the Spanner data model.
– Spanner later adopted F1’s data model

– Relational schemas similar to that of a traditional RDBMS
• Extensions: explicit table hierarchy and columns with Protocol Buffer DTyps

• Logically, tables in F1 schema can be organized into hierarchy.
– Physically, child tables clustered with rows from its parent table

– Child table includes FK to parent table as a prefix of its primary key
• Stored in single Spanner directory (single Spanner server) so we get fast 

localized queries.

• Advantages: fast joins between tables in hierarchy, reduces the number of 
Spanner groups involved in txn, fast single root txns usually avoid 2PC.

– Hirarchies are not necessary; we get flat relational model

• Protocol buffers (columns with structured data types; one Span. blob)
– PBs include typed fields; Fields can also be nested Protocol Buffers

– Many tables in an F1 schema consist of a single Protocol Buffer column.
• At Google, PBs are ubiquitous for data storage and interchange between apps.



Data model



Transactions

• Experiences with eventual consistency systems
– Developers spend a lot of time building complex and error-prone 

mechanisms to cope with eventual consistency

– Google: Consistency problems should be solved at database level.

• F1 txns consists of multiple reads, optionally followed by a 
single write
– Three types of txns built on top of Spanner

– 1) Snapshot, 2) Pessimistic and 3) Optimistic transactions

• Snapshot txns
– RO txns with snapshot semantics; read as of a fixed Spanner TS

– Read from a local Spanner replica; with specific TS or current TS
• Later option: a txn may wait until concurrent txns commit

– No access to remote DCs!

– Default mode for SQL queries and for MapReduces



Transactions

• Pessimistic txns
– These txns map directly on to Spanner txns

– Centralized + Eager replication (2PC + Paxos)

– Stateful communications protocol that requires holding locks

– All requests get directed to the same F1 server

• Optimistic txns
– Read phase (arbitrarily long + no locks!), then a short write phase

– To detect row-level conflicts, rows are returned including latest TS 
• New commit TS is written into lock column on row update

• Client library collects these TSs and passes them back to an F1 server with write 
that commits txn

• F1 server creates a short-lived Spanner pessimistic transaction and re-reads the 
last modification TS for all read rows

• If any re-read TSs differ from client’s, F1 aborts the txn

• Otherwise, writes are sent to Spanner to commit txn



Transactions

• Optimistic txns (cont.)
– F1 clients use optimistic transactions by default

– Clients are involved more intensively in txns

– Advantages
• Tolerating misbehaved clients (no locks; R do not conflict W; abandoned txns)

• Long-lasting txns (pessimistic txns aborted while single-stepping) 

• Easier server-side retriability (self-contained txns; server has all data)

• F1 server failover (client can send txn to other server)

• Speculative writes (read data outside txn; no interference => spec. writes)

– Disadvantages
• Insertion phantoms (we have TSs of rows read at the beginning of txn)

• Low throughput under high contention (many updates result in abort)

– F1 users can mix optimistic and pessimistic transactions arbitrarily 
and still preserve ACID semantics.

• Inventive use of txns to speed-up applications



Query processing

• Key properties of F1 SQL query processing system
– Queries are executed either as (1) low-latency centrally executed 

queries or (2) distributed queries with high parallelism. 

– All data is remote and batching is used to mitigate network latency.

– All data is arbitrarily partitioned; few useful ordering properties.

– Queries use many hash-based repartitioning steps.

– Query trees comprise operators that stream data to later operators 
(as soon as possible) to maximize pipelining. 

– Hierarchically clustered tables have optimized access methods.

– Query data can be consumed in parallel.

– PB-valued columns provide first-class support for structured DTs.

– Spanner’s snapshot consistency model provides globally consistent 
results.



Centralized and Distributed Queries

• F1 SQL supports both centralized and distributed 
execution of queries.
– Centralized execution is used for short OLTP-style queries and the 

entire query runs on one F1 server node.

– Distributed execution is used for OLAP-style queries and spreads 
the query workload over worker tasks in the F1 slave pool

• Distributed queries always use snapshot transactions.

– The query optimizer uses heuristics to determine which execution 
mode is appropriate for a given query.



Distributed Query Example

• AdGroup =  collection of ads with 
some shared configuration.

• AdClick = records the 
Creative that the user was 
shown and the AdGroup from 
which the Creative was chosen.

• Creative = actual ad text. 

– Creatives can be shared by 
multiple AdGroups. 

• AdGroupCreative = link table 
between AdGroup and 
Creatives.



Distributed                                    
query
example

A possible query plan for this 
query.

z
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