
Spanner

Iztok Savnik, FAMNIT

Januar, 2023.

1

Literature
James C. Corbett, Et.al., Spanner: Google’s Globally-Distributed
Database, OSDI 2012.

Robert Morris, Lecture: Spanner, MIT 6.824, Distributed Systems, 2020.

Outline

• Introduction
• Software stack
• Data model
• TrueTime
• RW transactions
• RO transactions
• Snapshot reads
• Overview with examples

Introduction

• Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database.
– First system to distribute data at global scale and
– Support externally-consistent distributed transactions.

• A novel time API that exposes clock uncertainty is
critical to provide:
– External consistency:

• If T1 commits before T2 starts, then ts(T1)<ts(T2), and T2 must see
T1's writes, globally.

– Non-blocking reads in the past,
– Lock-free read-only transactions, and
– Atomic schema changes.

Introduction

• Shards data across many sets of Paxos state
machines in data-centers spread globally.
– Replication is used for global availability and geographic

locality;
• Clients automatically failover between replicas.
• Managing cross-datacenter replication is main focus.

– Spanner automatically:
• Reshards data across machines on the changed amount of data or

number of servers.
• Migrates data across machines to balance load and in response to

failures.

– Spanner has evolved from a Bigtable-like versioned key-
value store into a temporal multi-version database.

Implementation

• Spanner deployment is called a
universe (there are only a few universes)

• Spanner is organized as a set of zones.
– Analog of a deployment of Bigtable servers.
– Unit of administrative deployment.
– Locations across which data can be replicated.
– Unit of physical isolation: one or more zones in a DC.
– 1 zonemaster – [100,1000*n] spanservers, n~10

• The former assigns data to spanservers;
• The latter serve data to clients.

– Universemaster: console displaying status of zones; debugging.
– Placement driver: automated movement of data across zones

on the timescale of minutes.

Spanserver Software Stack

• How replication and distributed Xacts are layered?
– Onto BigT-based storage manager.

• Each sserver responsible for 100-1000 tablets
• Tablet = A bag of mappings:

– (key:string, TS:int64) → string
– Similar to BigT tablet
– Multi-version database (not KV)
– Table is stored

• B-tree-like files and a WAL (log)

• For replication, each sserver
– Implements single Paxos state

machine on each tablet

Spanserver Software Stack

• Paxos implementation:
– Long-lived leaders with time-based leader leases (10s)
– Logs every Paxos write twice (tablet’s and Paxos log)
– Writes are applied by Paxos in a timestamp order (see later!)

• Paxos implements consistently replicated bag of
mappings
– KV mapping state of ∀ replica is stored in corresponding tablet.
– Writes must initiate the Paxos protocol at the participant leader.

• Other participants are slaves.
– Reads access state directly from the tablet at any replica.
– Set of replicas is collectively a Paxos group.

Spanserver Software Stack

• A leader spanserver
– Uses a lock table to implement concurrency control.
– Implem. a transaction manager to support distributed Xacts.
– If Xact involves only one Paxos group, it can bypass TM.

• Lock tables provide transactionality
– If Xact involves more than one Paxos group

• Groups’ leaders coordinate to perform 2PC
• One of the participant groups is chosen as coordinator leader.
• Slaves in that group are called coordinator slaves.

Directories and
Placement
• Bucketing abstraction called a

directory
– Set of contiguous keys that share common prefix (~50MB).
– A directory is the unit of data placement.
– A Paxos group is a set of directories.
– Movement between Paxos groups in directories

• to shed load from a Paxos group;
• to put dirs frequently accessed together into the same group; or
• to move a directory into a group that is closer to its accessors.

– Spanner tablet is different from BigT tablet
• Includes different ranges of KV pairs.
• To colocate multiple directories that are freq accessed together.
• Moves the data in the background; not a single Xact.

Spanner Data Model

• Spanner exposes to applications:
– Semi-relational tables & syncronous replication

• Lead by the popularity of Megastore (300 apps)

– SQL-like query language
• Popularity of Dremel (an interactive data-analysis tool)

– General-purpose transactions.
• Lead by lack of cross-row transactions in BigT.
• 2PC too expensive? Performance or availability problems?
• Better that apps programmers deal with performance problems.

• Spanner’s data model is not purely relational
– Every row is named: with ordered set of primary-key columns.

• This requirement is where Spanner still looks like a key-value store

Spanner Data Model

• Example schema:
– Photo metadata on per-user, per-album basis.

• Schema language is similar to Megastore’s.

– Every database must be partitioned by clients into one or
more hierarchies of tables.

• INTERLEAVE IN
• ON DELETE CASCADE

– This allows clients to
describe the locality
relationships that exist
between multiple tables.

• Necessary for good
performance in a sharded,
distributed database.

TrueTime

• TrueTime represents time as a TTinterval
– Interval with bounded time uncertainty!

• Endpoints of a TTinterval are of type TTstamp.
– Define the instantaneous error bound as ε.

• Half of the TTinterval width; the average error bound as ε.

– Guaranteed:
• tt = TT.now() => tt.earliest ≤ tabs (enow) ≤ tt.latest

– Time references: GPS and atomic clocks.
• Synchronisation among clocks every 30s
• ε is varies from 1ms to 7ms; ε is about 4ms.
• Current applied drift rate is set at 200 μs/s (micros).

_

_

Concurrency Control

• TrueTime is used to guarantee the correctness
properties around concurrency control.

• Those properties are used to implement features:
1) externally consistent transactions,
2) lock-free read-only transactions, and
3) non-blocking reads in the past.

● We will distinguish writes
● as seen by Paxos from
● Spanner client writes.

Timestamp Management

• Read/Write transaction
– Uses Paxos and 2PC

• Read-only Xact has performance benefits of snapshot
isolation
– It must be predeclared as not having any writes.
– Reads execute without locking, at a system-chosen timestamp,

so that incoming writes are not blocked.
• A snapshot read is a read in the past

– Executes without locking.
– A client specifies a timestamp, or provide an upper bound on

TS’s staleness.
– Read proceeds at any replica that is sufficiently up-to-date.

Paxos Leader Leases

• Paxos uses timed leases to make leadership
long-lived (10s)
– Potential leader sends requests for timed lease votes.
– When receiving a quorum of votes, leader has a lease.
– Lease is extended on a successful write.
– Leader requests lease extensions if near expiration.
– Disjointness invariant:

• For each Paxos group, each Paxos leader’s lease interval is
disjoint from every other leader’s.

Assigning TS to RW Transactions

• Transact. reads and writes use two-phase locking.
– TS can be assigned after all locks acquired, but before any

locks have been released.
– Spanner assigns TS to Xact that Paxos assigns to the Paxos

write for the Xact commit.
• Spanner depends on the monotonicity invariant:

– Within each Paxos group, Spanner assigns TS to Paxos writes
in monotonically increasing order, even across leaders.

– This invariant is enforced across leaders by making use of the
disjointness invariant:

• Leader must only assign TS within the interval of its leader lease

Assigning TS to RW Transactions

• External-consistency invariant:
– If the start of T2 occurs after the commit of T1, then the commit

TS of T2 must be greater than the commit TS of T1 .
• tabs(e1

commit) < tabs (e2
start) s⇒ 1 < s2, s1=TS(T1), s2=TS(T2), ei event of Ti

• Commit request at the coordinator leader (abbr. CL)
– Arrival of commit request for a write Ti is the event ei

server.
– start CL for a write Ti assigns a commit TS si no less than

the value of TT.now().latest, computed after ei
server

– commit wait CL ensures that clients cannot see any data
committed by Ti until TT.after(si) is true.

• Commit wait ensures si < tabs(ei
commit).

Serving Reads at a Timestamp

• Is replica’s state sufficiently up-to-date to read?
– To determine this Spanner uses monotononicity invariant.
– Every replica tracks a value at tsafe = max TS up-to-date.
– Replica can satisfy a read at a timestamp t if t <= tsafe.

• Define tsafe = min(tsafe
Paxos

, tsafe
TM)

• Tsafe
Paxos = TS of highest-applied Paxos write

– TS inrease monotonically + writes applied in order => writes will no
longer occur at or below Tsafe

Paxos.
• Tsafe

TM = ∞, if no prepared Xacts (Xacts in between 2PC)
• Tsafe

TM = mini (si,gprepare)-1, if there are any prepared Xacts
– State affected by prepared Xacts is indeterminate.
– Participant leaders (for a group g) for a Xact Ti assigns a prepare

TS si,gprepare to its prepare record.
– Coordinator leader ensures: Commit TS si >= si,gprepare for all g.

Assigning TS to RO Transactions

• A read-only Xact executes in two phases:
– Assign a timestamp sread to Xact, and
– Execute the Xact’s reads as snapshot reads at sread.

• Snapshot reads execute at any replicas sufficiently up-to-date.

• Simple assignment of sread = TT.now().latest
– Assign at any time after a transaction starts.
– Preserves external consistency by an argument analogous to

that presented for writes.
– Xact may block at sread, if tsafe has not advanced sufficiently.
– To reduce the chances of blocking, Spanner should assign the

oldest TS that preserves external consistency.

Overview with examples

• We now overview the problems and solutions
presented previously
– RW transactions use 2PC gouided by Paxos.

• Every Paxos write is replicated to sservers in Paxos group.
• Sservers in a group are in different data centers.
• Locking guaratees serializability regardless of TS-s.
• commit wait assures monotonicity of TS despite of time drifts.

– RO transactions use snapshot isolation
• No locks, no 2PC, no Paxos: reads from the local replica.
• Safe time solution uses monotonicity invariant.

– RO T2 starts after RW T1, assumed.
– T1 has to wait until TS(T2) < ssafe (maintained by replica).

RO Xact: Overview

• Spanner eliminates two overheads for RO Xact
– Read from local replicas (avoid Paxos among DC-s).

• But note local replica may not be up to date!
– No locks, no 2PC, no transaction manager.

• Again to avoid cross-DC msgs (Paxos).
• And to avoid slowing down r/w transactions.

– Tables 3 and 6 show a 10x latency improvement
• This is a big deal.

– How to square this with correctness?
• Let’s see now examples.

RO Xact: Correctness constraints

• Serializable
– Same results as if Xacts executed one-by-one.

• Even though they may actually execute concurrently.

• RO Xact must essentially fit between RW Xacts.
– See writes from prior transactions, not from subsequent.
– Even though concurrent with RW Xacts! And not locking!

• Externally consistent
– T1 completes before T2 starts, T2 must see T1’s writes.
– "Before" refers to real (wall-clock) time.
– Similar to linearizable.
– Rules out reading stale data.

RO Xact: Why not just read?

• Suppose: two bank transfers, and Xact that reads both.
– T1: Wx Wy C
– T2: Wx Wy C
– T3: Rx Ry

• The results won't match any serial order!
– Not T1, T2, T3.
– Not T1, T3, T2.

• We want T3 to see all of T2's writes, or none.
• We want T3's reads to all occur at the same point

relative to T1/T2.

• RO Xact: Snapshot Isolation (SI)

• Synchronize all computers' clocks (to real time).
• Assign every transaction a time-stamp.

– RW: commit time.
– RO: start time.

• We want results as if one-at-a-time in TS order.
– Even if actual reads occur in different order.

• Replica stores multiple TS-ed versions of each record.
– All of a RW Xact's writes get the same time-stamp.

• An RO Xact’s reads see version as of Xact’s TS.
– The record version with the highest TS less than Xact’s.

RO Xact: Example with SI

 x@10=9 x@20=8
 y@10=11 y@20=12
 T1 @ 10: Wx Wy C
 T2 @ 20: Wx Wy C
 T3 @ 15: Rx Ry

• Now T3's reads will both be served from the @10 versions.
– T3 won't see T2's write even though T3's read of y occurs after T2.

• Now the results are serializable: T1 T3 T2.
• The serial order is the same as TS order!

– Why is it OK for T3 to read the old value of y even though there's a
newer value?

RO Xact: Local replica up-to-date?

• Problem:
– What if T3 reads x from replica that hasn't seen T1's write?

• Because the replica wasn't in the Paxos majority?

• Solution:
– Replica "safe time".
– Paxos leaders send writes in TS order.
– Before serving a read at time 20, replica must see Paxos write

for time > 20.
• So it knows it has seen all writes < 20.

– Must also delay if prepared but uncommitted Xacts.
• RO Xacts can read from local replica, usually fast.

RO Xact: Clocks of of sync?

• Problem:
– What if clocks are not perfectly synchronized?

• Solution:
– If RW T1 finishes before RO T2 starts, TS1 < TS2.
– start rule:

• xaction TS = TT.now().latest
• for RO, at start time
• for RW, when commit begins

– commit wait, for RW Xact:
• Before completing commit, delay until TS < TS.now().earliest
• Guarantees that TS has passed.

RO Xact: Example of clock problem

RW T0 @ 0: Wx1 C
RW T1 @ 10: Wx2 C
RO T2 @ 5: Rx?
(C for commit)

• Problem if RO Xact's TS is too small.
– T2 reads the version of x at time 0, which was 1.

• But T2 started after T1 committed (in real time).
– External consistency requires that T2 see x=2.

• So we need a way to deal with incorrect clocks!

RO Xact: Example of clock problem
 RW T0 @ 1: Wx1 C
 |1-------------10| |11----------------20|
 RW T1 @ 10: Wx2 P C
 |10-----------12|
 RO T2 @ 12: Rx?

• Scenario: T1 commits, T2 starts, T2 must see T1's writes.
– We need TS1 < TS2.
– (P for T1's Prepare, C for T1 finishing Commit)
– At P, T1 chooses TS1 = TT.now().latest = 10
– commit wait forces C to occur after TS1.
– T2 starts after C by assumption, and thus after time 10.
– TS2 = TT.now().latest, which is after current time, which is after 10.
– So TS2 > TS1 and T2's Rx sees T1's Wx.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

