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Outline
 Introduction
 Distributed and parallel database design
 Distributed data control
 Distributed Query Processing
 Distributed Transaction Processing
 Data Replication
 Database Integration – Multidatabase Systems
 Parallel Database Systems
 Peer-to-Peer Data Management
 Big Data Processing
 NoSQL, NewSQL and Polystores
 Web Data Management 
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Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Introduction to QO
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing

 Slides of the 3rd Edition of the textbook !
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Query Processing in a DDBMS

high level user query

query
processor 

Low-level data manipulation
 commands for D-DBMS
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Query Processing Components
•Query language that is used

➡SQL: “intergalactic dataspeak”

•Query execution methodology

➡The steps that one goes through in executing high-level (declarative) user 
queries.

•Query optimization

➡How do we determine the “best” execution plan?

•We assume a homogeneous D-DBMS
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SELECTENAME
FROM EMP,ASG
WHERE EMP.ENO = ASG.ENO 
AND RESP = "Manager"

Strategy 1
ENAME(RESP=“Manager”EMP.ENO=ASG.ENO(EMP×ASG))

Strategy 2
 ENAME(EMP ⋈ENO (RESP=“Manager” (ASG))

Strategy 2 avoids Cartesian product, so may be “better”

Selecting Alternatives
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What is the Problem?
Site 1 Site 2 Site 3 Site 4 Site 5

EMP1= ENO≤“E3”(EMP) EMP2= ENO>“E3”(EMP)ASG2= ENO>“E3”(ASG)ASG1=ENO≤“E3”(ASG) Result

Site 5

Site 1 Site 2 Site 3 Site 4

ASG1 EMP1 EMP2ASG2Site 4Site 3

Site 1 Site 2

Site 5

EMP’
1=EMP1 ⋈ENO  ASG’

1

result= (EMP1  U EMP2)⋈ENOσRESP=“Manager”(ASG1 U ASG2)

EMP’
2=EMP2 ⋈ENO  ASG’

2

'
2EMPEMPresult  '

1

1Manager""RESP1 ASGσASG ' 2Manager""RESP2 ASGσASG '

'
1ASG '

2ASG

'
1EMP '

2EMP
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Cost of Alternatives
•Assume
➡size(EMP) = 400, size(ASG) = 1000
➡tuple access cost = 1 unit; tuple transfer cost = 10 units
➡ASG and EMP are locally clustered on attributes RESP and ENO

•Strategy 1
➡produce ASG': assume 20 managers; (10+10)  tuple access cost = 20
➡ transfer ASG' to the sites of EMP: (10+10)  tuple transfer cost = 200
➡produce EMP': (10+10)  tuple access cost  2 = 40
➡ transfer EMP' to result site: (10+10)  tuple transfer cost  = 200

Total Cost 460
•Strategy 2
➡ transfer EMP to site 5: 400  tuple transfer cost = 4,000
➡ transfer ASG to site 5: 1000  tuple transfer cost = 10,000
➡produce ASG': 1000  tuple access cost = 1,000
➡ join EMP and ASG': 400  20  tuple access cost = 8,000

Total Cost 23,000
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Query Optimization Objectives
•Minimize a cost function

● I/O cost + CPU cost + communication cost
● These might have different weights in different distributed environments

•Wide area networks 
➡communication cost may dominate or vary much

✦ bandwidth
✦ speed
✦ high protocol overhead

•Local area networks
➡communication cost not that dominant
➡total cost function should be considered

•Can also maximize throughput
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Complexity of Relational 
Operations

•Assume 
➡relations of cardinality n
➡sequential scan

Operation Complexity

Select
Project

(without duplicate elimination)
O(n)

Project
(with duplicate elimination)

Group
O(n  log n)

Join
Semi-join
Division
Set Operators

O(n  log n)

Cartesian Product O(n2)
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Query Optimization Issues – 
Types Of Optimizers
• Exhaustive search
➡ Cost-based
➡ Optimal
➡ Combinatorial complexity in the number of relations
➡ Dynamic programming

• Heuristics
➡ Not optimal 
➡ Restrict the solution space
➡ Regroup common sub-expressions
➡ Perform selection, projection first
➡ Replace a join by a series of semijoins
➡ Reorder operations to reduce intermediate relation size
➡ Optimize individual operations
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Query Optimization Issues – 
Optimization Granularity
• Single query at a time

➡ Cannot use common intermediate results

• Multiple queries at a time

➡ Efficient if many similar queries

➡ Decision space is much larger
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Query Optimization Issues – 
Optimization Timing
•Static
➡Compilation  optimize prior to the execution
➡Difficult to estimate the size of the intermediate results⇒error 

propagation
➡Can amortize over many executions
➡R*

•Dynamic
➡Run time optimization
➡Exact information on the intermediate relation sizes
➡Have to reoptimize for multiple executions
➡Distributed INGRES

•Hybrid
➡Compile using a static algorithm
➡If the error in estimate sizes > threshold, reoptimize at run time
➡Mermaid
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Query Optimization Issues – 
Statistics
•Relation
➡Cardinality
➡Size of a tuple
➡Fraction of tuples participating in a join with another relation

•Attribute
➡Cardinality of domain
➡Actual nuymber of distinct values

•Common assumptions
➡Independence between different attribute values
➡Uniform distribution of attribute values within their domain
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Query Optimization Issues – 
Decision Sites
•Centralized
➡Single site determines the “best” schedule
➡Simple
➡Need knowledge about the entire distributed database

•Distributed
➡Cooperation among sites to determine the schedule
➡Need only local information
➡Cost of cooperation

•Hybrid
➡One site determines the global schedule
➡Each site optimizes the local subqueries
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Query Optimization Issues – 
Network Topology
• Wide area networks (WAN) – point-to-point
➡ Characteristics

✦ Low bandwidth
✦ Low speed
✦ High protocol overhead

➡ Communication cost will dominate; ignore all other cost factors
➡ Global schedule to minimize communication cost
➡ Local schedules according to centralized query optimization

• Local area networks (LAN)
➡ Communication cost not that dominant
➡ Total cost function should be considered
➡ Broadcasting can be exploited (joins)
➡ Special algorithms exist for star networks
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Distributed Query Processing 
Methodology

Calculus Query on Distributed Relations

CONTROL
SITE

LOCAL
SITES

Query
Decomposition

Data
Localization

Algebraic Query on Distributed
Relations

Global
Optimization

Fragment Query

Local
Optimization

Optimized Fragment Query
with Communication Operations

Optimized Local Queries

GLOBAL
SCHEMA

FRAGMENT
SCHEMA

STATS ON
FRAGMENTS

LOCAL
SCHEMAS
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Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Introduction to query optimization
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing
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Query Decomposition
Input :  Calculus query on global relations
•Normalization
➡manipulate query quantifiers and qualification

•Analysis
➡detect and reject “incorrect” queries
➡possible for only a subset of relational calculus

•Simplification
➡eliminate redundant predicates

•Restructuring
➡calculus query  algebraic query
➡more than one translation is possible
➡use transformation rules
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Normalization
• Lexical and syntactic analysis
➡ check validity (similar to compilers)
➡ check for attributes and relations
➡ type checking on the qualification

• Put into normal form
➡ Conjunctive normal form                  (p11∨p12∨ … ∨ p1n) ∧ … ∧(pm1∨ pm2 ∨ … ∨pmn)
➡ Disjunctive normal form                  (p11∧ p12∧ … ∧p1n) ∨… ∨ (pm1∧ pm2 ∧…∧pmn)
➡ OR's mapped into union
➡ AND's mapped into join or selection
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Normalization - example
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Analysis
•Refute incorrect queries
•Type incorrect
➡If any of its attribute or relation names are not defined in the global 

schema
➡If operations are applied to attributes of the wrong type

•Semantically incorrect
➡Components do not contribute in any way to the generation of the result
➡Only a subset of relational calculus queries can be tested for correctness
➡Those that do not contain disjunction and negation
➡To detect

✦ connection graph (query graph)
✦ join graph
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Analysis – Example
SELECT ENAME,RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO 
AND ASG.PNO = PROJ.PNO 
AND PNAME = "CAD/CAM"
AND DUR ≥ 36
AND TITLE = "Programmer"

Query graph Join graph
DUR≥36

PNAME=“CAD/CAM”
ENAME

EMP.ENO=ASG.ENO ASG.PNO=PROJ.PNO

RESULT

TITLE =
“Programmer” RESP

ASG.PNO=PROJ.PNOEMP.ENO=ASG.ENO
ASG

PROJEMP EMP PROJ

ASG



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/24

Analysis
If the query graph is not connected, the query may be 
wrong or use Cartesian product
SELECT ENAME,RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO 
AND PNAME = "CAD/CAM" 
AND DUR > 36
AND TITLE = "Programmer"

PNAME=“CAD/CAM”
ENAME RESULT

RESP

ASG

PROJEMP
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Simplification
• Why simplify?

➡ Remember the example
• How? Use transformation rules

➡ Elimination of redundancy
✦ idempotency rules

p1 ∧ ¬( p1)  false 
p1 ∧ (p1∨ p2)  p1

p1 ∧ false  p1

…
➡ Application of transitivity
➡ Use of integrity rules
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Simplification – Example
SELECT TITLE
FROM EMP
WHERE EMP.ENAME = "J. Doe"
OR (NOT(EMP.TITLE = "Programmer")
AND (EMP.TITLE = "Programmer" 
OR EMP.TITLE = "Elect. Eng.") 
AND NOT(EMP.TITLE = "Elect. Eng."))


SELECT TITLE
FROM EMP
WHERE EMP.ENAME = "J. Doe"
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Restructuring
•Convert relational calculus to 

relational algebra
•Make use of query trees
•Example
Find the names of employees other than J. 
Doe who worked on the CAD/CAM project 
for either 1 or 2 years.
SELECT ENAME
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO 
AND ASG.PNO = PROJ.PNO 
AND ENAME≠ "J. Doe"
AND PNAME = "CAD/CAM" 
AND (DUR = 12 OR DUR = 24)

ENAME

σDUR=12 OR DUR=24

σPNAME=“CAD/CAM”

σENAME≠“J. DOE”

PROJ ASG EMP

Project

Select

Join

⋈PNO

⋈ENO
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Restructuring –Transformation 
Rules
• Commutativity of binary operations

➡R × S  S × R
➡R ⋈S  S ⋈R
➡R  S  S  R

• Associativity of binary operations
➡( R × S) × T  R × (S × T)
➡(R ⋈S) ⋈T  R  (⋈ S ⋈T)

• Idempotence of unary operations
➡A’(A’’(R))  A’(R)
➡p1(A1)(p2(A2)(R))  p1(A1)∧p2(A2)(R)

where R[A] and A'  A, A"  A and A'  A" 
• Commuting selection with projection
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Restructuring – Transformation 
Rules
• Commuting selection with binary operations

➡p(A)(R × S)  (p(A) (R)) × S
➡p(Ai)

(R ⋈(Aj,Bk)S)  (p(Ai) 
(R)) ⋈(Aj,Bk)S

➡p(Ai)
(R  T)  p(Ai) 

(R)  p(Ai) 
(T)

where Ai belongs to R and T
• Commuting projection with binary operations

➡C(R × S)  A’(R) × B’(S)
➡C(R ⋈(Aj,Bk)S)  A’(R) ⋈(Aj,Bk) B’(S)

➡C(R  S)  C(R)  C(S)
where R[A] and S[B]; C = A'  B' where  A'  A, B'  B
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Example
Recall the previous example:
Find the names of employees other 
than J. Doe who worked on the 
CAD/CAM project for either one or two 
years.

SELECT ENAME
FROM PROJ, ASG, EMP
WHERE ASG.ENO=EMP.ENO
AND ASG.PNO=PROJ.PNO
AND ENAME ≠ "J. Doe"
AND PROJ.PNAME="CAD/CAM"
AND (DUR=12 OR DUR=24)

ENAME

DUR=12 ∧ DUR=24

PNAME=“CAD/CAM”

ENAME≠“J. DOE”

PROJ ASG EMP

Project

Select

Join

⋈PNO

⋈ENO
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Equivalent Query
ENAME

PNAME=“CAD/CAM” ∧ (DUR=12  DUR=24)  ENAME≠“J. Doe”∧ ∧

× 

PROJ ASGEMP

⋈PNO,ENO 
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EMP

ENAME

ENAME ≠ "J. Doe"

ASGPROJ

PNO,ENAME

PNAME = "CAD/CAM"

PNO

DUR =12DUR=24

PNO,ENO

PNO,ENAME

Restructuring

⋈PNO

⋈ENO
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Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Introduction to query optimization
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing
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Data Localization
Input:  Algebraic query on distributed relations
•Determine which fragments are involved
•Localization program
➡substitute for each global query its materialization program
➡optimize
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Example
Recall the previous example:
Find the names of employees other 
than J. Doe who worked on the 
CAD/CAM project for either one or two 
years.

SELECT ENAME
FROM PROJ, ASG, EMP
WHERE ASG.ENO=EMP.ENO
AND ASG.PNO=PROJ.PNO
AND ENAME ≠ "J. Doe"
AND PROJ.PNAME="CAD/CAM"
AND (DUR=12 OR DUR=24)

ENAME

DUR=12∨DUR=24

PNAME=“CAD/CAM”

ENAME≠“J. DOE”

PROJ ASG EMP

Project

Select

Join

⋈PNO

⋈ENO
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Example
Assume 

➡ EMP is fragmented into EMP1, EMP2, EMP3 
as follows:
✦ EMP1= ENO “E3”≤ (EMP)
✦ EMP2= “E3”<ENO “E6”≤ (EMP)

✦ EMP3= ENO>“E6”(EMP)

➡ ASG fragmented into ASG1 and ASG2 as 
follows:
✦ ASG1= ENO “E3”≤ (ASG)
✦ ASG2= ENO>“E3”(ASG)

➡ Conditions pi are defined on                             
the common join key

Replace EMP by (EMP1  EMP2  EMP3)  
and ASG by (ASG1   ASG2) in any query 

ENAME

DUR=12∨DUR=24

PNAME=“CAD/CAM”

ENAME≠“J. DOE”

PROJ   

EMP1EMP2 EMP3 ASG1 ASG2

⋈PNO

⋈ENO
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Provides Parallellism

EMP3 ASG1EMP2 ASG1EMP1 ASG1

 

EMP1 ASG2

⋈ENO ⋈ENO ⋈ENO ⋈ENO

...



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/38

Eliminates Unnecessary Work

EMP2 ASG2EMP1 ASG1 EMP3 ASG2

 

⋈ENO ⋈ENO ⋈ENO
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Reduction for PHF
•Reduction with selection
➡Relation R and FR={R1,  R2, …, Rw} where Rj=pj

(R)
      Rule 1:  pi

(Rj)=  if  x in R: ¬ (pi(x) ∧ pj(x))
➡Example

SELECT *
FROM EMP
WHERE ENO="E5"

ENO=“E5” 

EMP1 EMP2 EMP3 EMP2

ENO=“E5” 


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Reduction for PHF
• Reduction with join
➡ Possible if fragmentation is done on join attribute
➡ Distribute join over union

           (R1 R2)⋈S   (R1⋈S)  (R2⋈S)
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Reduction for PHF
• Reduction with join
➡ Possible if fragmentation is done on join attribute
➡ Distribute join over union

           (R1 R2)⋈S   (R1⋈S)  (R2⋈S)

➡ Given Ri =pi
(R) and Rj = pj

(R)

            Rule 2: Ri ⋈Rj =   if  x in Ri,  y in Rj: ¬ (pi(y) ∧ pj(x))
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Reduction for PHF
•Assume EMP is fragmented as 

before and
➡ASG1: ENO  "E3"≤ (ASG)
➡ASG2: ENO > "E3"(ASG)

•Consider the query
SELECT *
FROM EMP,ASG
WHERE EMP.ENO=ASG.ENO

•Distribute join over unions
•Apply the reduction rule

 

EMP1 EMP2 EMP3 ASG1 ASG2

⋈ENO



EMP1 ASG1 EMP2 ASG2 EMP3 ASG2

⋈ENO ⋈ENO ⋈ENO
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Reduction for VF
• Find useless (not empty) intermediate relations
Relation R defined over attributes A = {A1, ..., An} vertically fragmented as           
Ri =A'(R) where A' A:
D,K(Ri) is useless if the set of projection attributes D is not in A'
Example: EMP1=ENO,ENAME (EMP); EMP2=ENO,TITLE (EMP)

  SELECT ENAME
FROM EMP

EMP1EMP1 EMP2

ENAME

⋈ENO

ENAME
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Reduction for DHF
•Rule :
➡Distribute joins over unions
➡Apply the join reduction for horizontal fragmentation

•Example
ASG1: ASG ⋉ENO EMP1

     ASG2: ASG ⋉ENO EMP2

EMP1: TITLE=“Programmer” (EMP) 
EMP2: TITLE=_“Programmer” (EMP)

•Query
SELECT *
FROM EMP, ASG
WHERE ASG.ENO = EMP.ENO
AND EMP.TITLE = "Mech. Eng."
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Generic query

Selections first

Reduction for DHF

 

ASG1

TITLE=“Mech. Eng.”

ASG2 EMP1 EMP2



ASG1 ASG2 EMP2

TITLE=“Mech. Eng.”

⋈ENO

⋈ENO
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Joins over unions

Reduction for DHF

Elimination of the empty intermediate relations 
(left sub-tree)



ASG1 EMP2 EMP2

TITLE=“Mech. Eng.”

ASG2

TITLE=“Mech. Eng.”

ASG2 EMP2

TITLE=“Mech. Eng.”

⋈ENO

⋈ENO ⋈ENO
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Reduction for Hybrid 
Fragmentation
•Combine the rules already specified:
➡Remove empty relations generated by contradicting selections on 

horizontal fragments;
➡Remove useless relations generated by projections on vertical fragments;
➡Distribute joins over unions in order to isolate and remove useless joins.
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Reduction for HF
Example
Consider the following hybrid 
fragmentation:
EMP1= ENO "E4" ≤ (ENO,ENAME (EMP))
EMP2= ENO>"E4" (ENO,ENAME (EMP))
EMP3= ENO,TITLE (EMP)
and the query
SELECT ENAME
FROM EMP
WHERE ENO="E5"

EMP1 EMP2



EMP3

ENO=“E5”

ENAME

EMP2

ENO=“E5”

ENAME

⋈ENO
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Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Introduction to QO
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing
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Global Query Optimization
Input:  Fragment query
•Find the best (not necessarily optimal) global schedule
➡Minimize a cost function
➡Distributed join processing

✦ Bushy vs. linear trees
✦ Which relation to ship where?
✦ Ship-whole vs ship-as-needed

➡Decide on the use of semijoins
✦ Semijoin saves on communication at the expense of more local processing.

➡Join methods
✦ nested loop vs ordered joins (merge join or hash join)
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Search Space
•Search space characterized by  

alternative execution 
•Focus on join trees
•For N relations, there are O(N!) 

equivalent join trees that can be 
obtained by  applying 
commutativity and associativity 
rules

SELECT ENAME,RESP
FROM EMP, ASG,PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO

PROJ

ASGEMP

PROJ ASG

EMP

PROJ

ASG

EMP

× 

▷◁ 
PNO

 ▷◁
ENO

▷◁ PNO

 ▷◁
ENO

 ▷◁ ENO,PNO
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Cost-Based Optimization
•Solution space
➡The set of equivalent algebra expressions (query trees).

•Cost function (in terms of time) 
➡I/O cost + CPU cost + communication cost
➡These might have different weights in different distributed 

environments (LAN vs WAN).
➡Can also maximize throughput 

•Search algorithm
➡How do we move inside the solution space?
➡Exhaustive search, heuristic algorithms (iterative improvement, 

simulated annealing, genetic,…)
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Query Optimization Process

Search Space
Generation

Search
Strategy

Equivalent QEP

Input Query

Transformation
Rules

Cost Model

Best QEP
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Search Space
 Restrict by means of heuristics

 Perform unary operations before binary operations
 …

 Restrict the shape of the join tree
➡Consider only linear trees, ignore bushy ones

Linear Join Tree Bushy Join Tree

R2R1

R3

R4

R2R1 R4R3

⋈
⋈

⋈

⋈

⋈ ⋈
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Search Strategy
 How to “move” in the search space.
 Deterministic

 Start from base relations and build plans by adding one relation at each 
step

 Dynamic programming: breadth-first
 Greedy: depth-first

 Randomized
 Search for optimalities around a particular starting point
 Trade optimization time for execution time
 Better when > 10 relations
 Simulated annealing
 Iterative improvement
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Search Strategies
•Deterministic

R2R1

R3

R4

R2R1 R2R1

R3

R2R1

R3

R3R1

R2

•Randomized

⋈⋈
⋈

⋈
⋈

⋈

⋈
⋈ ⋈

⋈
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Cost Functions
•Total Time (or Total Cost)
➡Reduce each cost (in terms of time) component individually
➡Do as little of each cost component as possible
➡Optimizes the utilization of the resources

Increases system throughput

•Response Time
➡Do as many things as possible in parallel
➡May increase total time because of increased total activity
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Total Cost
Summation of all cost factors

Total cost = CPU cost + I/O cost + communication cost

CPU cost = unit instruction cost  no.of instructions
I/O cost = unit disk I/O cost  no. of disk I/Os
communication cost = message initiation + transmission
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Total Cost Factors
•Wide area network 
➡Message initiation and transmission costs high
➡Local processing cost is low (fast mainframes or minicomputers)
➡Ratio of communication to I/O costs = 20:1

•Local area networks
➡Communication and local processing costs are more or less equal
➡Ratio = 1:1.6
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Response Time
Elapsed time between the initiation and the completion of a query

Response time = CPU time + I/O time + communication time
CPU time = unit instruction time * no. of sequential instructions
I/O time = unit I/O time * no. of sequential I/Os
communication time = unit msg initiation time * no. of sequential msg 

+ unit transmission time * no. of sequential bytes
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Example

Assume that only the communication cost is considered
Total time = 2 × message initialization time + unit transmission time * 
(x+y)
Response time = max {time to send x from 1 to 3, time to send y from 2 
to 3}
time to send x from 1 to 3 = message initialization time 

+ unit transmission time * x
time to send y from 2 to 3 = message initialization time 

+ unit transmission time * y

Site 1

Site 2

x units

y units

Site 3
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Optimization Statistics
•Primary cost factor: size of intermediate relations
➡Need to estimate their sizes

•Make them precise  more costly to maintain
•Simplifying assumption: uniform distribution of attribute values in a 

relation
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Statistics
•For each relation R[A1, A2, …, An] fragmented as R1, …, Rr

➡length of each attribute: length(Ai) 
➡the number of distinct values for each attribute in each fragment: 

card(Ai
Rj)

➡maximum and minimum values in the domain of each attribute: 
min(Ai), max(Ai)

➡the cardinalities of each domain: card(dom[Ai])
•The cardinalities of each fragment: card(Rj) 
•Selectivity factor of each operation for relations
➡For joins

SF ⋈A=B (R,S) =
card(R ⋈A=B S)

card(R)  card(S)

= 1
           max(card(A 

R),card(B 
S))
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Intermediate Relation Sizes
Selection
size(R) = card(R) × length(R)
card(F(R)) = SF(F) × card(R)
where

S F(A = value) = 
card(∏A(R))

1

S F(A >value) = 
max(A) – min(A) 
max(A) – value

S F(A <value) = 
max(A) – min(A) 
value  – max(A)

SF(p(Ai) ∧ p(Aj)) = SF(p(Ai)) * SF(p(Aj))
SF(p(Ai) ∨ p(Aj)) = SF(p(Ai)) + SF(p(Aj)) – (SF(p(Ai)) * SF(p(Aj)))
SF(A{value}) = SF(A= value) * card({values})
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Intermediate Relation Sizes
Projection
card(A(R))=card(R)
Cartesian Product
card(R × S) = card(R) * card(S)
Union

upper bound: card(R  S) = card(R) + card(S)
lower bound: card(R  S) = max{card(R), card(S)}

Set Difference
upper bound: card(R–S) = card(R)
lower bound: 0
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Intermediate Relation Size
Join
        Special case:  A is a key of R and B is a foreign key of S

       card(R ⋈A=B S) = card(S)
        More general:
               card(R  ⋈ S) = SF⋈ * card(R) × card(S)
Semijoin

card(R ⋉A S) = SF⋉(S.A) * card(R)
where

SF⋉(R ⋉A S)= SF⋉(S.A) = card(∏A(S))
card(dom[A])
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Histograms for Selectivity 
Estimation
•For skewed data, the uniform distribution assumption of attribute 

values yields inaccurate estimations
•Use an histogram for each skewed attribute A
➡Histogram = set of buckets

✦ Each bucket describes a range of values of A, with its average frequency f 
(number of tuples with A in that range) and number of distinct values d

✦ Buckets can be adjusted to different ranges
•Examples
➡Equality predicate

✦ With (value in Rangei), we have: SF(A = value) = 1/di

➡Range predicate
✦ Requires identifying relevant buckets and summing up their frequencies
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Histogram Example

For ASG.DUR=18: we have SF=1/12 so the card of selection is 50/12 
= 5 tuples

For ASG.DUR 18: we have min(range≤ 3)=12 and max(range3)=24 so 
the card. of selection is 100+75+(((18 12)/(24  12))*50) = 200 tup.− −
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Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Introduction to QO
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing
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Centralized Query Optimization
•Dynamic (Ingres project at UCB)
➡Interpretive

•Static (System R project at IBM)
➡Exhaustive search

•Hybrid (Volcano project at OGI)
➡Choose node within plan
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Dynamic Algorithm
Decompose each multi-variable query into a sequence of mono-

variable queries with a common variable
Process each by a one variable query processor
➡Choose an initial execution plan (heuristics)
➡Order the rest by considering intermediate relation sizes

        No statistical information is maintained
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Dynamic Algorithm–
Decomposition
•Replace an n variable query q by a series of queries

q1q2  …  qn

where qi uses the result of qi-1.
•Detachment

● Query q decomposed into q'  q" where q' and q" have a common 
variable which is the result of q'

•Tuple substitution
● Replace the value of each tuple with actual values and simplify the query

                           q(V1, V2, ... Vn)  (q' (t1, V2, V2, ... , Vn), t1R)
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Detachment

q: SELECT V2.A2,V3.A3, …,Vn.An

FROMR1 V1, …,Rn Vn

WHERE P1(V1.A1
’)AND P2(V1.A1,V2.A2,…, Vn.An)


q': SELECT V1.A1 INTO R1'

FROMR1 V1

WHERE P1(V1.A1)

q": SELECT V2.A2, …,Vn.An

FROMR1' V1, R2 V2, …,Rn Vn

WHERE P2(V1.A1, V2.A2, …,Vn.An)
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Detachment Example
Names of employees working on CAD/CAM project
q1: SELECT EMP.ENAME

FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO 
AND ASG.PNO=PROJ.PNO
AND PROJ.PNAME="CAD/CAM"


q11: SELECT PROJ.PNO INTO JVAR

FROM PROJ
WHERE PROJ.PNAME="CAD/CAM"

q': SELECT EMP.ENAME
FROM EMP,ASG,JVAR
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=JVAR.PNO
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Detachment Example (cont’d)
q': SELECT EMP.ENAME

FROM EMP,ASG,JVAR
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=JVAR.PNO


q12: SELECT ASG.ENO INTO GVAR

FROM ASG,JVAR
WHERE ASG.PNO=JVAR.PNO

q13: SELECT EMP.ENAME
FROM EMP,GVAR
WHERE EMP.ENO=GVAR.ENO
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Tuple Substitution
q11 is a mono-variable query
q12  and q13 is subject to tuple substitution
Assume GVAR has two tuples only: E1 and E2
Then q13  becomes
q131: SELECT EMP.ENAME

FROM EMP
WHERE EMP.ENO="E1"

q132: SELECT EMP.ENAME
FROM EMP
WHERE EMP.ENO="E2"
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Static Algorithm
 Simple (i.e., mono-relation) queries are executed according to the best 

access path
 Execute joins
➡Determine the possible ordering of joins
➡Determine the cost of each ordering
➡Choose the join ordering with minimal cost



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/78

Static Algorithm
For  joins, two alternative algorithms :

•Nested loops
      for each tuple of external relation (cardinality n1)
       for each tuple of internal relation (cardinality n2)

      join two tuples if the join predicate is true
      end

      End
● Complexity: n1* n2

•Merge join
● sort relations 
● merge relations
● Complexity: n1+ n2 if relations are previously sorted and equijoin



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/79

Static Algorithm – Example
Names of employees working on the CAD/CAM project
Assume
➡EMP has an index on ENO,
➡ASG has an index on PNO,
➡PROJ has an index on PNO and an index on PNAME

PNOENO

PROJ

ASG

EMP
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Example (cont’d)
 Choose the best access paths to each relation
➡EMP: sequential scan (no selection on  EMP)
➡ASG: sequential scan (no selection on  ASG)
➡PROJ: index on PNAME (there is a  selection on PROJ based on PNAME)

 Determine the best join ordering
➡EMP ▷◁ ASG ▷◁ PROJ
➡ASG  ▷◁PROJ ▷◁ EMP
➡PROJ  ▷◁ASG ▷◁ EMP
➡ASG  ▷◁EMP ▷◁ PROJ
➡EMP × PROJ ▷◁ ASG
➡PRO × JEMP  ▷◁ASG
➡Select the best ordering based on the join costs evaluated according to 

the two methods
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Static Algorithm

Best total join order is one of
((ASG  ⋈ EMP)  ⋈ PROJ)
((PROJ  ⋈ ASG)  ⋈ EMP)

ASGEMP PROJ

EMP × PROJ
pruned

PROJ × EMP
pruned

Alternatives

EMP  ⋈ ASG
pruned

(ASG  ⋈ EMP)  ⋈ PROJ 

ASG  ⋈ EMP ASG  ⋈ PROJ
pruned

PROJ  ⋈
ASG

(PROJ  ⋈ ASG)  ⋈ EMP 
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Static Algorithm
• ((PROJ  ⋈ ASG)  ⋈ EMP) has a useful index on the select attribute and 

direct access to the join attributes of ASG and EMP
•Therefore, chose it with the following access methods:
➡select PROJ using index on PNAME
➡then join with ASG using index on PNO
➡then join with EMP using index on ENO
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Hybrid optimization
• In general, static optimization is more efficient than dynamic 

optimization
➡Adopted by all commercial DBMS

•But even with a sophisticated cost model (with histograms), accurate 
cost prediction is difficult

•Example
➡Consider a parametric query with predicate

        WHERE R.A = $a        /* $a is a parameter
➡The only possible assumption at compile time is uniform distribution of 

values
•Solution: Hybrid optimization
➡Choose-plan done at runtime, based on the actual parameter binding
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Hybrid Optimization Example
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Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing
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Join Ordering in Fragment 
Queries
•Ordering joins
➡Distributed INGRES
➡System R*
➡Two-step

•Semijoin ordering
➡SDD-1
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Join Ordering

•Obvious choice: copy smaller relation to the site of larger
•Multiple relations more difficult because of too many alternatives.

● As in the case of two; selecting smaller input argument to obtain small 
intermediate size of result; estimation of the join result necessary (difficult); join 
can increase the size of result

•Solution: use heuristics, i.e., only the communication cost

R
if size(R) < size(S)

if size(R) > size(S)
S

•Assumptions: query expressed on fragments (relations); ignore local 
processing (reducers); consider only join operands at diff. sites; set-at-
a-time not tuple-at-a-time; does not count transfer of result.

•Consider two relations only: PROJ  ASG⋈
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Join Ordering – Example

Consider
PROJ ⋈PNO ASG ⋈ENO EMP

Site 2

Site 3Site 1

PNOENO

PROJ

ASG

EMP



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/89

Join Ordering – Example
Execution alternatives:
1. EMP Site 2                               2. ASG  Site 1

Site 2 computes EMP'=EMP ⋈ ASG   Site 1 computes EMP'=EMP  ⋈ ASG
EMP' Site 3                                    EMP'   Site 3
Site 3 computes EMP'  ⋈ PROJ        Site 3 computes EMP’  ⋈ PROJ

3. ASG  Site 3                                 4. PROJ  Site 2
Site 3 computes ASG'=ASG  ⋈ PROJ Site 2 computes PROJ'=PROJ  ⋈ ASG
ASG'   Site 1                                       PROJ'  Site 1
Site 1 computes ASG' ▷◁ EMP                Site 1 computes PROJ'  ⋈ EMP

5. EMP   Site 2
PROJ   Site 2
Site 2 computes EMP  ⋈ PROJ  ⋈ ASG

Examples:              The order (EMP, ASG, PROJ) could use strategy 1.
                                The order (PROJ, ASG, EMP) could use strategy 4.
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Semijoin Algorithms
•General form of semijoin (derivation):

R ⋉F S = A(R ⋈F S) = A(R) ⋈ AB(S) = R ⋈F AB(S)
    where
    R[A], S[B] are relations
 Consider the join of two relations: 
➡ R[A] (located at site 1)
➡ S[A] (located at site 2)

•Alternatives:
1. Do the join R ⋈AS
2. Perform one of the semijoin equivalents

        R ⋈AS (R ⋉AS) ⋈AS
         R ⋈A (S ⋉A R)

           (R ⋉A S) ⋈A (S ⋉A R)
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Semijoin Algorithms
•Perform the join
➡send R to Site 2
➡Site 2 computes R ⋈A S

•Consider semijoin (R ⋉AS) ⋈AS
➡S' = A(S)
➡S'  Site 1
➡Site 1 computes R' = R ⋉AS'
➡R' Site 2
➡Site 2 computes R' ⋈AS

Semijoin is better if
       size(A(S)) + size(R ⋉AS)) < size(R)
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Semijoin Algorithms
•Semijoins are useful for multi-join queries

 Reducing the size of the operand relations involved in multiple join queries
 Optimization becomes more complex
 Example: program to compute EMP ⋈ ASG ⋈ PROJ is 
                 EMP' ⋈ ASG' ⋈ PROJ, 
                 where EMP' = EMP ⋉ ASG and ASG' = ASG ⋉ PROJ.
 We may further reduce the size of an operand relation  
 EMP'' = EMP ⋉ (ASG ⋉ PROJ)

 size(ASG ⋉ PROJ)  size(ASG), we have size(EMP'')  size(EMP')≤ ≤
 EMP ⋉ (ASG ⋉ PROJ) is semijoin program for EMP
 there exist several potential semijoin programs
 there is one optimal semijoin program, called the full reducer
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Semijoin Algorithms
•The problem is to find the full reducer

 Evaluate the size reduction of all possible semijoin programs
 Problems with the enumerative method

 Cyclic queries, that have cycles in their join graph and for which full 
reducers cannot be found

 Tree queries: full reducers exist, but the number of candidate semijoin 
programs is exponential in the number of relations, which makes the 
enumerative approach NP-hard

 Full reducers for tree queries exist
 The problem of finding them is NP-hard
 Important class of queries, called chained queries

 A chained query has a join graph where relations can be ordered, and each relation joins 
only with the next relation in the order

 Polynomial algorithm exists



Semijoin:Example
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Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing
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Distributed Dynamic Algorithm
1. Execute all monorelation queries (e.g., selection, projection)
2. Reduce the multirelation query to produce irreducible subqueries 

q1 q2  …  qnsuch that there is only one relation between qi and 
qi+1

3. Choose qi involving the smallest fragments to execute (call MRQ')
4. Find the best execution strategy for MRQ'

a) Determine processing site
b) Determine fragments to move

5. Repeat 3 and 4
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Distributed Dynamic Algorithm
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Distributed Dynamic Algorithm
 Query is expressed in tuple rel. calculus (CNF); schema info available 

(network type, as well as the location and size of each fragment)
● Query optimization executed at master site

 Algorithm
● (step 1) Detached mono-relational queries are run locally  
● (step 2) Query reduced to irreducible (part.ordered) and mono-relational queries 
● (step 3.1) Select next subquery with smallest fragments involved (=>smallest result)
● (step 3.2) Selects the best strategy to process the subquery.

                Which fragm. to move and where join is executed? (->set of pairs (F,S))
                Intermed. results are always moved to the remaining table.
                Remaining rel. may be further partitioned into k fragments (parallel exec.)

● (step 3.3) Transfers all the fragments to their processing sites
● (step 3.4) Executes the selected subquery
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Distributed Dynamic Algorithm
 The reduction algorithm is applied to the original query in step 2.

● The algorithm has produced subqueries and their dependency order (poset).
 The optimization occurs in 3.1 and 3.2. 
 At step 3.1:  a simple choice for the next subquery is to take the next 

one having no predecessor and involving the smaller fragments.
● Example: a query q has the subqueries q1 , q2 , and q3 , with dependencies    

q1  q3 , q2  q3. If fragments of q1 are smaller than those of q2 then q1 → →
executes first.

● This choice also depends on the number of sites having relevant fragments.
 At step 3.2:   determines how to execute the subquery by selecting the 

fragms that will be moved and sites where processing will take place.
● Fragms resulting from n-1 subqueries moved to fragms of n-th subquery.
● fragment-and-replicate: remaining relation may be further partitioned into k 

“equalized” fragments in order to increase parallelism.
● Replication is cheaper in broadcast networks than in point-to-point networks.
● Decreases response time (parallel proc) but increases communication costs (total time)



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/100

Distributed Dynamic Algorithm
 Dynamic query optimization algorithm is characterized by a limited 

search of the solution space
 Optimization decision is taken for each step without concerning itself 

with the consequences of that decision on global optimization.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/101

Distributed Dynamic Algorithm 
- Example
 Let us consider the query PROJ ⋈ ASG, where PROJ and ASG are 

fragmented 
 Assume that the allocation of fragments and their sizes are as follows 

(in kilobytes)
 Discussion:

 Point–to–point network, the best 
 strategy is to send each PROJi to site 3,
 3000 kbytes, versus 6000 kbytes 
 if ASG is sent to sites 1,2, and 4. 
 Broadcast network, the best strategy is to send ASG (in
 a single transfer) to sites 1, 2, and 4, which incurs a transfer of 2000 kbytes.
 The latter strategy is faster and maximizes response time because the joins can 

be done in parallel.
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Distributed Static Algorithm
•Based on System R*, IBM 

● Cost function includes local processing as well as transmission
● Considers only joins; (left) deep plans
● “Exhaustive” search
● Compilation

•Query compilation coordinated by a master site 
● Site where query was initiated.
● Master handles query optimization
● Master handles all intersite decisions

● Selection of the execution sites and the fragments as well as 
● the method for transferring data

● Apprentice sites involved in the query, make the remaining local decisions 
● Ordering of joins at a site
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Distributed Static Algorithm
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Distributed Static Algorithm
• Input to algorithm is a fragment query expressed as a query tree.
•Optimizer must select: 

● Join ordering, join algorithm, and the access path for each fragments
● Statistics, estimated size of intermediate results and access path information

● Sites of join results and the method of transferring data between sites
•Apprentice sites select the local join ordering

● To join two relations, there are three candidate sites: the site of the first relation, 
the site of the second relation, or a third site (e.g., the site of a next relation to 
be joined with). 

•Two methods are supported for intersite data transfers.
● Ship whole
● Fetch as needed
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Static Approach – Performing Joins
•Ship whole

● Whole outer relation is shipped to site a of inner relation, stored in a temp. table 
and joined with the inner relation.

● Larger data transfer. Fast if relations are small.
● Small number of messages. 
● Received relation can be directly pipelined into merge-join.

•Fetch as needed
● Number of messages = O(cardinality of external relation)
● The outer relation is sequentially scanned, and each tuple is sent to the site of 

the inner relation which accesses a local table and returns selected tuples back 
to the site of outer. relation.

● Appropriate for small number of outer tuples.
● Data transfer per message is minimal (but latency)
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Static Approach – Join ordering

1. Move outer relation tuples to the site of the inner relation
(a) Retrieve outer tuples
(b) Send them to the inner relation site
(c) Join them as they arrive
Total Cost = cost(retrieving qualified outer tuples) 
+ no. of outer tuples fetched * cost(retrieving qualified inner tuples) 
+ msg. cost * (no. outer tuples fetched *  avg. outer tuple size)/msg. 

size
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Static Approach – Join ordering

2. Move inner relation to the site of outer relation
Cannot join as they arrive; they need to be stored
Total cost = cost(retrieving qualified outer tuples)
+ no. of outer tuples fetched * cost(retrieving matching inner tuples 

from temporary storage) 
+ cost(retrieving qualified inner tuples) 
+ cost(storing all qualified inner tuples in temporary storage) 
+ msg. cost * no. of inner tuples fetched * avg. inner tuple 
size/msg. size
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Static Approach – Join ordering
3.Fetch inner tuples as needed
(a) Retrieve qualified tuples at outer relation site
(b) Send request containing join column value(s) for outer tuples to inner 

relation site
(c) Retrieve matching inner tuples at inner relation site
(d) Send the matching inner tuples to outer relation site
(e) Join as they arrive 
Total Cost = cost(retrieving qualified outer tuples)
+ msg. cost * (no. of outer tuples fetched)
+ no. of outer tuples fetched * no. of inner tuples fetched * avg. 

inner tuple size * msg. cost / msg. size)
+ no. of outer tuples fetched * cost(retrieving matching inner tuples 

for one outer value)
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Static Approach – Join ordering

4. Move both inner and outer relations to another site 
Total cost = cost(retrieving qualified outer tuples)

+ cost(retrieving qualified inner tuples)
+ cost(storing inner tuples in storage)
+ msg. cost × (no. of outer tuples fetched * avg. outer tuple 
size)/msg. size  
+ msg. cost * (no. of inner tuples fetched * avg. inner tuple 
size)/msg. size 
+ no. of outer tuples fetched * cost(retrieving inner tuples from 
temporary storage)
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Static Approach – Example
  Join of relations PROJ, the external relation, and ASG, the internal 

relation, on attribute PNO
●   PROJ ⋈ ASG

  We assume that
● PROJ and ASG are stored at two different sites
● there is an index on attribute PNO for relation ASG

  The possible execution strategies for the query are as follows:
  1. Ship whole PROJ to site of ASG.
  2. Ship whole ASG to site of PROJ.

    3. Fetch ASG tuples as needed for each tuple of PROJ.
  4. Move ASG and PROJ to a third site.

  Discussion
● Strategy 4: the highest cost since both relations must be transferred
● Strategy 2: size(PROJ) >> size(ASG)
● minimizes the communication time 
● likely to be the best (if local processing time is not too high compared to 

strategies 1 and 3)
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Static Approach – Example
 Discussion

● local processing time of strategies 1 and 3 is probably much better than that of 
strategy 2 since they exploit the index

● If strategy 2 is not the best, the choice is between strategies 1 and 3 
● If PROJ is large and only a few tuples of ASG match, strategy 3 wins
● if PROJ is small or many tuples of ASG match, strategy 1 should be the best.
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Dynamic Programming
 Used in almost all commercial database products

● Pioneered in IBM’s System R project [Selinger et al. 1979]
● Poduces the best possible plans if the cost model is sufficiently accurate
● Exponential time and space complexity O(2n); not viable for complex queries

 Iterative dynamic programming.
● Good plans for simple queries and “as good as possible plans” for complex 

queries
 Basic dynamic programming algorithm for QO

● It works in a bottom-up way: 
● building more complex (sub-) plans from simpler (sub-) plans

1) Builds an access plan for every table involved in the query (lines 1-4)
2) Builds a plan for n relations from the plan for n-1 relations + one more join          

  (lines 5-12) 
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Dynamic Programming
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Dynamic Programming
1) Access plans for every single table involved in the query

● If Table A is replicated at sites S1 and S2, the algorithm would enumerate    
scan(A, S1) and scan(A, S2).

2) Plan for n rels = best plans for o rels + best plans for n-o rels
● First, two-way join plans using the access plans as building blocks (Lines 5 to 13)

● The algorithm would enumerate alternative join plans for all relevant sites
● Next, the algorithm builds three-way join plans, using access-plans and two-way 

join plans as building blocks.
● Algorithm continues in this way until it has enumerated all n-way join plans 

which are complete plans for the query, if the query involves n tables.
 Some comments on dynamic programming algorithm

● Inferior plans are discarded (i.e., pruned) as early as possible (Lines 3 and 10).
● Prunning if alternative plan exists that does the same or more at a lower cost.

● Pruning significantly reduces the complexity of query optimization (comparing to O(n!))
● Neither scan(A,S1) nor scan(A, S2) may be immediately pruned in order to guarantee 

that the optimizer finds a good plan
● scan(A,S2 ) is pruned:  cost(scan(A,S1)) + cost(ship(A,S1,S2) < cost(scan(A,S2)
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Dynamic Programming
 Some comments on dynamic programming algorithm (cont.)

● In general, a plan P1 may be pruned if there exists a plan P2 that does the same 
or more work and the following criterion holds:
               ∀i  interesting sites(P1) : cost (ship(P1,i))  cost (ship(P2, i))∈ ≥

● Intresting_sites: set of sites that are potentially involved in processing the query
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2-Step Optimization
1. At compile time, generate a static plan with operation ordering and 

access methods only
2. At startup time, carry out site and copy selection and allocate 

operations to sites
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2-Step – Problem Definition
•Given
➡A set of sites S = {s1, s2, …,sn} with the load of each site
➡A query Q ={q1, q2, q3, q4}  such that each subquery qi is the maximum 

processing unit that accesses one relation and communicates with its 
neighboring queries

➡For each qi in Q, a feasible allocation set of sites Sq={s1, s2, …,sk} where 
each site stores a copy of the relation in qi•The objective is to find an optimal allocation of Q to S such that

➡the load unbalance of S is minimized
➡The total communication cost is minimized
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2-Step – Problem Definition
•Each site si has a load, denoted by load(si), which reflects the number 

of queries currently submitted
•The load can be expressed in different ways, e.g. as the number of I/O 

bound and CPU bound queries at the site
•The average load of the system is defined as:

 
 

•The balance of the system for a given allocation of subqueries to sites 
can be measured using the following unbalance factor
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2-Step – Problem Definition
•The problem addressed by the second step of two-step query 

optimization can be formalized as the following subquery allocation 
problem. Given

•1. a set of sites S = {s1 , .., sn } with the load of each site;
•2. a query Q = {q1 , .., qm }; and
•3. for each subquery qi in Q, a feasible allocation set of sites 
•     Sq = {s1, ..., sk }
•     where each site stores a copy of the relation involved in qi ;
• the objective is to find an optimal allocation on Q to S such that
•1. UF(S) is minimized, and
•2. the total communication cost is minimized.
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2-Step – Algorithm
•The algorithm, which we describe for linear join trees, uses several 

heuristics. 
1. Start by allocating subqueries with least allocation flexibility,         i.e. 
with the smaller feasible allocation sets of sites. 
2. Consider the sites with least load and best benefit. 

•The benefit of a site is defined as 
1. the number of subqueries already allocated to the site and 
2. measures the communication cost savings from allocating the       
subquery and
3. the load information of any unallocated subquery that has a          
selected site in its feasible allocation set is recomputed



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/

2-Step Algorithm
• For each q in Q compute load (Sq)
• While Q not empty do

1. Select subquery a with least allocation flexibility
2. Select best site b for a (with least load and best benefit)
3. Remove a from Q and recompute loads if needed
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2-Step – Algorithm



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/

2-Step Algorithm Example
•Let Q = {q1, q2, q3, q4} where q1 is 

associated with R1, q2 is 
associated with R2 joined with the 
result of q1, etc.

• Iteration 1: select q4, allocate to 
s1, set load(s1)=2

• Iteration 2: select q2, allocate to 
s2, set load(s2)=3

• Iteration 3: select q3, allocate to 
s1, set load(s1) =3

• Iteration 4: select q1, allocate to s3 
or s4

Note: if in iteration 2, q2, were allocated to s4, this would have produced
a better plan. So hybrid optimization can still miss optimal plans
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Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing
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Adaptive Query Processing - 
Motivations
• Assumptions underlying query optimization 

● The optimizer has sufficient knowledge about runtime
● Cost information

● Runtime conditions remain stable during query execution

• Appropriate for systems with few data sources in a 
controlled environment

• Inappropriate for changing environments with large 
numbers of data sources and unpredictable runtime 
conditions
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Example: QEP with Blocked Operator

 Assume ASG, EMP, 
PROJ and PAY each at a 
different site

 If ASG site is down, the 
entire pipeline is blocked

 However, with some 
reorganization, the join of 
EMP and PAY could be 
done while waiting for 
ASG
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Adaptive Query Processing – Definition

 A query processing is adaptive if it receives information 
from the execution environment and determines its 
behavior accordingly
 Feed-back loop between optimizer and runtime environment
 Communication of runtime information between DDBMS components

 Additional components
 Monitoring, assessment, reaction
 Embedded in control operators of QEP

 Tradeoff between reactiveness and overhead of 
adaptation
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Adaptive Components

 Monitoring parameters (collected by sensors in QEP)
 Memory size
 Data arrival rates
 Actual statistics
 Operator execution cost
 Network throughput

 Adaptive reactions
 Change schedule
 Replace an operator by an equivalent one
 Modify the behavior of an operator
 Data repartitioning
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