
Principles of Distributed Database
Systems

M. Tamer Özsu
Patrick Valduriez

© 2020, M.T. Özsu & P. Valduriez 1

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/2

Outline
 Introduction
 Distributed and parallel database design
 Distributed data control
 Distributed Query Processing
 Distributed Transaction Processing
 Data Replication
 Database Integration – Multidatabase Systems
 Parallel Database Systems
 Peer-to-Peer Data Management
 Big Data Processing
 NoSQL, NewSQL and Polystores
 Web Data Management

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/3

Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Introduction to QO
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing

 Slides of the 3rd Edition of the textbook !

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/4

Query Processing in a DDBMS

high level user query

query
processor

Low-level data manipulation
 commands for D-DBMS

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/5

Query Processing Components
•Query language that is used

➡SQL: “intergalactic dataspeak”

•Query execution methodology

➡The steps that one goes through in executing high-level (declarative) user
queries.

•Query optimization

➡How do we determine the “best” execution plan?

•We assume a homogeneous D-DBMS

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/6

SELECTENAME
FROM EMP,ASG
WHERE EMP.ENO = ASG.ENO
AND RESP = "Manager"

Strategy 1
ENAME(RESP=“Manager”EMP.ENO=ASG.ENO(EMP×ASG))

Strategy 2
 ENAME(EMP ⋈ENO (RESP=“Manager” (ASG))

Strategy 2 avoids Cartesian product, so may be “better”

Selecting Alternatives

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/7

What is the Problem?
Site 1 Site 2 Site 3 Site 4 Site 5

EMP1= ENO≤“E3”(EMP) EMP2= ENO>“E3”(EMP)ASG2= ENO>“E3”(ASG)ASG1=ENO≤“E3”(ASG) Result

Site 5

Site 1 Site 2 Site 3 Site 4

ASG1 EMP1 EMP2ASG2Site 4Site 3

Site 1 Site 2

Site 5

EMP’
1=EMP1 ⋈ENO ASG’

1

result= (EMP1 U EMP2)⋈ENOσRESP=“Manager”(ASG1 U ASG2)

EMP’
2=EMP2 ⋈ENO ASG’

2

'
2EMPEMPresult  '

1

1Manager""RESP1 ASGσASG ' 2Manager""RESP2 ASGσASG '

'
1ASG '

2ASG

'
1EMP '

2EMP

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/8

Cost of Alternatives
•Assume
➡size(EMP) = 400, size(ASG) = 1000
➡tuple access cost = 1 unit; tuple transfer cost = 10 units
➡ASG and EMP are locally clustered on attributes RESP and ENO

•Strategy 1
➡produce ASG': assume 20 managers; (10+10)  tuple access cost = 20
➡ transfer ASG' to the sites of EMP: (10+10)  tuple transfer cost = 200
➡produce EMP': (10+10)  tuple access cost  2 = 40
➡ transfer EMP' to result site: (10+10)  tuple transfer cost = 200

Total Cost 460
•Strategy 2
➡ transfer EMP to site 5: 400  tuple transfer cost = 4,000
➡ transfer ASG to site 5: 1000  tuple transfer cost = 10,000
➡produce ASG': 1000  tuple access cost = 1,000
➡ join EMP and ASG': 400  20  tuple access cost = 8,000

Total Cost 23,000

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/9

Query Optimization Objectives
•Minimize a cost function

● I/O cost + CPU cost + communication cost
● These might have different weights in different distributed environments

•Wide area networks
➡communication cost may dominate or vary much

✦ bandwidth
✦ speed
✦ high protocol overhead

•Local area networks
➡communication cost not that dominant
➡total cost function should be considered

•Can also maximize throughput

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/10

Complexity of Relational
Operations

•Assume
➡relations of cardinality n
➡sequential scan

Operation Complexity

Select
Project

(without duplicate elimination)
O(n)

Project
(with duplicate elimination)

Group
O(n  log n)

Join
Semi-join
Division
Set Operators

O(n  log n)

Cartesian Product O(n2)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/11

Query Optimization Issues –
Types Of Optimizers
• Exhaustive search
➡ Cost-based
➡ Optimal
➡ Combinatorial complexity in the number of relations
➡ Dynamic programming

• Heuristics
➡ Not optimal
➡ Restrict the solution space
➡ Regroup common sub-expressions
➡ Perform selection, projection first
➡ Replace a join by a series of semijoins
➡ Reorder operations to reduce intermediate relation size
➡ Optimize individual operations

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/12

Query Optimization Issues –
Optimization Granularity
• Single query at a time

➡ Cannot use common intermediate results

• Multiple queries at a time

➡ Efficient if many similar queries

➡ Decision space is much larger

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/13

Query Optimization Issues –
Optimization Timing
•Static
➡Compilation  optimize prior to the execution
➡Difficult to estimate the size of the intermediate results⇒error

propagation
➡Can amortize over many executions
➡R*

•Dynamic
➡Run time optimization
➡Exact information on the intermediate relation sizes
➡Have to reoptimize for multiple executions
➡Distributed INGRES

•Hybrid
➡Compile using a static algorithm
➡If the error in estimate sizes > threshold, reoptimize at run time
➡Mermaid

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/14

Query Optimization Issues –
Statistics
•Relation
➡Cardinality
➡Size of a tuple
➡Fraction of tuples participating in a join with another relation

•Attribute
➡Cardinality of domain
➡Actual nuymber of distinct values

•Common assumptions
➡Independence between different attribute values
➡Uniform distribution of attribute values within their domain

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/15

Query Optimization Issues –
Decision Sites
•Centralized
➡Single site determines the “best” schedule
➡Simple
➡Need knowledge about the entire distributed database

•Distributed
➡Cooperation among sites to determine the schedule
➡Need only local information
➡Cost of cooperation

•Hybrid
➡One site determines the global schedule
➡Each site optimizes the local subqueries

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/16

Query Optimization Issues –
Network Topology
• Wide area networks (WAN) – point-to-point
➡ Characteristics

✦ Low bandwidth
✦ Low speed
✦ High protocol overhead

➡ Communication cost will dominate; ignore all other cost factors
➡ Global schedule to minimize communication cost
➡ Local schedules according to centralized query optimization

• Local area networks (LAN)
➡ Communication cost not that dominant
➡ Total cost function should be considered
➡ Broadcasting can be exploited (joins)
➡ Special algorithms exist for star networks

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.6/17

Distributed Query Processing
Methodology

Calculus Query on Distributed Relations

CONTROL
SITE

LOCAL
SITES

Query
Decomposition

Data
Localization

Algebraic Query on Distributed
Relations

Global
Optimization

Fragment Query

Local
Optimization

Optimized Fragment Query
with Communication Operations

Optimized Local Queries

GLOBAL
SCHEMA

FRAGMENT
SCHEMA

STATS ON
FRAGMENTS

LOCAL
SCHEMAS

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/18

Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Introduction to query optimization
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/19

Query Decomposition
Input : Calculus query on global relations
•Normalization
➡manipulate query quantifiers and qualification

•Analysis
➡detect and reject “incorrect” queries
➡possible for only a subset of relational calculus

•Simplification
➡eliminate redundant predicates

•Restructuring
➡calculus query  algebraic query
➡more than one translation is possible
➡use transformation rules

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/20

Normalization
• Lexical and syntactic analysis
➡ check validity (similar to compilers)
➡ check for attributes and relations
➡ type checking on the qualification

• Put into normal form
➡ Conjunctive normal form (p11∨p12∨ … ∨ p1n) ∧ … ∧(pm1∨ pm2 ∨ … ∨pmn)
➡ Disjunctive normal form (p11∧ p12∧ … ∧p1n) ∨… ∨ (pm1∧ pm2 ∧…∧pmn)
➡ OR's mapped into union
➡ AND's mapped into join or selection

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/21

Normalization - example

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/22

Analysis
•Refute incorrect queries
•Type incorrect
➡If any of its attribute or relation names are not defined in the global

schema
➡If operations are applied to attributes of the wrong type

•Semantically incorrect
➡Components do not contribute in any way to the generation of the result
➡Only a subset of relational calculus queries can be tested for correctness
➡Those that do not contain disjunction and negation
➡To detect

✦ connection graph (query graph)
✦ join graph

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/23

Analysis – Example
SELECT ENAME,RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND PNAME = "CAD/CAM"
AND DUR ≥ 36
AND TITLE = "Programmer"

Query graph Join graph
DUR≥36

PNAME=“CAD/CAM”
ENAME

EMP.ENO=ASG.ENO ASG.PNO=PROJ.PNO

RESULT

TITLE =
“Programmer” RESP

ASG.PNO=PROJ.PNOEMP.ENO=ASG.ENO
ASG

PROJEMP EMP PROJ

ASG

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/24

Analysis
If the query graph is not connected, the query may be
wrong or use Cartesian product
SELECT ENAME,RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND PNAME = "CAD/CAM"
AND DUR > 36
AND TITLE = "Programmer"

PNAME=“CAD/CAM”
ENAME RESULT

RESP

ASG

PROJEMP

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/25

Simplification
• Why simplify?

➡ Remember the example
• How? Use transformation rules

➡ Elimination of redundancy
✦ idempotency rules

p1 ∧ ¬(p1)  false
p1 ∧ (p1∨ p2)  p1

p1 ∧ false  p1

…
➡ Application of transitivity
➡ Use of integrity rules

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/26

Simplification – Example
SELECT TITLE
FROM EMP
WHERE EMP.ENAME = "J. Doe"
OR (NOT(EMP.TITLE = "Programmer")
AND (EMP.TITLE = "Programmer"
OR EMP.TITLE = "Elect. Eng.")
AND NOT(EMP.TITLE = "Elect. Eng."))


SELECT TITLE
FROM EMP
WHERE EMP.ENAME = "J. Doe"

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/27

Restructuring
•Convert relational calculus to

relational algebra
•Make use of query trees
•Example
Find the names of employees other than J.
Doe who worked on the CAD/CAM project
for either 1 or 2 years.
SELECT ENAME
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND ENAME≠ "J. Doe"
AND PNAME = "CAD/CAM"
AND (DUR = 12 OR DUR = 24)

ENAME

σDUR=12 OR DUR=24

σPNAME=“CAD/CAM”

σENAME≠“J. DOE”

PROJ ASG EMP

Project

Select

Join

⋈PNO

⋈ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/28

Restructuring –Transformation
Rules
• Commutativity of binary operations

➡R × S  S × R
➡R ⋈S  S ⋈R
➡R  S  S  R

• Associativity of binary operations
➡(R × S) × T  R × (S × T)
➡(R ⋈S) ⋈T  R (⋈ S ⋈T)

• Idempotence of unary operations
➡A’(A’’(R))  A’(R)
➡p1(A1)(p2(A2)(R))  p1(A1)∧p2(A2)(R)

where R[A] and A'  A, A"  A and A'  A"
• Commuting selection with projection

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/29

Restructuring – Transformation
Rules
• Commuting selection with binary operations

➡p(A)(R × S)  (p(A) (R)) × S
➡p(Ai)

(R ⋈(Aj,Bk)S)  (p(Ai)
(R)) ⋈(Aj,Bk)S

➡p(Ai)
(R  T)  p(Ai)

(R)  p(Ai)
(T)

where Ai belongs to R and T
• Commuting projection with binary operations

➡C(R × S)  A’(R) × B’(S)
➡C(R ⋈(Aj,Bk)S)  A’(R) ⋈(Aj,Bk) B’(S)

➡C(R  S)  C(R)  C(S)
where R[A] and S[B]; C = A'  B' where A'  A, B'  B

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/30

Example
Recall the previous example:
Find the names of employees other
than J. Doe who worked on the
CAD/CAM project for either one or two
years.

SELECT ENAME
FROM PROJ, ASG, EMP
WHERE ASG.ENO=EMP.ENO
AND ASG.PNO=PROJ.PNO
AND ENAME ≠ "J. Doe"
AND PROJ.PNAME="CAD/CAM"
AND (DUR=12 OR DUR=24)

ENAME

DUR=12 ∧ DUR=24

PNAME=“CAD/CAM”

ENAME≠“J. DOE”

PROJ ASG EMP

Project

Select

Join

⋈PNO

⋈ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/31

Equivalent Query
ENAME

PNAME=“CAD/CAM” ∧ (DUR=12 DUR=24) ENAME≠“J. Doe”∧ ∧

×

PROJ ASGEMP

⋈PNO,ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/32

EMP

ENAME

ENAME ≠ "J. Doe"

ASGPROJ

PNO,ENAME

PNAME = "CAD/CAM"

PNO

DUR =12DUR=24

PNO,ENO

PNO,ENAME

Restructuring

⋈PNO

⋈ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/33

Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Introduction to query optimization
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/34

Data Localization
Input: Algebraic query on distributed relations
•Determine which fragments are involved
•Localization program
➡substitute for each global query its materialization program
➡optimize

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/35

Example
Recall the previous example:
Find the names of employees other
than J. Doe who worked on the
CAD/CAM project for either one or two
years.

SELECT ENAME
FROM PROJ, ASG, EMP
WHERE ASG.ENO=EMP.ENO
AND ASG.PNO=PROJ.PNO
AND ENAME ≠ "J. Doe"
AND PROJ.PNAME="CAD/CAM"
AND (DUR=12 OR DUR=24)

ENAME

DUR=12∨DUR=24

PNAME=“CAD/CAM”

ENAME≠“J. DOE”

PROJ ASG EMP

Project

Select

Join

⋈PNO

⋈ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/36

Example
Assume

➡ EMP is fragmented into EMP1, EMP2, EMP3
as follows:
✦ EMP1= ENO “E3”≤ (EMP)
✦ EMP2= “E3”<ENO “E6”≤ (EMP)

✦ EMP3= ENO>“E6”(EMP)

➡ ASG fragmented into ASG1 and ASG2 as
follows:
✦ ASG1= ENO “E3”≤ (ASG)
✦ ASG2= ENO>“E3”(ASG)

➡ Conditions pi are defined on
the common join key

Replace EMP by (EMP1  EMP2  EMP3)
and ASG by (ASG1  ASG2) in any query

ENAME

DUR=12∨DUR=24

PNAME=“CAD/CAM”

ENAME≠“J. DOE”

PROJ  

EMP1EMP2 EMP3 ASG1 ASG2

⋈PNO

⋈ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/37

Provides Parallellism

EMP3 ASG1EMP2 ASG1EMP1 ASG1



EMP1 ASG2

⋈ENO ⋈ENO ⋈ENO ⋈ENO

...

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/38

Eliminates Unnecessary Work

EMP2 ASG2EMP1 ASG1 EMP3 ASG2



⋈ENO ⋈ENO ⋈ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/39

Reduction for PHF
•Reduction with selection
➡Relation R and FR={R1, R2, …, Rw} where Rj=pj

(R)
 Rule 1: pi

(Rj)= if  x in R: ¬ (pi(x) ∧ pj(x))
➡Example

SELECT *
FROM EMP
WHERE ENO="E5"

ENO=“E5”

EMP1 EMP2 EMP3 EMP2

ENO=“E5”



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/40

Reduction for PHF
• Reduction with join
➡ Possible if fragmentation is done on join attribute
➡ Distribute join over union

 (R1 R2)⋈S  (R1⋈S)  (R2⋈S)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/41

Reduction for PHF
• Reduction with join
➡ Possible if fragmentation is done on join attribute
➡ Distribute join over union

 (R1 R2)⋈S  (R1⋈S)  (R2⋈S)

➡ Given Ri =pi
(R) and Rj = pj

(R)

 Rule 2: Ri ⋈Rj = if  x in Ri,  y in Rj: ¬ (pi(y) ∧ pj(x))

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/42

Reduction for PHF
•Assume EMP is fragmented as

before and
➡ASG1: ENO "E3"≤ (ASG)
➡ASG2: ENO > "E3"(ASG)

•Consider the query
SELECT *
FROM EMP,ASG
WHERE EMP.ENO=ASG.ENO

•Distribute join over unions
•Apply the reduction rule

 

EMP1 EMP2 EMP3 ASG1 ASG2

⋈ENO



EMP1 ASG1 EMP2 ASG2 EMP3 ASG2

⋈ENO ⋈ENO ⋈ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/43

Reduction for VF
• Find useless (not empty) intermediate relations
Relation R defined over attributes A = {A1, ..., An} vertically fragmented as
Ri =A'(R) where A' A:
D,K(Ri) is useless if the set of projection attributes D is not in A'
Example: EMP1=ENO,ENAME (EMP); EMP2=ENO,TITLE (EMP)

 SELECT ENAME
FROM EMP

EMP1EMP1 EMP2

ENAME

⋈ENO

ENAME

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/44

Reduction for DHF
•Rule :
➡Distribute joins over unions
➡Apply the join reduction for horizontal fragmentation

•Example
ASG1: ASG ⋉ENO EMP1

 ASG2: ASG ⋉ENO EMP2

EMP1: TITLE=“Programmer” (EMP)
EMP2: TITLE=_“Programmer” (EMP)

•Query
SELECT *
FROM EMP, ASG
WHERE ASG.ENO = EMP.ENO
AND EMP.TITLE = "Mech. Eng."

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/45

Generic query

Selections first

Reduction for DHF

 

ASG1

TITLE=“Mech. Eng.”

ASG2 EMP1 EMP2



ASG1 ASG2 EMP2

TITLE=“Mech. Eng.”

⋈ENO

⋈ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/46

Joins over unions

Reduction for DHF

Elimination of the empty intermediate relations
(left sub-tree)



ASG1 EMP2 EMP2

TITLE=“Mech. Eng.”

ASG2

TITLE=“Mech. Eng.”

ASG2 EMP2

TITLE=“Mech. Eng.”

⋈ENO

⋈ENO ⋈ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/47

Reduction for Hybrid
Fragmentation
•Combine the rules already specified:
➡Remove empty relations generated by contradicting selections on

horizontal fragments;
➡Remove useless relations generated by projections on vertical fragments;
➡Distribute joins over unions in order to isolate and remove useless joins.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/48

Reduction for HF
Example
Consider the following hybrid
fragmentation:
EMP1= ENO "E4" ≤ (ENO,ENAME (EMP))
EMP2= ENO>"E4" (ENO,ENAME (EMP))
EMP3= ENO,TITLE (EMP)
and the query
SELECT ENAME
FROM EMP
WHERE ENO="E5"

EMP1 EMP2



EMP3

ENO=“E5”

ENAME

EMP2

ENO=“E5”

ENAME

⋈ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/49

Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Introduction to QO
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/50

Global Query Optimization
Input: Fragment query
•Find the best (not necessarily optimal) global schedule
➡Minimize a cost function
➡Distributed join processing

✦ Bushy vs. linear trees
✦ Which relation to ship where?
✦ Ship-whole vs ship-as-needed

➡Decide on the use of semijoins
✦ Semijoin saves on communication at the expense of more local processing.

➡Join methods
✦ nested loop vs ordered joins (merge join or hash join)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/51

Search Space
•Search space characterized by

alternative execution
•Focus on join trees
•For N relations, there are O(N!)

equivalent join trees that can be
obtained by applying
commutativity and associativity
rules

SELECT ENAME,RESP
FROM EMP, ASG,PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO

PROJ

ASGEMP

PROJ ASG

EMP

PROJ

ASG

EMP

×

▷◁
PNO

 ▷◁
ENO

▷◁ PNO

 ▷◁
ENO

 ▷◁ ENO,PNO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/52

Cost-Based Optimization
•Solution space
➡The set of equivalent algebra expressions (query trees).

•Cost function (in terms of time)
➡I/O cost + CPU cost + communication cost
➡These might have different weights in different distributed

environments (LAN vs WAN).
➡Can also maximize throughput

•Search algorithm
➡How do we move inside the solution space?
➡Exhaustive search, heuristic algorithms (iterative improvement,

simulated annealing, genetic,…)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/53

Query Optimization Process

Search Space
Generation

Search
Strategy

Equivalent QEP

Input Query

Transformation
Rules

Cost Model

Best QEP

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/54

Search Space
 Restrict by means of heuristics

 Perform unary operations before binary operations
 …

 Restrict the shape of the join tree
➡Consider only linear trees, ignore bushy ones

Linear Join Tree Bushy Join Tree

R2R1

R3

R4

R2R1 R4R3

⋈
⋈

⋈

⋈

⋈ ⋈

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/55

Search Strategy
 How to “move” in the search space.
 Deterministic

 Start from base relations and build plans by adding one relation at each
step

 Dynamic programming: breadth-first
 Greedy: depth-first

 Randomized
 Search for optimalities around a particular starting point
 Trade optimization time for execution time
 Better when > 10 relations
 Simulated annealing
 Iterative improvement

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/56

Search Strategies
•Deterministic

R2R1

R3

R4

R2R1 R2R1

R3

R2R1

R3

R3R1

R2

•Randomized

⋈⋈
⋈

⋈
⋈

⋈

⋈
⋈ ⋈

⋈

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/57

Cost Functions
•Total Time (or Total Cost)
➡Reduce each cost (in terms of time) component individually
➡Do as little of each cost component as possible
➡Optimizes the utilization of the resources

Increases system throughput

•Response Time
➡Do as many things as possible in parallel
➡May increase total time because of increased total activity

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/58

Total Cost
Summation of all cost factors

Total cost = CPU cost + I/O cost + communication cost

CPU cost = unit instruction cost  no.of instructions
I/O cost = unit disk I/O cost  no. of disk I/Os
communication cost = message initiation + transmission

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/59

Total Cost Factors
•Wide area network
➡Message initiation and transmission costs high
➡Local processing cost is low (fast mainframes or minicomputers)
➡Ratio of communication to I/O costs = 20:1

•Local area networks
➡Communication and local processing costs are more or less equal
➡Ratio = 1:1.6

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/60

Response Time
Elapsed time between the initiation and the completion of a query

Response time = CPU time + I/O time + communication time
CPU time = unit instruction time * no. of sequential instructions
I/O time = unit I/O time * no. of sequential I/Os
communication time = unit msg initiation time * no. of sequential msg

+ unit transmission time * no. of sequential bytes

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/61

Example

Assume that only the communication cost is considered
Total time = 2 × message initialization time + unit transmission time *
(x+y)
Response time = max {time to send x from 1 to 3, time to send y from 2
to 3}
time to send x from 1 to 3 = message initialization time

+ unit transmission time * x
time to send y from 2 to 3 = message initialization time

+ unit transmission time * y

Site 1

Site 2

x units

y units

Site 3

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/62

Optimization Statistics
•Primary cost factor: size of intermediate relations
➡Need to estimate their sizes

•Make them precise  more costly to maintain
•Simplifying assumption: uniform distribution of attribute values in a

relation

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/63

Statistics
•For each relation R[A1, A2, …, An] fragmented as R1, …, Rr

➡length of each attribute: length(Ai)
➡the number of distinct values for each attribute in each fragment:

card(Ai
Rj)

➡maximum and minimum values in the domain of each attribute:
min(Ai), max(Ai)

➡the cardinalities of each domain: card(dom[Ai])
•The cardinalities of each fragment: card(Rj)
•Selectivity factor of each operation for relations
➡For joins

SF ⋈A=B (R,S) =
card(R ⋈A=B S)

card(R)  card(S)

= 1
 max(card(A

R),card(B
S))

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/64

Intermediate Relation Sizes
Selection
size(R) = card(R) × length(R)
card(F(R)) = SF(F) × card(R)
where

S F(A = value) =
card(∏A(R))

1

S F(A >value) =
max(A) – min(A)
max(A) – value

S F(A <value) =
max(A) – min(A)
value – max(A)

SF(p(Ai) ∧ p(Aj)) = SF(p(Ai)) * SF(p(Aj))
SF(p(Ai) ∨ p(Aj)) = SF(p(Ai)) + SF(p(Aj)) – (SF(p(Ai)) * SF(p(Aj)))
SF(A{value}) = SF(A= value) * card({values})

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/65

Intermediate Relation Sizes
Projection
card(A(R))=card(R)
Cartesian Product
card(R × S) = card(R) * card(S)
Union

upper bound: card(R  S) = card(R) + card(S)
lower bound: card(R  S) = max{card(R), card(S)}

Set Difference
upper bound: card(R–S) = card(R)
lower bound: 0

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/66

Intermediate Relation Size
Join
 Special case: A is a key of R and B is a foreign key of S

 card(R ⋈A=B S) = card(S)
 More general:
 card(R ⋈ S) = SF⋈ * card(R) × card(S)
Semijoin

card(R ⋉A S) = SF⋉(S.A) * card(R)
where

SF⋉(R ⋉A S)= SF⋉(S.A) = card(∏A(S))
card(dom[A])

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/67

Histograms for Selectivity
Estimation
•For skewed data, the uniform distribution assumption of attribute

values yields inaccurate estimations
•Use an histogram for each skewed attribute A
➡Histogram = set of buckets

✦ Each bucket describes a range of values of A, with its average frequency f
(number of tuples with A in that range) and number of distinct values d

✦ Buckets can be adjusted to different ranges
•Examples
➡Equality predicate

✦ With (value in Rangei), we have: SF(A = value) = 1/di

➡Range predicate
✦ Requires identifying relevant buckets and summing up their frequencies

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/68

Histogram Example

For ASG.DUR=18: we have SF=1/12 so the card of selection is 50/12
= 5 tuples

For ASG.DUR 18: we have min(range≤ 3)=12 and max(range3)=24 so
the card. of selection is 100+75+(((18 12)/(24 12))*50) = 200 tup.− −

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/69

Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Introduction to QO
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/70

Centralized Query Optimization
•Dynamic (Ingres project at UCB)
➡Interpretive

•Static (System R project at IBM)
➡Exhaustive search

•Hybrid (Volcano project at OGI)
➡Choose node within plan

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/71

Dynamic Algorithm
Decompose each multi-variable query into a sequence of mono-

variable queries with a common variable
Process each by a one variable query processor
➡Choose an initial execution plan (heuristics)
➡Order the rest by considering intermediate relation sizes

 No statistical information is maintained

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/72

Dynamic Algorithm–
Decomposition
•Replace an n variable query q by a series of queries

q1q2  …  qn

where qi uses the result of qi-1.
•Detachment

● Query q decomposed into q'  q" where q' and q" have a common
variable which is the result of q'

•Tuple substitution
● Replace the value of each tuple with actual values and simplify the query

 q(V1, V2, ... Vn)  (q' (t1, V2, V2, ... , Vn), t1R)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/73

Detachment

q: SELECT V2.A2,V3.A3, …,Vn.An

FROMR1 V1, …,Rn Vn

WHERE P1(V1.A1
’)AND P2(V1.A1,V2.A2,…, Vn.An)


q': SELECT V1.A1 INTO R1'

FROMR1 V1

WHERE P1(V1.A1)

q": SELECT V2.A2, …,Vn.An

FROMR1' V1, R2 V2, …,Rn Vn

WHERE P2(V1.A1, V2.A2, …,Vn.An)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/74

Detachment Example
Names of employees working on CAD/CAM project
q1: SELECT EMP.ENAME

FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO
AND PROJ.PNAME="CAD/CAM"


q11: SELECT PROJ.PNO INTO JVAR

FROM PROJ
WHERE PROJ.PNAME="CAD/CAM"

q': SELECT EMP.ENAME
FROM EMP,ASG,JVAR
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=JVAR.PNO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/75

Detachment Example (cont’d)
q': SELECT EMP.ENAME

FROM EMP,ASG,JVAR
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=JVAR.PNO


q12: SELECT ASG.ENO INTO GVAR

FROM ASG,JVAR
WHERE ASG.PNO=JVAR.PNO

q13: SELECT EMP.ENAME
FROM EMP,GVAR
WHERE EMP.ENO=GVAR.ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/76

Tuple Substitution
q11 is a mono-variable query
q12 and q13 is subject to tuple substitution
Assume GVAR has two tuples only: E1 and E2
Then q13 becomes
q131: SELECT EMP.ENAME

FROM EMP
WHERE EMP.ENO="E1"

q132: SELECT EMP.ENAME
FROM EMP
WHERE EMP.ENO="E2"

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/77

Static Algorithm
 Simple (i.e., mono-relation) queries are executed according to the best

access path
 Execute joins
➡Determine the possible ordering of joins
➡Determine the cost of each ordering
➡Choose the join ordering with minimal cost

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/78

Static Algorithm
For joins, two alternative algorithms :

•Nested loops
 for each tuple of external relation (cardinality n1)
 for each tuple of internal relation (cardinality n2)

 join two tuples if the join predicate is true
 end

 End
● Complexity: n1* n2

•Merge join
● sort relations
● merge relations
● Complexity: n1+ n2 if relations are previously sorted and equijoin

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/79

Static Algorithm – Example
Names of employees working on the CAD/CAM project
Assume
➡EMP has an index on ENO,
➡ASG has an index on PNO,
➡PROJ has an index on PNO and an index on PNAME

PNOENO

PROJ

ASG

EMP

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/80

Example (cont’d)
 Choose the best access paths to each relation
➡EMP: sequential scan (no selection on EMP)
➡ASG: sequential scan (no selection on ASG)
➡PROJ: index on PNAME (there is a selection on PROJ based on PNAME)

 Determine the best join ordering
➡EMP ▷◁ ASG ▷◁ PROJ
➡ASG ▷◁PROJ ▷◁ EMP
➡PROJ ▷◁ASG ▷◁ EMP
➡ASG ▷◁EMP ▷◁ PROJ
➡EMP × PROJ ▷◁ ASG
➡PRO × JEMP ▷◁ASG
➡Select the best ordering based on the join costs evaluated according to

the two methods

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/81

Static Algorithm

Best total join order is one of
((ASG ⋈ EMP) ⋈ PROJ)
((PROJ ⋈ ASG) ⋈ EMP)

ASGEMP PROJ

EMP × PROJ
pruned

PROJ × EMP
pruned

Alternatives

EMP ⋈ ASG
pruned

(ASG ⋈ EMP) ⋈ PROJ

ASG ⋈ EMP ASG ⋈ PROJ
pruned

PROJ ⋈
ASG

(PROJ ⋈ ASG) ⋈ EMP

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/82

Static Algorithm
• ((PROJ ⋈ ASG) ⋈ EMP) has a useful index on the select attribute and

direct access to the join attributes of ASG and EMP
•Therefore, chose it with the following access methods:
➡select PROJ using index on PNAME
➡then join with ASG using index on PNO
➡then join with EMP using index on ENO

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/83

Hybrid optimization
• In general, static optimization is more efficient than dynamic

optimization
➡Adopted by all commercial DBMS

•But even with a sophisticated cost model (with histograms), accurate
cost prediction is difficult

•Example
➡Consider a parametric query with predicate

 WHERE R.A = $a /* $a is a parameter
➡The only possible assumption at compile time is uniform distribution of

values
•Solution: Hybrid optimization
➡Choose-plan done at runtime, based on the actual parameter binding

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/84

Hybrid Optimization Example

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/85

Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/86

Join Ordering in Fragment
Queries
•Ordering joins
➡Distributed INGRES
➡System R*
➡Two-step

•Semijoin ordering
➡SDD-1

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/87

Join Ordering

•Obvious choice: copy smaller relation to the site of larger
•Multiple relations more difficult because of too many alternatives.

● As in the case of two; selecting smaller input argument to obtain small
intermediate size of result; estimation of the join result necessary (difficult); join
can increase the size of result

•Solution: use heuristics, i.e., only the communication cost

R
if size(R) < size(S)

if size(R) > size(S)
S

•Assumptions: query expressed on fragments (relations); ignore local
processing (reducers); consider only join operands at diff. sites; set-at-
a-time not tuple-at-a-time; does not count transfer of result.

•Consider two relations only: PROJ ASG⋈

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/88

Join Ordering – Example

Consider
PROJ ⋈PNO ASG ⋈ENO EMP

Site 2

Site 3Site 1

PNOENO

PROJ

ASG

EMP

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/89

Join Ordering – Example
Execution alternatives:
1. EMP Site 2 2. ASG  Site 1

Site 2 computes EMP'=EMP ⋈ ASG Site 1 computes EMP'=EMP ⋈ ASG
EMP' Site 3 EMP'  Site 3
Site 3 computes EMP' ⋈ PROJ Site 3 computes EMP’ ⋈ PROJ

3. ASG  Site 3 4. PROJ  Site 2
Site 3 computes ASG'=ASG ⋈ PROJ Site 2 computes PROJ'=PROJ ⋈ ASG
ASG'  Site 1 PROJ'  Site 1
Site 1 computes ASG' ▷◁ EMP Site 1 computes PROJ' ⋈ EMP

5. EMP  Site 2
PROJ  Site 2
Site 2 computes EMP ⋈ PROJ ⋈ ASG

Examples: The order (EMP, ASG, PROJ) could use strategy 1.
 The order (PROJ, ASG, EMP) could use strategy 4.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/90

Semijoin Algorithms
•General form of semijoin (derivation):

R ⋉F S = A(R ⋈F S) = A(R) ⋈ AB(S) = R ⋈F AB(S)
 where
 R[A], S[B] are relations
 Consider the join of two relations:
➡ R[A] (located at site 1)
➡ S[A] (located at site 2)

•Alternatives:
1. Do the join R ⋈AS
2. Perform one of the semijoin equivalents

 R ⋈AS (R ⋉AS) ⋈AS
  R ⋈A (S ⋉A R)

  (R ⋉A S) ⋈A (S ⋉A R)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/91

Semijoin Algorithms
•Perform the join
➡send R to Site 2
➡Site 2 computes R ⋈A S

•Consider semijoin (R ⋉AS) ⋈AS
➡S' = A(S)
➡S'  Site 1
➡Site 1 computes R' = R ⋉AS'
➡R' Site 2
➡Site 2 computes R' ⋈AS

Semijoin is better if
 size(A(S)) + size(R ⋉AS)) < size(R)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/92

Semijoin Algorithms
•Semijoins are useful for multi-join queries

 Reducing the size of the operand relations involved in multiple join queries
 Optimization becomes more complex
 Example: program to compute EMP ⋈ ASG ⋈ PROJ is
 EMP' ⋈ ASG' ⋈ PROJ,
 where EMP' = EMP ⋉ ASG and ASG' = ASG ⋉ PROJ.
 We may further reduce the size of an operand relation
 EMP'' = EMP ⋉ (ASG ⋉ PROJ)

 size(ASG ⋉ PROJ) size(ASG), we have size(EMP'') size(EMP')≤ ≤
 EMP ⋉ (ASG ⋉ PROJ) is semijoin program for EMP
 there exist several potential semijoin programs
 there is one optimal semijoin program, called the full reducer

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/93

Semijoin Algorithms
•The problem is to find the full reducer

 Evaluate the size reduction of all possible semijoin programs
 Problems with the enumerative method

 Cyclic queries, that have cycles in their join graph and for which full
reducers cannot be found

 Tree queries: full reducers exist, but the number of candidate semijoin
programs is exponential in the number of relations, which makes the
enumerative approach NP-hard

 Full reducers for tree queries exist
 The problem of finding them is NP-hard
 Important class of queries, called chained queries

 A chained query has a join graph where relations can be ordered, and each relation joins
only with the next relation in the order

 Polynomial algorithm exists

Semijoin:Example

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/95

Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/96

Distributed Dynamic Algorithm
1. Execute all monorelation queries (e.g., selection, projection)
2. Reduce the multirelation query to produce irreducible subqueries

q1 q2  …  qnsuch that there is only one relation between qi and
qi+1

3. Choose qi involving the smallest fragments to execute (call MRQ')
4. Find the best execution strategy for MRQ'

a) Determine processing site
b) Determine fragments to move

5. Repeat 3 and 4

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/97

Distributed Dynamic Algorithm

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/98

Distributed Dynamic Algorithm
 Query is expressed in tuple rel. calculus (CNF); schema info available

(network type, as well as the location and size of each fragment)
● Query optimization executed at master site

 Algorithm
● (step 1) Detached mono-relational queries are run locally
● (step 2) Query reduced to irreducible (part.ordered) and mono-relational queries
● (step 3.1) Select next subquery with smallest fragments involved (=>smallest result)
● (step 3.2) Selects the best strategy to process the subquery.

 Which fragm. to move and where join is executed? (->set of pairs (F,S))
 Intermed. results are always moved to the remaining table.
 Remaining rel. may be further partitioned into k fragments (parallel exec.)

● (step 3.3) Transfers all the fragments to their processing sites
● (step 3.4) Executes the selected subquery

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/99

Distributed Dynamic Algorithm
 The reduction algorithm is applied to the original query in step 2.

● The algorithm has produced subqueries and their dependency order (poset).
 The optimization occurs in 3.1 and 3.2.
 At step 3.1: a simple choice for the next subquery is to take the next

one having no predecessor and involving the smaller fragments.
● Example: a query q has the subqueries q1 , q2 , and q3 , with dependencies

q1 q3 , q2 q3. If fragments of q1 are smaller than those of q2 then q1 → →
executes first.

● This choice also depends on the number of sites having relevant fragments.
 At step 3.2: determines how to execute the subquery by selecting the

fragms that will be moved and sites where processing will take place.
● Fragms resulting from n-1 subqueries moved to fragms of n-th subquery.
● fragment-and-replicate: remaining relation may be further partitioned into k

“equalized” fragments in order to increase parallelism.
● Replication is cheaper in broadcast networks than in point-to-point networks.
● Decreases response time (parallel proc) but increases communication costs (total time)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/100

Distributed Dynamic Algorithm
 Dynamic query optimization algorithm is characterized by a limited

search of the solution space
 Optimization decision is taken for each step without concerning itself

with the consequences of that decision on global optimization.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/101

Distributed Dynamic Algorithm
- Example
 Let us consider the query PROJ ⋈ ASG, where PROJ and ASG are

fragmented
 Assume that the allocation of fragments and their sizes are as follows

(in kilobytes)
 Discussion:

 Point–to–point network, the best
 strategy is to send each PROJi to site 3,
 3000 kbytes, versus 6000 kbytes
 if ASG is sent to sites 1,2, and 4.
 Broadcast network, the best strategy is to send ASG (in
 a single transfer) to sites 1, 2, and 4, which incurs a transfer of 2000 kbytes.
 The latter strategy is faster and maximizes response time because the joins can

be done in parallel.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/102

Distributed Static Algorithm
•Based on System R*, IBM

● Cost function includes local processing as well as transmission
● Considers only joins; (left) deep plans
● “Exhaustive” search
● Compilation

•Query compilation coordinated by a master site
● Site where query was initiated.
● Master handles query optimization
● Master handles all intersite decisions

● Selection of the execution sites and the fragments as well as
● the method for transferring data

● Apprentice sites involved in the query, make the remaining local decisions
● Ordering of joins at a site

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/103

Distributed Static Algorithm

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/104

Distributed Static Algorithm
• Input to algorithm is a fragment query expressed as a query tree.
•Optimizer must select:

● Join ordering, join algorithm, and the access path for each fragments
● Statistics, estimated size of intermediate results and access path information

● Sites of join results and the method of transferring data between sites
•Apprentice sites select the local join ordering

● To join two relations, there are three candidate sites: the site of the first relation,
the site of the second relation, or a third site (e.g., the site of a next relation to
be joined with).

•Two methods are supported for intersite data transfers.
● Ship whole
● Fetch as needed

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/105

Static Approach – Performing Joins
•Ship whole

● Whole outer relation is shipped to site a of inner relation, stored in a temp. table
and joined with the inner relation.

● Larger data transfer. Fast if relations are small.
● Small number of messages.
● Received relation can be directly pipelined into merge-join.

•Fetch as needed
● Number of messages = O(cardinality of external relation)
● The outer relation is sequentially scanned, and each tuple is sent to the site of

the inner relation which accesses a local table and returns selected tuples back
to the site of outer. relation.

● Appropriate for small number of outer tuples.
● Data transfer per message is minimal (but latency)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/106

Static Approach – Join ordering

1. Move outer relation tuples to the site of the inner relation
(a) Retrieve outer tuples
(b) Send them to the inner relation site
(c) Join them as they arrive
Total Cost = cost(retrieving qualified outer tuples)
+ no. of outer tuples fetched * cost(retrieving qualified inner tuples)
+ msg. cost * (no. outer tuples fetched * avg. outer tuple size)/msg.

size

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/107

Static Approach – Join ordering

2. Move inner relation to the site of outer relation
Cannot join as they arrive; they need to be stored
Total cost = cost(retrieving qualified outer tuples)
+ no. of outer tuples fetched * cost(retrieving matching inner tuples

from temporary storage)
+ cost(retrieving qualified inner tuples)
+ cost(storing all qualified inner tuples in temporary storage)
+ msg. cost * no. of inner tuples fetched * avg. inner tuple
size/msg. size

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/108

Static Approach – Join ordering
3.Fetch inner tuples as needed
(a) Retrieve qualified tuples at outer relation site
(b) Send request containing join column value(s) for outer tuples to inner

relation site
(c) Retrieve matching inner tuples at inner relation site
(d) Send the matching inner tuples to outer relation site
(e) Join as they arrive
Total Cost = cost(retrieving qualified outer tuples)
+ msg. cost * (no. of outer tuples fetched)
+ no. of outer tuples fetched * no. of inner tuples fetched * avg.

inner tuple size * msg. cost / msg. size)
+ no. of outer tuples fetched * cost(retrieving matching inner tuples

for one outer value)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/109

Static Approach – Join ordering

4. Move both inner and outer relations to another site
Total cost = cost(retrieving qualified outer tuples)

+ cost(retrieving qualified inner tuples)
+ cost(storing inner tuples in storage)
+ msg. cost × (no. of outer tuples fetched * avg. outer tuple
size)/msg. size
+ msg. cost * (no. of inner tuples fetched * avg. inner tuple
size)/msg. size
+ no. of outer tuples fetched * cost(retrieving inner tuples from
temporary storage)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/110

Static Approach – Example
 Join of relations PROJ, the external relation, and ASG, the internal

relation, on attribute PNO
● PROJ ⋈ ASG

 We assume that
● PROJ and ASG are stored at two different sites
● there is an index on attribute PNO for relation ASG

 The possible execution strategies for the query are as follows:
 1. Ship whole PROJ to site of ASG.
 2. Ship whole ASG to site of PROJ.

 3. Fetch ASG tuples as needed for each tuple of PROJ.
 4. Move ASG and PROJ to a third site.

 Discussion
● Strategy 4: the highest cost since both relations must be transferred
● Strategy 2: size(PROJ) >> size(ASG)
● minimizes the communication time
● likely to be the best (if local processing time is not too high compared to

strategies 1 and 3)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/111

Static Approach – Example
 Discussion

● local processing time of strategies 1 and 3 is probably much better than that of
strategy 2 since they exploit the index

● If strategy 2 is not the best, the choice is between strategies 1 and 3
● If PROJ is large and only a few tuples of ASG match, strategy 3 wins
● if PROJ is small or many tuples of ASG match, strategy 1 should be the best.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/112

Dynamic Programming
 Used in almost all commercial database products

● Pioneered in IBM’s System R project [Selinger et al. 1979]
● Poduces the best possible plans if the cost model is sufficiently accurate
● Exponential time and space complexity O(2n); not viable for complex queries

 Iterative dynamic programming.
● Good plans for simple queries and “as good as possible plans” for complex

queries
 Basic dynamic programming algorithm for QO

● It works in a bottom-up way:
● building more complex (sub-) plans from simpler (sub-) plans

1) Builds an access plan for every table involved in the query (lines 1-4)
2) Builds a plan for n relations from the plan for n-1 relations + one more join

 (lines 5-12)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/113

Dynamic Programming

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/114

Dynamic Programming
1) Access plans for every single table involved in the query

● If Table A is replicated at sites S1 and S2, the algorithm would enumerate
scan(A, S1) and scan(A, S2).

2) Plan for n rels = best plans for o rels + best plans for n-o rels
● First, two-way join plans using the access plans as building blocks (Lines 5 to 13)

● The algorithm would enumerate alternative join plans for all relevant sites
● Next, the algorithm builds three-way join plans, using access-plans and two-way

join plans as building blocks.
● Algorithm continues in this way until it has enumerated all n-way join plans

which are complete plans for the query, if the query involves n tables.
 Some comments on dynamic programming algorithm

● Inferior plans are discarded (i.e., pruned) as early as possible (Lines 3 and 10).
● Prunning if alternative plan exists that does the same or more at a lower cost.

● Pruning significantly reduces the complexity of query optimization (comparing to O(n!))
● Neither scan(A,S1) nor scan(A, S2) may be immediately pruned in order to guarantee

that the optimizer finds a good plan
● scan(A,S2) is pruned: cost(scan(A,S1)) + cost(ship(A,S1,S2) < cost(scan(A,S2)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/115

Dynamic Programming
 Some comments on dynamic programming algorithm (cont.)

● In general, a plan P1 may be pruned if there exists a plan P2 that does the same
or more work and the following criterion holds:
 ∀i interesting sites(P1) : cost (ship(P1,i)) cost (ship(P2, i))∈ ≥

● Intresting_sites: set of sites that are potentially involved in processing the query

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/117

2-Step Optimization
1. At compile time, generate a static plan with operation ordering and

access methods only
2. At startup time, carry out site and copy selection and allocate

operations to sites

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/118

2-Step – Problem Definition
•Given
➡A set of sites S = {s1, s2, …,sn} with the load of each site
➡A query Q ={q1, q2, q3, q4} such that each subquery qi is the maximum

processing unit that accesses one relation and communicates with its
neighboring queries

➡For each qi in Q, a feasible allocation set of sites Sq={s1, s2, …,sk} where
each site stores a copy of the relation in qi•The objective is to find an optimal allocation of Q to S such that

➡the load unbalance of S is minimized
➡The total communication cost is minimized

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/119

2-Step – Problem Definition
•Each site si has a load, denoted by load(si), which reflects the number

of queries currently submitted
•The load can be expressed in different ways, e.g. as the number of I/O

bound and CPU bound queries at the site
•The average load of the system is defined as:

•The balance of the system for a given allocation of subqueries to sites
can be measured using the following unbalance factor

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/120

2-Step – Problem Definition
•The problem addressed by the second step of two-step query

optimization can be formalized as the following subquery allocation
problem. Given

•1. a set of sites S = {s1 , .., sn } with the load of each site;
•2. a query Q = {q1 , .., qm }; and
•3. for each subquery qi in Q, a feasible allocation set of sites
• Sq = {s1, ..., sk }
• where each site stores a copy of the relation involved in qi ;
• the objective is to find an optimal allocation on Q to S such that
•1. UF(S) is minimized, and
•2. the total communication cost is minimized.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/121

2-Step – Algorithm
•The algorithm, which we describe for linear join trees, uses several

heuristics.
1. Start by allocating subqueries with least allocation flexibility, i.e.
with the smaller feasible allocation sets of sites.
2. Consider the sites with least load and best benefit.

•The benefit of a site is defined as
1. the number of subqueries already allocated to the site and
2. measures the communication cost savings from allocating the
subquery and
3. the load information of any unallocated subquery that has a
selected site in its feasible allocation set is recomputed

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/

2-Step Algorithm
• For each q in Q compute load (Sq)
• While Q not empty do

1. Select subquery a with least allocation flexibility
2. Select best site b for a (with least load and best benefit)
3. Remove a from Q and recompute loads if needed

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/123

2-Step – Algorithm

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/

2-Step Algorithm Example
•Let Q = {q1, q2, q3, q4} where q1 is

associated with R1, q2 is
associated with R2 joined with the
result of q1, etc.

• Iteration 1: select q4, allocate to
s1, set load(s1)=2

• Iteration 2: select q2, allocate to
s2, set load(s2)=3

• Iteration 3: select q3, allocate to
s1, set load(s1) =3

• Iteration 4: select q1, allocate to s3
or s4

Note: if in iteration 2, q2, were allocated to s4, this would have produced
a better plan. So hybrid optimization can still miss optimal plans

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.7/125

Outline
 Distributed Query Processing

 Introduction
 Query Decomposition and Localization
 Centralized query optimization
 Join Ordering
 Distributed Query Optimization
 Adaptive Query Processing

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/

Adaptive Query Processing -
Motivations
• Assumptions underlying query optimization

● The optimizer has sufficient knowledge about runtime
● Cost information

● Runtime conditions remain stable during query execution

• Appropriate for systems with few data sources in a
controlled environment

• Inappropriate for changing environments with large
numbers of data sources and unpredictable runtime
conditions

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/

Example: QEP with Blocked Operator

 Assume ASG, EMP,
PROJ and PAY each at a
different site

 If ASG site is down, the
entire pipeline is blocked

 However, with some
reorganization, the join of
EMP and PAY could be
done while waiting for
ASG

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/

Adaptive Query Processing – Definition

 A query processing is adaptive if it receives information
from the execution environment and determines its
behavior accordingly
 Feed-back loop between optimizer and runtime environment
 Communication of runtime information between DDBMS components

 Additional components
 Monitoring, assessment, reaction
 Embedded in control operators of QEP

 Tradeoff between reactiveness and overhead of
adaptation

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/

Adaptive Components

 Monitoring parameters (collected by sensors in QEP)
 Memory size
 Data arrival rates
 Actual statistics
 Operator execution cost
 Network throughput

 Adaptive reactions
 Change schedule
 Replace an operator by an equivalent one
 Modify the behavior of an operator
 Data repartitioning

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129

