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The Database Problem
•Large volume of data  use disk and large main memory
• I/O bottleneck (or memory access bottleneck)
➡Speed(disk) << speed(RAM) << speed(microprocessor)

•Predictions
➡Moore’s law: processor speed growth (with multicore): 50 % per year
➡DRAM capacity growth : 4 × every three years
➡Disk throughput : 2 × in the last ten years

• SSD linked to controller (500-800 MB/s)!
•Conclusion : the I/O bottleneck worsens
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The Solution
• Increase the I/O bandwidth
➡Data partitioning
➡Parallel data access

•Origins (1980's): database machines
➡Hardware-oriented  bad cost-performance  failure
➡Notable exception : ICL's CAFS Intelligent Search Processor

•1990's: same solution but using standard hardware components 
integrated in a multiprocessor
➡Software-oriented
➡Standard essential to exploit continuing technology improvements
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Multiprocessor Objectives
•High-performance with better cost-performance than mainframe or 

vector supercomputer
•Use many nodes, each with good cost-performance, communicating 

through network
➡Good cost via high-volume components
➡Good performance via bandwidth

•Trends
➡Microprocessor and memory (DRAM): off-the-shelf
➡Network (multiprocessor edge): custom

•The real chalenge is to parallelize applications to run with good load 
balancing
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Parallel Data Processing
•Three ways of exploiting high-performance multiprocessor systems:

 Automatically detect parallelism in sequential programs (e.g., Fortran, 
OPS5)

 Augment an existing language with parallel constructs (e.g., C*, 
Fortran90)

 Offer a new language in which parallelism can be expressed or 
automatically inferred

•Critique
 Hard to develop parallelizing compilers, limited resulting speed-up
 Enables the programmer to express parallel computations but too low-

level
 Can combine the advantages of both (1) and (2)
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Data-based 
Parallelism
•Inter-operation
➡p operations of the same query in parallel
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•Intra-operation
➡The same op in parallel
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Parallel DBMS
•Loose definition: a DBMS implemented on a tighly coupled 

multiprocessor
•Alternative extremes
➡Straighforward porting of  relational DBMS (the software vendor edge)
➡New hardware/software combination (the computer manufacturer edge)

•Naturally extends to distributed databases with one server per site
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Parallel DBMS - Objectives
•Much better cost / performance than mainframe solution
•High-performance through parallelism
➡High throughput with inter-query parallelism
➡Low response time with intra-operation parallelism

•High availability and reliability by exploiting data replication
•Extensibility with the ideal goals
➡Linear speed-up
➡Linear scale-up
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Linear Speed-up
Linear increase in performance for a constant DB size and 
proportional increase of the system components (processor, memory, 
disk)

new perf.

old perf.

ideal

components
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Linear Scale-up
Sustained performance for a linear increase of database size and 
proportional increase of the system components.

components + database size

new perf.

old perf.
ideal
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Barriers to Parallelism
•Startup
➡The time needed to start a parallel operation may dominate the actual 

computation time
• Interference
➡When accessing shared resources, each new process slows down the 

others (hot spot problem)
•Skew
➡The response time of a set of parallel processes is the time of the slowest 

one
•Parallel data management techniques intend to overcome these 

barriers
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Parallel DBMS – Functional 
Architecture 
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Parallel DBMS Functions
•Session manager
➡ Host interface
➡ Transaction monitoring for OLTP

•Request manager
➡ Compilation and optimization
➡ Data directory management
➡ Semantic data control 
➡ Execution control

•Data manager
➡ Execution of DB operations
➡ Transaction management support
➡ Data management
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Parallel System Architectures
•Multiprocessor architecture alternatives
➡Shared memory (SM)

➡Shared disk (SD)

➡Shared nothing (SN)

•Hybrid architectures
➡Non-Uniform Memory Architecture (NUMA)

➡Cluster
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Shared-Memory

DBMS on symmetric multiprocessors (SMP)
Prototypes: XPRS, Volcano, DBS3
   + Simplicity, load balancing, fast communication
   - Network cost, low extensibility
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Shared-Memory
•Meta-information (directory) and control information (e.g., lock 

tables) can be shared by all processors
• Inter-query parallelism comes for free
• Intra-query parallelism requires some parallelization but remains rather 

simple
• Load balancing is easy to achieve 
➡Allocating each new task to the least busy processor.

• Shared-memory has three problems: high cost, limited extensibility and 
low availability
➡ Interconnect requires fairly complex hardware

➡With faster processors (even with larger caches), conflicting accesses to the 
shared-memory increase rapidly and degrade performance

➡Extensibility is limited to a few tens of processors, typically up to 16 
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Shared-Disk

Origins : DEC's VAXcluster, IBM's IMS/VS Data Sharing
Used first by Oracle with its Distributed Lock Manager
Now used by most DBMS vendors
   + network cost, extensibility, migration from uniprocessor
    - complexity, potential performance problem for cache coherency
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Shared-Disk
•Any processor has access to any disk unit through the interconnect 

but exclusive access to its main memory.
➡Each processor-memory node is under the control of its own OS
➡Global cache consistency is needed
➡This is typically achieved using a distributed lock manager

•Shared-disk has a number of advantages: 
➡Lower cost, high extensibility (up to 100), load balancing, availability (owns 

memory), and easy migration from centralized systems.
➡Network-attached storage (NAS) and storage-area network (SAN)

● Cost of the interconnect is significantly less than with shared-memory
•Shared-disk suffers from higher complexity & potential perform. 

problems.
➡Distributed locking and two-phase commit.



Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/19

Shared-Nothing

Used by Teradata, IBM, Sybase, Microsoft for OLAP
Prototypes: Gamma, Bubba, Grace, Prisma, EDS
   + Extensibility, availability
    - Complexity, difficult load balancing
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Shared-Nothing
• Each processor has exclusive access to its main memory and disk unit(s)
➡ Each node can be viewed as a local site (with its own database and software) in a 

distributed database system.
➡Most solutions of DDBMS may be reused: fragmentation, transaction management 

and query processing
➡ Architecture is often called Massively Parallel Processor (MPP), opposed to SMP

• Shared-nothing advantages: lower cost, high extensibility, high availability
➡ Shared-disk that requires a special interconnect, not shared-nothing 
➡ Careful partitioning of the data on multiple disks => almost linear speedup and linear 

scaleup for simple workloads
• SN is much more complex to manage than either SM or SD
➡ Distributed DB functions assuming large numbers of nodes; load balancing is more 

difficult (=>partitioning); adding new nodes?
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Hybrid Architectures
•Various possible combinations of the three basic architectures are 

possible to obtain different trade-offs between cost, performance, 
extensibility, availability, etc.

•Hybrid architectures try to obtain the advantages of different 
architectures:
➡efficiency and simplicity of shared-memory 
➡extensibility and cost of either shared disk or shared nothing

•2 main kinds: NUMA and cluster
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NUMA
•Shared-Memory vs. Distributed Memory
➡Mixes two different aspects : addressing and memory

✦ Addressing: single address space  vs multiple address spaces
✦ Physical memory: central vs distributed

•NUMA = single address space on distributed physical memory
➡Eases application portability
➡Extensibility

•The most successful NUMA is Cache Coherent NUMA (CC-NUMA)
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CC-NUMA

•Principle
➡Main memory distributed as with shared-nothing
➡However, any processor has access to all other processors’ memories 

•Similar to shared-disk, different processors can access the same data 
in a conflicting update mode, so global cache consistency protocols 
are needed.
➡Cache consistency done in hardware through a special consistent cache 

interconnect
✦ Remote memory access very efficient, only a few times (typically between 2 

and 3 times) the cost of local access
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Cluster

•Combines good load balancing of SM with extensibility of SN
•Server nodes: off-the-shelf components
➡From simple PC components to more powerful SMP
➡Yields the best cost/performance ratio 
➡In its cheapest form,

•Fast standard interconnect (e.g., Ethernet, Infiniband, Omni-Path, 
Fibre Channel) with high bandwidth (up to 400 Gb/s)
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Cluster
•Set of independent server nodes interconnected to share resources 

and form a single system
➡ “clustered” resources: disk or software such as data management services
➡ off-the-shelf components: PC components, SMP-s, ...
➡ Interconnect: local network, fast standard interconnects for clusters
➡ Compared to a distributed system: geographically concentrated and made of 

homogeneous nodes

•There are two main technologies to share disks in a cluster: network-
attached storage (NAS) and storage-area network (SAN).
➡ NAS is a dedicated device to shared disks over TCP/IP and NFS (low throughput)
➡ SAN gives similar functionality with lower-level interface
➡ Block-based protocol: easier to manage cache consistency (block-based)
➡ SAN provides high data throughput and can scale up to large numbers of nodes 
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Comparison
• SN cluster can yield  best cost/performance and extensibility
➡ But adding or replacing cluster nodes requires disk and data reorganization

• SD cluster avoids such reorganization but requires disks to be globally accessible by the 
cluster nodes

• Small configuration (20P): SM can provide the highest performance because of better load 
balancing 

• Shared-disk and shared-nothing architectures outperform shared-memory in terms of extensibility. 
• Some years ago, shared-nothing was the only choice for high-end systems. 
• Recent progress in disk connectivity technologies such as SAN make SD a viable alternative
• SD is now the preferred architecture for OLTP applications
• OLAP databases that are typically very large and mostly read-only, SN is used
• NUMA and cluster, can combine the efficiency and simplicity of SM and the extensibility and cost of 

either SD or SN.
• Using standard PCs and interconnects, clusters provide a better cost/ performance ratio, and, 

using SN, they can scale up to very large configurations
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Parallel DBMS Techniques
•Data placement
➡Physical placement of the DB onto multiple nodes
➡Static vs. Dynamic

•Parallel data processing
➡Select is easy
➡Join (and all other non-select operations) is more difficult

•Parallel query optimization
➡Choice of the best parallel execution plans
➡Automatic parallelization of the queries and load balancing

•Transaction management
➡Similar to distributed transaction management
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Data Partitioning
•Each relation is divided in n partitions (subrelations), where n is a 

function of relation size and access frequency
• Implementation
➡Round-robin 

✦ Maps i-th element to node i mod n
✦  Simple but only exact-match queries

➡B-tree index
✦ Supports range queries but large index

➡Hash function
✦ Only exact-match queries but small index
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Partitioning Schemes

Round-Robin Hashing

Interval

••• •••

•••

•••

•••

•••

•••a-g h-m u-z
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Variable partitioning
•Compromise between clustering and full partitioning
➡Full partitioning has obvious performance advantages
➡Highly parallel execution might cause a serious performance overhead 
➡Full partitioning is not appropriate for small relations

•Number of nodes over which a relation is fragmented, is a function of 
the size and access frequency of the relation
➡Changes in data distribution may result in reorganization
➡Periodic reorganizations for load balancing are essential 
➡Such reorganizations should remain transparent to compiled programs that 

run on the database server
➡Compiled programs should remain independent of data location
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Replicated Data Partitioning
•High-availability requires data replication
➡Simple solution is mirrored disks

✦ Hurts load balancing when one node fails
➡More elaborate solutions achieve load balancing

✦ Interleaved partitioning (Teradata)
✦ Chained partitioning (Gamma)
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Interleaved Partitioning

Node

       Primary copy             R1             R2             R3              R4     

Backup copy                           r1.1            r1.2             r1.3

                                   r2.3                            r2.1               r2.2

                                 r3.2          r3.2                               r3.1

1 2 3 4
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Chained Partitioning

Node

Primary copy            R1             R2             R3              R4     

Backup copy             r4              r1              r2               r3    

1 2 3 4
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Placement Directory
•Performs two functions

● F1 (relname, placement attval) = lognode-id 

● F2 (lognode-id) = phynode-id

•The global index indicates the 
placement of a relation onto a set of 
nodes. 
 Major clustering on the relation name and a 

minor clustering on some attribute  of the 
relation.

 The index structure can be based on 
hashing or on a B-tree like organization.

 B-tree allows range queries.

• In addition, each node has its local 
index (to access disk pages)
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Parallel Query Processing
•Transform queries into execution plans that can be efficiently 

executed in parallel
➡Exploiting parallel data placement and the various forms of parallelism 

offered by high-level queries
1) Forms of query parallelism
2) Basic parallel algorithms for data processing
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Query Parallelism
• Inter-query parallelism
➡Parallel execution of multiple queries generated by concurrent transactions, in 

order to increase the transactional throughput. 

• Intra-query parallelism
➡Within a query: inter-operator and intra-operator parallelism
➡ Inter-operator parallelism is obtained by executing in parallel several 

operators of the query tree on several processors
➡ Intra-operator parallelism, the same operator is executed by many processors, 

each one working on a subset of the data
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Intra-operator Parallelism
•Decomposition of one operator in a set of independent sub-

operators, called operator instances
➡Static and/or dynamic partitioning of relations

 Each operator instance processes one relation partition, also called a bucket
 Operator decomposition frequently benefits from the initial partitioning of the data
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Intra-operator Parallelism
• If the relation is partitioned on the select attribute, partitioning 

properties can be used to eliminate some select instances
• In order to have independent joins, each bucket of the first relation R 

may be joined to the entire relation S 
➡S needs to be broadcast to each site of R buckets (inefficient!)

• If R and S are partitioned by hashing on the join attribute and if the 
join is an equijoin, then we can partition the join into independent 
joins

•Partitioning function (hash, range, round robin) is independent of the 
local algorithm (e.g., nested loop, hash, sort merge) used to process 
the join operator
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Inter-operator Parallelism
•Two forms of inter-operator parallelism can be exploited 
➡Pipeline parallelism, several operators with a producer-consumer link are 

executed in parallel
 Advantage: intermediate result is not materialized

➡ Independent parallelism is achieved when there is no dependency between 
the operators that are executed in parallel
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Join Processing
•Three basic algorithms for intra-operator parallelism
➡Parallel nested loop join: no special assumption
➡Parallel associative join: one relation is declustered on join attribute and 

equi-join 
➡Parallel hash join: equi-join 

•They also apply to other complex operators such as duplicate 
elimination, union, intersection, etc. with minor adaptation
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Parallel Nested Loop Join
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Parallel Nested Loop Join

send
partition

node 3 node 4

node 1 node 2

R1:

S1 S2

R2:
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Parallel Nested Loop Join
•PNL composes the Cartesian product of relations R and S in parallel
➡Arbitrarily complex join predicates may be supported

• Join result is produced at the S-nodes (Distributed INGRES)
• In the first phase, each fragment of R is sent and replicated at each 

node containing a fragment of S (there are n such nodes)
• In the second phase, each Sj-node receives relation R entirely, and 

locally joins R with fragment Sj . 
➡This phase is done in parallel by n nodes
➡Depending on the local join algorithm, join processing may or may not start as 

soon as data are received (NL algorithm)
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Parallel Associative Join
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Parallel Associative Join
node 1

node 3 node 4

node 2

R1: R2:

S1 S2
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Parallel Associative Join
• In the first phase, relation R is sent associatively to the S-nodes based 

on the hash function h applied to attribute A
➡Tuple of R with hash value v is sent only to the S-node that contains tuples with 

hash value v
➡Tuples of R get distributed but not replicated across the S-nodes

• In the second phase, each Sj-node receives in parallel from the 
different R-nodes the relevant subset of R (i.e., Rj ) and joins it locally 
with the fragments Sj
➡Rj joined locally with the fragments Sj
➡ It depends on the local join if Sj-node starts immediately
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Parallel Hash Join
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Parallel Hash Join
node node node node

node 1 node 2

R1: R2: S1: S2:
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Parallel Hash Join
•Also called (recently) canonical hash join
•Generalization of the parallel associative join algorithm
➡Does not require any particular partitioning of the operand relations
➡The basic idea is to partition relations R and S into the same number p of 

mutually exclusive sets
➡Each individual join (Ri JOIN Si) is done in parallel, and the join result is 

produced at p nodes
•A build phase and a probe phase
➡The build phase hashes R on the join attribute, sends it to the target p nodes 

that build a hash table for the incoming tuples.
➡The probe phase sends S associatively to the target p nodes that probe the 

hash table for each incoming tuple.
➡After the hash tables have been built for R, the S tuples can be sent and 

processed in pipeline by probing the hash tables.
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Example: Parallel Hash Join
● R1 and R2 are fragments of a table R;                                                                     

S1 and S2 be fragments of S. 

● Show the steps in the computation of                                                                  
the distributed hash join R ⋈A S. 

● Hash function h(A) = (A mod 2)+N.

● Set N so that Sites 1-4 are used.
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New hardware
•Modern processors provide parallelism at various levels

● Instruction parallelism via super scalar execution
● Data-level parallelism by extended support for SIMD; and
● Thread-level parallelism through multiple cores and simultaneous multi-

threading (SMT).

•Two main types of join algorithms
● Hash Join (abbr. HJ)
● Sort-Merge Join (abbr. SMJ)

•Lines of arguments
● Main-memory parallel joins should be hardware-conscious 

● fine tuning the algorithm to the underlying architecture (SIMD curr. not good enough)
● Join algorithms can be made efficient while remaining hardware-oblivious

● less portable and less robust to, e.g., data skew
● SMJ is already better than HJ join and can be efficiently implemented 

without SIMD
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Parallel Hash Joins
•No partitioning hash join 
•Partitioned hash join
•Radix hash join
•Parallel radix hash join
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No Partitioning (Hash) Join
•Balkesen, et al., ICDE 2013 (T. Ozsu)
•A direct parallel version of the canonical hash join

● It does not depend on any hardware-specific parameters

•NPJ Algorithm (R S)⋈
● Both input relations are divided into equi-sized portions that are assigned to a 

number of worker threads
● Build phase: R workers populate shared                                                                 

hash table that all workers can access
● After synchron. barrier:  worker threads                                                                       

in probe phase read from S and                                                                       
concurrently find matching join pairs from R

•Concurrent insertions into hash                                                 
table must be synchronized

● Latches (contention?)
● Compare-and-Swap (CAS)
● Probe: RO mode
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Observations: Cache and TLB
•Shatdal, et al., VLDB, 1994; Manegold, et al., IEEE TKDE, 2002
•Avoiding cache misses during build and probe phases
•Hashing results in cache misses (while accessing memory)

● When the HT is larger than cache, almost every access to HT results in a cache miss
● Therefore, partitioning HT into cache-sized chunks reduces cache misses and 

improves performance

•Effects of translation look-aside buffer (TLB) during partitioning phase
● TLB is a memory cache that stores the recent translations of virtual memory to 

physical memory (located in MMU, in CPU)
● Partitions typically reside on different memory pages with a separate entry for virtual 

memory mapping (TLB entry) required for each partition.
● # of TLB entries is an upper bound on # of partitions that can be created or accessed 

efficiently at the same time
● This led to multi-pass partitioning, now a standard component of radix join 
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Partitioned Hash Join
•Build phase: input rels R and S divided into partitions ri and sj 

● R and S tuples are divided up using hash partitioning (h1) on their join key values  
(consequences? ri ⋈ sj = ∅ (i≠j))

● Parts of R may be assigned to threats
● A separate HT is created for                                                                                         

each ri partition
● A separate thread is created for                                                                                         

each partition ri 
● No synchronisation needed for                                                                                                  

writing HTs
● Hash tables for partitions ri now fit                                                                           

into CPU cache!

•Probe phase: 
● sj partitions are scanned and 
● Respective hash tables are probed                                                                              

for matching tuples using h2
● One thread is used for one partition si
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Radix Hash Join
•Radix partitioning

● Excessive TLB misses can be avoided by partitioning input data in multiple passes
● ∀ pass j, partitions produced by preceding pass j−1 are refined
● Partitioning fan-out never exceeds the hardware limit given by the number of TLB entries
● Precomputing output memory ranges of each target partition by building histograms

● Each pass looks at different set of bits from hash function h1 ==> radix partitioning
● 2-3 passes sufficient to create partitions without problems with TLB limitations
● Different targeted memory regions ==> no need for further synchronization!
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Radix Hash Join
•Radix join R S⋈

● Both inputs are partitioned                                                                                      
using two-pass radix partitioning

● Built phase: 
● Hash tables are then built over                                                                                                   

each ri partition of input table R.
● Probe phase: 

● All si partitions are scanned and                                                                                              
respective ri partitions probed for                                                                                                 
join matches.

● Maximum “fanout” per pass is restricted by TLB size
● log(|R|) (or log(|S|)) passes are necessary

● Complexity of radix hash join is O((|R| + |S|) log |R|)    // R is typically smaller
● Hardware parameters:

1) Maximum fanout per radix pass is limited by # TLB entries; 

2) Resulting partition size = roughly the size of the system’s CPU cache.
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Radix Hash Join
•Mapping tasks to threads

● Dividing R and S into sub-relations that are assigned to individual threads
● During the first pass, all threads create a shared set of partitions
● Number of partitions in this set is limited by hardware parameters and typically small
● They are accessed by potentially many execution threads, creating a contention problem
● For each thread a dedicated range is reserved within each output partition
● Threads scan input relations and write to selected memory regions

● To this end, both input relations are scanned twice
● 1st scan: computes a set of histograms over the input data 
● 2nd scan: each thread pre-computes the exclusive location, where it writes its output

•Final partitions used in built and probe phases fit into CPU cache
● In building phase, threads are building the hash tables for each particular partition

● No contention since there are different memory regions for different HTs
● In probing phase, many execution threads write the result table

● No contention since each threat joins exactly two partitions (si and ri)          
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Sort-Merge Join
•Sort R and S on their join keys and then merge sorted R’ and S’.

● Sorting R and S is the dominant cost
● Usually, merge sort is used for the sort phase of SM join.

•New hardware is used
● Single Instructions on vectors (multiple scalars)
● SIMD registers in novel CPUs (typically, 4x4 SIMD registers)
● There are many SIMD instructions that work on vectors 
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Sorting Networks
•Knuth’s notation of sorting networks

● Input 9, 5, 3, 6⟨ ⟩
● Comparator emits the smaller value at the top                                             and larger value on the bottom
● Traversing comparators from left to right

•Comparators can be implemented with                                    min/max operators only
● Five comparators from the above figure is converted into                     sequence of 10 min/max operations (no branching, fast!)

•Sorting networks are appealing because they                       can be accelerated through SIMD instructions
● k=4: 4 SIMD vector registers with 4 elements 
● If vectors are loaded in SIMD registers then they need                             to be transposed first (expensive shuffle instructions)
● 4 vectors are sorted in the time used for one in CPU                          without SIMD (speedup 2.7 because of shuffle ops)
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Merging Sorted Runs
•Bitonic Merge Networks

● Merging phase of SM join also benefits from SIMD acceleration
● Networks that combine two pre-sorted inputs into an sorted output

● This allows building larger networks 

•A network that combines two input lists of size four
● Using min and max operations, and shuffle operations in between comparators 

•Merging Larger Lists
● For larger input sizes, merge                                                                                       

networks scale poorly - O(N log2 N)
● Small merge networks can be used                                                                              

as a kernel within a merging                                                                                
algorithm for larger lists



Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/62

Balancing Computation & Bandwidth

•Accesses to off-chip memory makes sorting sensitive to the characteristics 
of the memory interface.

•8-wide bitonic merge implementation requires 36 assembly instructions 
per 8 tuples being merged (29 CPU cycles)
● With a clock frequency of 2.4 GHz, this corresponds to a memory bandwidth 10.6 

GB/s for a single merging thread
● This is more than existing interfaces                                                                          

support (+ 8 cores per CPU)
● Out-of-cache merging is thus severely                                                                   

bound by the memory bandwidth

•Merging more than 2 runs at once =>                                                            
Memory bandwidth demand reduced 
● Multi-way merging saves round-trips to memory (memory bandwidth)
● Multi-way merging is implemented with multiple two-way merge units

•Two-way merge units are connected by queues
● FIFO queues are sized such that all queues together still fit into CPU cache
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Sorting and Memory Hierarchy
•Sorting using Advanced Vector Extensions (AVX) in CPUs

● AVX sorting algorithm (2.5 - 3 times faster then C++ sort)

•Cache hierarchies in modern hardware require separating the overall 
sorting into several phases to optimize cache access
● In-register sorting, with runs that fit into (SIMD) CPU registers
● In-cache sorting, where runs can still be held in a CPU-local cache
● Out-of-cache sorting, once runs exceed cache sizes

• In-register sorting
● Run-generation using sorting networks (initial sorted runs)

• In-cache sorting
● Initial runs are merged until runs can no longer be contained within CPU caches
● Multi-way merging using a hierarchy of Bitonic Merge Networks 

•Out-of-Cache Sorting
● Continues merging until the data is fully sorted
● Memory references will have to be fetched from off-chip memory
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m-way Sort-Merge Join
•Highly parallel sort-merge join  

● Balkesen, et al., Multi-Core, Main-Memory Joins: Sort vs. Hash Revisited, VLDB, 
2013 (T. Ozsu)

● Relies on both data and thread parallelism 
● Data parallelism based on SIMD extensions to standard ISA
● Carefully optimized toward NUMA

•General description of the algorithm
● Initially, input relations R and S are equally distributed across NUMA regions
● 1st phase: each thread is assigned its NUMA-local chunk of R and all the threads 

range-partition their local chunks in parallel
● Allowing threads in the subsequent phases to work independently without any synchronization.
● Partitioning fan-out is usually on the order of the number of threads (64–128)
● Then each local partition is sorted locally (NUMA-local) using the AVX sorting algorithm
● Different threads can sort different partitions independently
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m-way Sort-Merge Join
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m-way Sort-Merge Join
•General description of the algorithm

● 2nd phase: 
● The only phase that requires shuffling data between NUMA regions (thru interconnect bandwidth)
● Multi-way merging presented before overlaps data transfer and merging (they are in balance)
● Outcome of this phase is a globally sorted copy of R, indicated as R’

● 3rd and 4th phase:
● The same steps 1 and 2 are applied to relation S!

● 5th phase: 
● R’ and S’ are stored in the NUMA-local memory of each thread
● Each thread concurrently evaluates the join between NUMA-local sorted runs using a single-

pass merge join
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m-pass and mpsm SM Joins
•Competitors of m-way join
•Sort-Merge Join Algorithm – m-pass

● Algorithm differs solely in Phase 2 
● Instead of applying a multi-way merge for merging NUMA-remote runs, m-pass 

applies successive two-way bitonic merging
● First iteration of merging of sorted runs is done as data is transferred to local memory

● The number of runs reduces to 1/2 of the initial total number of runs.
● The rest of the merging done in local memory, using multi-pass merging technique

•Massively Parallel Sort-Merge Join – mpsm
● mpsm first globally range-partitions relation R 

● Different ranges of R are assigned to different NUMA-regions/threads
● Next, each thread independently sorts its partition, resulting in a globally-sorted R’
● S is sorted only partially

● Each thread sorts its NUMA-local chunk of S without a prior partitioning
● Last phase: a run of R must be merge-joined with all the NUMA-remote runs of 

relation S
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Other join algorithms
•To exploit large main memories and multicore
•Symmetric hash join

● The traditional build and probe phases of the basic hash join algorithm are 
simply interleaved, using two hash tables.

● When a tuple arrives:
● It is used to probe the hash table corresponding to the other relation and find 

matching tuples.
● Then, it is inserted in its corresponding hash table so that tuples of the other relation 

arriving later can be joined.

•Ripple join
● Generalization of the nested loop join algorithm where the roles of inner and 

outer relation continually alternate during query execution.
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Parallel Query Optimization
•Parallel query optimization exhibits similarities with distributed query 

processing.
•Taking advantage of both 

 intra-operator and inter-operator parallelism. 
•A parallel query optimizer can be seen as three components:

 a search space, a cost model, and a search strategy. 
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Parallel Query Optimization
•Parallel query optimization exhibits similarities with distributed query 
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•A parallel query optimizer can be seen as three components:

 a search space, a cost model, and a search strategy. 
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Parallel Query Optimization
•The objective is to select the “best” parallel execution plan for a query 

using the following components
•Search space
➡ Models alternative execution plans as operator trees
➡ Left-deep vs. Right-deep vs. Bushy trees

•Search strategy
➡ Dynamic programming for small search space
➡ Randomized for large search space

•Cost  model (abstraction of execution system)
➡ Physical schema info. (partitioning, indexes, etc.)
➡ Statistics and cost functions
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Search space
•Execution plans are abstracted by means of operator trees
➡Annotations indicate additional execution aspects
➡Algorithm of each operator
➡Pipelined execution (flow of tuples, intermediate results not materialized)
➡One operand is stored (e.g., parallel hash join algorithm in the build phase)
➡Pipeline and stored annotations constrain the scheduling of execution plans
➡Splitting an operator tree into non-overlapping sub-trees, corresponding to 

execution phases
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Two hash-join trees with a 
different scheduling
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Search space
•Set of nodes where a relation is stored is called its home. 
➡The home of an operator is the set of nodes where it is executed 
➡The home of an operator must be the home of its operands in order for the 

operator to access its operands
➡For binary operators such as join, this might imply repartitioning one of the 

operands.
➡Annotations to indicate repartitioning.

•Four operator trees that represent execution plans for a three-way 
join.
➡Linear or bushy trees
➡Right-deep trees express full pipelining while left-deep trees express full 

materialization of all intermediate results
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Execution Plans as Operator 
Trees
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Search space
•Long right-deep trees are more efficient then corresponding left-deep
➡ … but tend to consume more memory to store left-hand side relations

•Bushy trees are the only ones to allow independent parallelism 
➡ … and some pipeline parallelism
➡ Independent parallelism is useful when the relations are partitioned on disjoint 

homes.

•Zigzag trees are intermediate formats between left-deep and right-
deep trees
➡ Sometimes outperform right-deep trees due to a better use of main memory
➡ Use right-deep or zigzag trees when relations are partially fragmented on disjoint 

homes and intermediate relations are rather large.
➡When intermediate relations are small, pipelining is not very efficient because it is 

difficult to balance the load between the pipeline stages.
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Search Strategy
•Research problems 
➡No ad-hoc solutions and dynamic optimization? 
➡ Improve the cost function; it is always an estimation
➡Problems with skew; hard to find good solutions
➡Properties of cost function; well-designed cost function 

•Exhaustive search 
➡Possible for small number of joins in relational parallel systems
➡Exhaustive join reordering useful for simple and very specific query languages 

(e.g., document search)

•Dynamic programming 
➡Many instances of the dynamic programming
➡Dynamic programming “by the book”

 Very complex environment; hard to nail down a clean implementation
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Search Strategy
➡Bottom-up dynamic programming

 Start with the optimal access to relations and build the plan in a bottom-up fashion

➡Memoization
 A variant of dynamic programming storing best approaches for subqueries 

•Problems with cost estimation function 
➡Cost function is an estimation; very hard to compute precisely
➡Cost function as heuristics

 Monotonicity of the cost function? Structure, properties of cost function?

➡Open problems? 
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Search Strategy
•Heuristic-based Optimization 
➡See dynamic optimization in distributed databases
➡Push down all selections and projections
➡Select the smallest intermediate result first
➡Select if enough physical memory available
➡More insight in cost function (structure, math.properties, …)

 Gives more possibilities to use heuristics! 
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Cost Model
•Cost model is responsible for estimating the cost of a given execution 

plan.
➡ Architecture-dependent and architecture-independent

•Architecture-independent
➡ Operator algorithms, e.g., nested loop for join and sequential access for select.

•Architecture-dependent
➡ Data repartitioning and memory consumption 

•The total time of a plan 
➡ Add CPU, I/O and communication cost components as in distributed query 

optimization.
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Main Products
Vendor Product Architecture Platforms
IBM DB2 Pure Scale

DB2 Database 
Partitioning Feature (DPF)

SD
SN

AIX on SP
Linux on cluster

Microsoft SQL Server
SQL Server 2008 R2 
Parallel Data Warehouse

SD
SN

Windows on SMP and 
cluster

Oracle Real Application Cluster
Exadata Database 
Machine

SD Windows, Unix, Linux 
on SMP and cluster

NCR Teradata SN
Bynet network

NCR Unix and 
Windows

Oracle MySQL SN Linux Cluster 
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