
Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/1

Outline

• Introduction
• Background
• Distributed Database Design
• Database Integration
• Semantic Data Control
• Distributed Query Processing
• Multidatabase Query Processing
• Distributed Transaction Management
• Data Replication
• Parallel Database Systems
➡ Data placement and query processing
➡ Load balancing
➡ Database clusters

• Distributed Object DBMS
• Peer-to-Peer Data Management
• Web Data Management
• Current Issues

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/2

The Database Problem

•Large volume of data use disk and large main memory

• I/O bottleneck (or memory access bottleneck)

➡Speed(disk) << speed(RAM) << speed(microprocessor)

•Predictions

➡Moore’s law: processor speed growth (with multicore): 50 % per
year

➡DRAM capacity growth : 4 × every three years

➡Disk throughput : 2 × in the last ten years

•Conclusion : the I/O bottleneck worsens

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/3

The Solution

• Increase the I/O bandwidth

➡Data partitioning

➡Parallel data access

•Origins (1980's): database machines

➡Hardware-oriented bad cost-performance failure

➡Notable exception : ICL's CAFS Intelligent Search Processor

•1990's: same solution but using standard hardware components
integrated in a multiprocessor

➡Software-oriented

➡Standard essential to exploit continuing technology improvements

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/4

Multiprocessor Objectives

•High-performance with better cost-performance than mainframe
or vector supercomputer

•Use many nodes, each with good cost-performance,
communicating through network

➡Good cost via high-volume components

➡Good performance via bandwidth

•Trends

➡Microprocessor and memory (DRAM): off-the-shelf

➡Network (multiprocessor edge): custom

•The real chalenge is to parallelize applications to run with good
load balancing

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/5

Data Server Architecture

client interface

query parsing

data server interface

communication channel

Application
server

Data
server

database

application server interface

database functions

Client

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/6

Objectives of Data Servers

•Avoid the shortcomings of the traditional DBMS approach

➡ Centralization of data and application management

➡ General-purpose OS (not DB-oriented)

•By separating the functions between

➡ Application server (or host computer)

➡ Data server (or database computer or back-end computer)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/7

Data Server Approach:
Assessment
•Advantages

➡Integrated data control by the server (black box)

➡Increased performance by dedicated system

➡Can better exploit parallelism

➡Fits well in distributed environments

•Potential problems

➡Communication overhead between application and data server

✦ High-level interface

➡High cost with mainframe servers

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/8

Parallel Data Processing

•Three ways of exploiting high-performance multiprocessor
systems:
 Automatically detect parallelism in sequential programs (e.g.,

Fortran, OPS5)

 Augment an existing language with parallel constructs (e.g., C*,
Fortran90)

 Offer a new language in which parallelism can be expressed or
automatically inferred

•Critique
 Hard to develop parallelizing compilers, limited resulting speed-up

 Enables the programmer to express parallel computations but too
low-level

 Can combine the advantages of both (1) and (2)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/9

Data-based
Parallelism
•Inter-operation

➡p operations of the same query in parallel

op.3

op.1 op.2

op.

R

op.

R1

op.

R2

op.

R3

op.

R4

•Intra-operation

➡The same op in parallel

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/10

Parallel DBMS

•Loose definition: a DBMS implemented on a tighly coupled
multiprocessor

•Alternative extremes

➡Straighforward porting of relational DBMS (the software vendor
edge)

➡New hardware/software combination (the computer manufacturer
edge)

•Naturally extends to distributed databases with one server per
site

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/11

Parallel DBMS - Objectives

•Much better cost / performance than mainframe solution

•High-performance through parallelism

➡High throughput with inter-query parallelism

➡Low response time with intra-operation parallelism

•High availability and reliability by exploiting data replication

•Extensibility with the ideal goals

➡Linear speed-up

➡Linear scale-up

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/12

Linear Speed-up

Linear increase in performance for a constant DB size and
proportional increase of the system components (processor,
memory, disk)

new perf.

old perf.

ideal

components

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/13

Linear Scale-up

Sustained performance for a linear increase of database size and
proportional increase of the system components.

components + database size

new perf.

old perf.
ideal

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/14

Barriers to Parallelism

•Startup

➡The time needed to start a parallel operation may dominate the
actual computation time

• Interference

➡When accessing shared resources, each new process slows down
the others (hot spot problem)

•Skew

➡The response time of a set of parallel processes is the time of the
slowest one

•Parallel data management techniques intend to overcome these
barriers

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/15

Parallel DBMS – Functional
Architecture

RM
task n

DM
task

12

DM
task

n2

DM
task

n1

Data
Mgr

DM
task

11

Request
Mgr

RM
task 1

Session
Mgr

User
task 1

User
task n

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/16

Parallel DBMS Functions

•Session manager

➡ Host interface

➡ Transaction monitoring for OLTP

•Request manager

➡ Compilation and optimization

➡ Data directory management

➡ Semantic data control

➡ Execution control

•Data manager

➡ Execution of DB operations

➡ Transaction management support

➡ Data management

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/17

Parallel System Architectures

•Multiprocessor architecture alternatives

➡Shared memory (SM)

➡Shared disk (SD)

➡Shared nothing (SN)

•Hybrid architectures

➡Non-Uniform Memory Architecture (NUMA)

➡Cluster

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/18

Shared-Memory

DBMS on symmetric multiprocessors (SMP)
Prototypes: XPRS, Volcano, DBS3
 + Simplicity, load balancing, fast communication
 - Network cost, low extensibility

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/19

Shared-Memory

•Meta-information (directory) and control information (e.g., lock
tables) can be shared by all processors

• Inter-query parallelism comes for free

• Intra-query parallelism requires some parallelization but remains rather
simple

• Load balancing is easy to achieve

➡Allocating each new task to the least busy processor.

• Shared-memory has three problems: high cost, limited extensibility and
low availability

➡ Interconnect requires fairly complex hardware

➡With faster processors (even with larger caches), conflicting accesses to
the shared-memory increase rapidly and degrade performance

➡Extensibility is limited to a few tens of processors, typically up to 16

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/20

Shared-Disk

Origins : DEC's VAXcluster, IBM's IMS/VS Data Sharing
Used first by Oracle with its Distributed Lock Manager
Now used by most DBMS vendors
 + network cost, extensibility, migration from uniprocessor
 - complexity, potential performance problem for cache coherency

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/21

Shared-Disk

• Any processor has access to any disk unit through the interconnect
but exclusive access to its main memory.

➡ Each processor-memory node is under the control of its own OS

➡ Global cache consistency is needed

➡ This is typically achieved using a distributed lock manager

• Shared-disk has a number of advantages:

➡ Lower cost, high extensibility (up to 100), load balancing, availability (owns
memory), and easy migration from centralized systems.

➡ Cost of the interconnect is significantly less than with shared-memory

• Shared-disk suffers from higher complexity & potential perform.
problems.

➡ Distributed locking and two-phase commit.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/22

Shared-Nothing

Used by Teradata, IBM, Sybase, Microsoft for OLAP
Prototypes: Gamma, Bubba, Grace, Prisma, EDS
 + Extensibility, availability
 - Complexity, difficult load balancing

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/23

Shared-Nothing

• Each processor has exclusive access to its main memory and disk
unit(s)

➡ Each node can be viewed as a local site (with its own database and software) in
a distributed database system.

➡Most solutions of DDBMS may be reused: fragmentation, transaction
management and query processing

➡ Architecture is often called Massively Parallel Processor (MPP), opposed to SMP

• Shared-nothing +-s: lower cost, high extensibility, high availability

➡ Shared-disk that requires a special interconnect, not shared-nothing

➡ Careful partitioning of the data on multiple disks => almost linear speedup and
linear scaleup for simple workloads

• SN is much more complex to manage than either SM or SD

➡ Distributed DB functions assuming large numbers of nodes; load balancing is
more difficult (=>partitioning); adding new nodes?

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/24

Hybrid Architectures

•Various possible combinations of the three basic architectures are
possible to obtain different trade-offs between cost, performance,
extensibility, availability, etc.

•Hybrid architectures try to obtain the advantages of different
architectures:

➡efficiency and simplicity of shared-memory

➡extensibility and cost of either shared disk or shared nothing

•2 main kinds: NUMA and cluster

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/25

NUMA

•Shared-Memory vs. Distributed Memory

➡Mixes two different aspects : addressing and memory

✦ Addressing: single address space vs multiple address spaces

✦ Physical memory: central vs distributed

•NUMA = single address space on distributed physical memory

➡Eases application portability

➡Extensibility

•The most successful NUMA is Cache Coherent NUMA (CC-NUMA)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/26

CC-NUMA

•Principle

➡Main memory distributed as with shared-nothing

➡However, any processor has access to all other processors’ memories

•Similar to shared-disk, different processors can access the same
data in a conflicting update mode, so global cache consistency
protocols are needed.

➡Cache consistency done in hardware through a special consistent
cache interconnect

✦ Remote memory access very efficient, only a few times (typically
between 2 and 3 times) the cost of local access

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/27

Cluster

•Combines good load balancing of SM with extensibility of SN

•Server nodes: off-the-shelf components

➡From simple PC components to more powerful SMP

➡Yields the best cost/performance ratio

➡In its cheapest form,

•Fast standard interconnect (e.g., Myrinet and Infiniband) with
high bandwidth (Gigabits/sec) and low latency

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/28

Cluster

•Set of independent server nodes interconnected to share
resources and form a single system
➡ “clustered” resources: disk or software such as data management services

➡ off-the-shelf components: PC components, SMP-s, ...

➡ Interconnect: local network, fast standard interconnects for clusters

➡ Compared to a distributed system: geographically concentrated and made of
homogeneous nodes

•There are two main technologies to share disks in a cluster:
network-attached storage (NAS) and storage-area network (SAN).
➡ NAS is a dedicated device to shared disks over TCP/IP and NFS (low throughput)

➡ SAN gives similar functionality with lower-level interface

➡ Block-based protocol: easier to manage cache consistency (block-based)

➡ SAN provides high data throughput and can scale up to large numbers of nodes

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/29

Comparison

• SN cluster can yield best cost/performance and extensibility

➡ But adding or replacing cluster nodes requires disk and data reorganization

• SD cluster avoids such reorganization but requires disks to be globally accessible by
the cluster nodes

• Small configuration (20P): SM can provide the highest performance because of better load
balancing

• Shared-disk and shared-nothing architectures outperform shared-memory in terms of
extensibility.

• Some years ago, shared-nothing was the only choice for high-end systems.

• Recent progress in disk connectivity technologies such as SAN make SD a viable alternative

• SD is now the preferred architecture for OLTP applications

• OLAP databases that are typically very large and mostly read-only, SN is used

• NUMA and cluster, can combine the efficiency and simplicity of SM and the extensibility and
cost of either SD or SN.

• Using standard PCs and interconnects, clusters provide a better cost/ performance ratio,
and, using SN, they can scale up to very large configurations

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/30

Parallel DBMS Techniques

•Data placement

➡Physical placement of the DB onto multiple nodes

➡Static vs. Dynamic

•Parallel data processing

➡Select is easy

➡Join (and all other non-select operations) is more difficult

•Parallel query optimization

➡Choice of the best parallel execution plans

➡Automatic parallelization of the queries and load balancing

•Transaction management

➡Similar to distributed transaction management

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/31

Data Partitioning

•Each relation is divided in n partitions (subrelations), where n is
a function of relation size and access frequency

• Implementation

➡Round-robin

✦ Maps i-th element to node i mod n

✦ Simple but only exact-match queries

➡B-tree index

✦ Supports range queries but large index

➡Hash function

✦ Only exact-match queries but small index

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/32

Partitioning Schemes

Round-Robin Hashing

Interval

••• •••

•••

•••

•••

•••

•••a-g h-m u-z

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/33

Variable partitioning

•Compromise between clustering and full partitioning

➡Full partitioning has obvious performance advantages

➡Highly parallel execution might cause a serious performance overhead

➡Full partitioning is not appropriate for small relations

•Number of nodes over which a relation is fragmented, is a
function of the size and access frequency of the relation

➡Changes in data distribution may result in reorganization

➡Periodic reorganizations for load balancing are essential

➡Such reorganizations should remain transparent to compiled programs
that run on the database server

➡Compiled programs should remain independent of data location

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/34

Replicated Data Partitioning

•High-availability requires data replication

➡Simple solution is mirrored disks

✦ Hurts load balancing when one node fails

➡More elaborate solutions achieve load balancing

✦ Interleaved partitioning (Teradata)

✦ Chained partitioning (Gamma)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/35

Interleaved Partitioning

Node

 Primary copy R1 R2 R3 R4

Backup copy r1.1 r1.2 r1.3

 r2.3 r2.1 r2.2

 r3.2 r3.2 r3.1

1 2 3 4

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/36

Chained Partitioning

Node

Primary copy R1 R2 R3 R4

Backup copy r4 r1 r2 r3

1 2 3 4

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/37

Placement Directory

•Performs two functions
● F1 (relname, placement attval) = lognode-id

● F2 (lognode-id) = phynode-id

•The global index indicates the
placement of a relation onto a set of
nodes.
 Major clustering on the relation name and a

minor clustering on some attribute of the
relation.

 The index structure can be based on
hashing or on a B-tree like organization.

 B-tree allows range queries.

• In addition, each node has its local
index (to access disk pages)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/38

Parallel Query Processing

•Transform queries into execution plans that can be efficiently
executed in parallel

➡Exploiting parallel data placement and the various forms of
parallelism offered by high-level queries

1)Forms of query parallelism

2)Basic parallel algorithms for data processing

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/39

Query Parallelism

• Inter-query parallelism

➡Parallel execution of multiple queries generated by concurrent
transactions, in order to increase the transactional throughput.

• Intra-query parallelism

➡Within a query: inter-operator and intra-operator parallelism

➡ Inter-operator parallelism is obtained by executing in parallel several
operators of the query tree on several processors

➡ Intra-operator parallelism, the same operator is executed by many
processors, each one working on a subset of the data

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/40

Intra-operator Parallelism

•Decomposition of one operator in a set of independent sub-
operators, called operator instances

➡Static and/or dynamic partitioning of relations
 Each operator instance processes one relation partition, also called a bucket

 Operator decomposition frequently benefits from the initial partitioning of the data

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/41

Intra-operator Parallelism

• If the relation is partitioned on the select attribute, partitioning
properties can be used to eliminate some select instances

• In order to have independent joins, each bucket of the first
relation R may be joined to the entire relation S

➡S needs to be broadcast to each site of R buckets (inefficient!)

• If R and S are partitioned by hashing on the join attribute and if
the join is an equijoin, then we can partition the join into
independent joins

•Partitioning function (hash, range, round robin) is independent of
the local algorithm (e.g., nested loop, hash, sort merge) used to
process the join operator

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/42

Inter-operator Parallelism

•Two forms of inter-operator parallelism can be exploited

➡Pipeline parallelism, several operators with a producer-consumer link are
executed in parallel

 Advantage: intermediate result is not materialized

➡ Independent parallelism is achieved when there is no dependency
between the operators that are executed in parallel

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/43

Join Processing

•Three basic algorithms for intra-operator parallelism

➡Parallel nested loop join: no special assumption

➡Parallel associative join: one relation is declustered on join attribute
and equi-join

➡Parallel hash join: equi-join

•They also apply to other complex operators such as duplicate
elimination, union, intersection, etc. with minor adaptation

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/44

Parallel Nested Loop Join

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/45

Parallel Nested Loop Join

send
partition

node 3 node 4

node 1 node 2

R1:

S1 S2

R2:

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/46

Parallel Nested Loop Join

•PNL composes the Cartesian product of relations R and S in
parallel

➡Arbitrarily complex join predicates may be supported

• Join result is produced at the S-nodes (Distributed INGRES)

• In the first phase, each fragment of R is sent and replicated at
each node containing a fragment of S (there are n such nodes)

• In the second phase, each Sj-node receives relation R entirely,
and locally joins R with fragment Sj .

➡This phase is done in parallel by n nodes

➡Depending on the local join algorithm, join processing may or may not
start as soon as data are received (NL algorithm)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/47

Parallel Associative Join

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/48

Parallel Associative Join

node 1

node 3 node 4

node 2

R1: R2:

S1
S2

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/49

Parallel Associative Join

• In the first phase, relation R is sent associatively to the S-nodes
based on the hash function h applied to attribute A

➡Tuple of R with hash value v is sent only to the S-node that contains
tuples with hash value v

➡Tuples of R get distributed but not replicated across the S-nodes

• In the second phase, each Sj-node receives in parallel from the
different R-nodes the relevant subset of R (i.e., Rj) and joins it
locally with the fragments Sj

➡Rj joined locally with the fragments Sj

➡ It depends on the local join if Sj-node starts immediately

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/50

Parallel Hash Join

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/51

Parallel Hash Join

node node node node

node 1 node 2

R1: R2: S1: S2:

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/52

Parallel Hash Join

•Generalization of the parallel associative join algorithm

➡Does not require any particular partitioning of the operand relations

➡The basic idea is to partition relations R and S into the same number p of
mutually exclusive sets

➡Each individual join (Ri JOIN Si) is done in parallel, and the join
result is produced at p nodes

•A build phase and a probe phase

➡The build phase hashes R on the join attribute, sends it to the target p
nodes that build a hash table for the incoming tuples

The probe phase sends S assThe probe phase sends S associatively to the
target p nodes that probe the hash table for each incoming tupleociatively to
the target p nodes that probe the hash table for each incoming tuple

➡After the hash tables have been built for R, the S tuples can be sent and
processed in pipeline by probing the hash tables

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/53

Example: Parallel Hash Join

● R1 and R2 are fragments of a table R;
S1 and S2 be fragments of S.

● Show the steps in the computation of
the distributed hash join R ⋈A S.

● Hash function h(A) = (A mod 2)+N.

● Set N so that Sites 1-4 are used.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/54

Parallel Hash Join

•Generalization of the parallel associative join algorithm

➡Does not require any particular partitioning of the operand relations

➡The basic idea is to partition relations R and S into the same number p of
mutually exclusive sets

➡Each individual join (Ri JOIN Si) is done in parallel, and the join
result is produced at p nodes

•A build phase and a probe phase

➡The build phase hashes R on the join attribute, sends it to the target p
nodes that build a hash table for the incoming tuples

The probe phase sends S assThe probe phase sends S associatively to the
target p nodes that probe the hash table for each incoming tupleociatively to
the target p nodes that probe the hash table for each incoming tuple

➡After the hash tables have been built for R, the S tuples can be sent and
processed in pipeline by probing the hash tables

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/55

Parallel Query Optimization

•Parallel query optimization exhibits similarities with distributed
query processing.

•Taking advantage of both
 intra-operator and inter-operator parallelism.

•A parallel query optimizer can be seen as three components:
 a search space, a cost model, and a search strategy.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/56

Parallel Query Optimization

•The objective is to select the “best” parallel execution plan for a
query using the following components

•Search space

➡ Models alternative execution plans as operator trees

➡ Left-deep vs. Right-deep vs. Bushy trees

•Search strategy

➡ Dynamic programming for small search space

➡ Randomized for large search space

•Cost model (abstraction of execution system)

➡ Physical schema info. (partitioning, indexes, etc.)

➡ Statistics and cost functions

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/57

Search space

•Execution plans are abstracted by means of operator trees

➡Annotations indicate additional execution aspects

➡Algorithm of each operator

➡Pipelined execution (flow of tuples, intermediate results not materialized)

➡One operand is stored (e.g., parallel hash join algorithm in the build
phase)

➡Pipeline and stored annotations constrain the scheduling of execution
plans

➡Splitting an operator tree into non-overlapping sub-trees, corresponding
to execution phases

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/58

Two hash-join trees with a
different scheduling

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/59

Search space

•Set of nodes where a relation is stored is called its home.

➡The home of an operator is the set of nodes where it is executed

➡The home of an operator must be the home of its operands in order for
the operator to access its operands

➡For binary operators such as join, this might imply repartitioning one of
the operands.

➡Annotations to indicate repartitioning.

•Four operator trees that represent execution plans for a three-
way join.

➡Linear or bushy trees

➡Right-deep trees express full pipelining while left-deep trees express full
materialization of all intermediate results

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/60

Execution Plans as Operator
Trees

R2R1

R4

Result

j2

j3

Left-deep
Right-deep

j1 R3

R2R1

R4

Result

j5

j6

j4R3

R2R1

R3j7

R4

Result

j9

Zig-zag
Bushyj8

Result

j10

j12

j11

R2R1 R4R3

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/61

Search space

•Long right-deep trees are more efficient then corresponding left-
deep
➡… but tend to consume more memory to store left-hand side relations

•Bushy trees are the only ones to allow independent parallelism
➡… and some pipeline parallelism

➡ Independent parallelism is useful when the relations are partitioned on disjoint
homes.

•Zigzag trees are intermediate formats between left-deep and
right-deep trees
➡ Sometimes outperform right-deep trees due to a better use of main memory

➡ Use right-deep or zigzag trees when relations are partially fragmented on
disjoint homes and intermediate relations are rather large.

➡When intermediate relations are small, pipelining is not very efficient because it
is difficult to balance the load between the pipeline stages.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/62

Search Strategy

•Research problems

➡No ad-hoc solutions and dynamic optimization?

➡ Improve the cost function; it is always an estimation

➡Problems with skew; hard to find good solutions

➡Properties of cost function; well-designed cost function

•Exhaustive search

➡Possible for small number of joins in relational parallel systems

➡Exhaustive join reordering useful for simple and very specific query
languages (e.g., document search)

•Dynamic programming

➡Many instances of the dynamic programming

➡Dynamic programming “by the book”
 Very complex environment; hard to nail down a clean implementation

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/63

Search Strategy

➡Bottom-up dynamic programming
 Start with the optimal access to relations and build the plan in a bottom-up fashion

➡Memoization
 A variant of dynamic programming storing best approaches for subqueries

•Problems with cost estimation function

➡Cost function is an estimation; very hard to compute precisely

➡Cost function as heuristics
 Monotonicity of the cost function? Structure, properties of cost function?

➡Open problems?

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/64

Search Strategy

•Heuristic-based Optimization

➡See dynamic optimization in distributed databases

➡Push down all selections and projections

➡Select the smallest intermediate result first

➡Select if enough physical memory available

➡More insight in cost function (structure, math.properties, …)
 Gives more possibilities to use heuristics!

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/65

Cost Model

•Cost model is responsible for estimating the cost of a given
execution plan.
➡ Architecture-dependent and architecture-independent

•Architecture-independent
➡ Operator algorithms, e.g., nested loop for join and sequential access for select.

•Architecture-dependent
➡ Data repartitioning and memory consumption

•The total time of a plan
➡ Add CPU, I/O and communication cost components as in distributed query

optimization.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/66

Main Products

Vendor Product Architecture Platforms
IBM DB2 Pure Scale

DB2 Database
Partitioning Feature
(DPF)

SD
SN

AIX on SP
Linux on cluster

Microsoft SQL Server
SQL Server 2008 R2
Parallel Data
Warehouse

SD
SN

Windows on SMP
and cluster

Oracle Real Application Cluster
Exadata Database
Machine

SD Windows, Unix,
Linux on SMP and
cluster

NCR Teradata SN
Bynet network

NCR Unix and
Windows

Oracle MySQL SN Linux Cluster

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

