
Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/1

Outline
• Introduction
• Background
• Distributed Database Design
• Database Integration
• Semantic Data Control
• Distributed Query Processing
• Multidatabase Query Processing
• Distributed Transaction Management
• Data Replication
• Parallel Database Systems
➡ Data placement and query processing
➡ Load balancing
➡ Database clusters

• Distributed Object DBMS
• Peer-to-Peer Data Management
• Web Data Management
• Current Issues

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/2

The Database Problem
•Large volume of data  use disk and large main memory
• I/O bottleneck (or memory access bottleneck)
➡Speed(disk) << speed(RAM) << speed(microprocessor)

•Predictions
➡Moore’s law: processor speed growth (with multicore): 50 % per year
➡DRAM capacity growth : 4 × every three years
➡Disk throughput : 2 × in the last ten years

• SSD linked to controller (500-800 MB/s)!
•Conclusion : the I/O bottleneck worsens

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/3

The Solution
• Increase the I/O bandwidth
➡Data partitioning
➡Parallel data access

•Origins (1980's): database machines
➡Hardware-oriented  bad cost-performance  failure
➡Notable exception : ICL's CAFS Intelligent Search Processor

•1990's: same solution but using standard hardware components
integrated in a multiprocessor
➡Software-oriented
➡Standard essential to exploit continuing technology improvements

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/4

Multiprocessor Objectives
•High-performance with better cost-performance than mainframe or

vector supercomputer
•Use many nodes, each with good cost-performance, communicating

through network
➡Good cost via high-volume components
➡Good performance via bandwidth

•Trends
➡Microprocessor and memory (DRAM): off-the-shelf
➡Network (multiprocessor edge): custom

•The real chalenge is to parallelize applications to run with good load
balancing

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/5

Parallel Data Processing
•Three ways of exploiting high-performance multiprocessor systems:

 Automatically detect parallelism in sequential programs (e.g., Fortran,
OPS5)

 Augment an existing language with parallel constructs (e.g., C*,
Fortran90)

 Offer a new language in which parallelism can be expressed or
automatically inferred

•Critique
 Hard to develop parallelizing compilers, limited resulting speed-up
 Enables the programmer to express parallel computations but too low-

level
 Can combine the advantages of both (1) and (2)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/6

Data-based
Parallelism
•Inter-operation
➡p operations of the same query in parallel

op.3

op.1 op.2

op.

R

op.

R1

op.

R2

op.

R3

op.

R4

•Intra-operation
➡The same op in parallel

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/7

Parallel DBMS
•Loose definition: a DBMS implemented on a tighly coupled

multiprocessor
•Alternative extremes
➡Straighforward porting of relational DBMS (the software vendor edge)
➡New hardware/software combination (the computer manufacturer edge)

•Naturally extends to distributed databases with one server per site

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/8

Parallel DBMS - Objectives
•Much better cost / performance than mainframe solution
•High-performance through parallelism
➡High throughput with inter-query parallelism
➡Low response time with intra-operation parallelism

•High availability and reliability by exploiting data replication
•Extensibility with the ideal goals
➡Linear speed-up
➡Linear scale-up

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/9

Linear Speed-up
Linear increase in performance for a constant DB size and
proportional increase of the system components (processor, memory,
disk)

new perf.

old perf.

ideal

components

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/10

Linear Scale-up
Sustained performance for a linear increase of database size and
proportional increase of the system components.

components + database size

new perf.

old perf.
ideal

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/11

Barriers to Parallelism
•Startup
➡The time needed to start a parallel operation may dominate the actual

computation time
• Interference
➡When accessing shared resources, each new process slows down the

others (hot spot problem)
•Skew
➡The response time of a set of parallel processes is the time of the slowest

one
•Parallel data management techniques intend to overcome these

barriers

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/12

Parallel DBMS – Functional
Architecture

RM
task n

DM
task 12

DM
task n2

DM
task n1Data MgrDM

task 11

Request MgrRM
task 1

Session Mgr

User
task 1

User
task n

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/13

Parallel DBMS Functions
•Session manager
➡ Host interface
➡ Transaction monitoring for OLTP

•Request manager
➡ Compilation and optimization
➡ Data directory management
➡ Semantic data control
➡ Execution control

•Data manager
➡ Execution of DB operations
➡ Transaction management support
➡ Data management

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/14

Parallel System Architectures
•Multiprocessor architecture alternatives
➡Shared memory (SM)

➡Shared disk (SD)

➡Shared nothing (SN)

•Hybrid architectures
➡Non-Uniform Memory Architecture (NUMA)

➡Cluster

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/15

Shared-Memory

DBMS on symmetric multiprocessors (SMP)
Prototypes: XPRS, Volcano, DBS3
 + Simplicity, load balancing, fast communication
 - Network cost, low extensibility

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/16

Shared-Memory
•Meta-information (directory) and control information (e.g., lock

tables) can be shared by all processors
• Inter-query parallelism comes for free
• Intra-query parallelism requires some parallelization but remains rather

simple
• Load balancing is easy to achieve
➡Allocating each new task to the least busy processor.

• Shared-memory has three problems: high cost, limited extensibility and
low availability
➡ Interconnect requires fairly complex hardware

➡With faster processors (even with larger caches), conflicting accesses to the
shared-memory increase rapidly and degrade performance

➡Extensibility is limited to a few tens of processors, typically up to 16

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/17

Shared-Disk

Origins : DEC's VAXcluster, IBM's IMS/VS Data Sharing
Used first by Oracle with its Distributed Lock Manager
Now used by most DBMS vendors
 + network cost, extensibility, migration from uniprocessor
 - complexity, potential performance problem for cache coherency

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/18

Shared-Disk
•Any processor has access to any disk unit through the interconnect

but exclusive access to its main memory.
➡Each processor-memory node is under the control of its own OS
➡Global cache consistency is needed
➡This is typically achieved using a distributed lock manager

•Shared-disk has a number of advantages:
➡Lower cost, high extensibility (up to 100), load balancing, availability (owns

memory), and easy migration from centralized systems.
➡Network-attached storage (NAS) and storage-area network (SAN)

● Cost of the interconnect is significantly less than with shared-memory
•Shared-disk suffers from higher complexity & potential perform.

problems.
➡Distributed locking and two-phase commit.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/19

Shared-Nothing

Used by Teradata, IBM, Sybase, Microsoft for OLAP
Prototypes: Gamma, Bubba, Grace, Prisma, EDS
 + Extensibility, availability
 - Complexity, difficult load balancing

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/20

Shared-Nothing
• Each processor has exclusive access to its main memory and disk unit(s)
➡ Each node can be viewed as a local site (with its own database and software) in a

distributed database system.
➡Most solutions of DDBMS may be reused: fragmentation, transaction management

and query processing
➡ Architecture is often called Massively Parallel Processor (MPP), opposed to SMP

• Shared-nothing advantages: lower cost, high extensibility, high availability
➡ Shared-disk that requires a special interconnect, not shared-nothing
➡ Careful partitioning of the data on multiple disks => almost linear speedup and linear

scaleup for simple workloads
• SN is much more complex to manage than either SM or SD
➡ Distributed DB functions assuming large numbers of nodes; load balancing is more

difficult (=>partitioning); adding new nodes?

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/21

Hybrid Architectures
•Various possible combinations of the three basic architectures are

possible to obtain different trade-offs between cost, performance,
extensibility, availability, etc.

•Hybrid architectures try to obtain the advantages of different
architectures:
➡efficiency and simplicity of shared-memory
➡extensibility and cost of either shared disk or shared nothing

•2 main kinds: NUMA and cluster

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/22

NUMA
•Shared-Memory vs. Distributed Memory
➡Mixes two different aspects : addressing and memory

✦ Addressing: single address space vs multiple address spaces
✦ Physical memory: central vs distributed

•NUMA = single address space on distributed physical memory
➡Eases application portability
➡Extensibility

•The most successful NUMA is Cache Coherent NUMA (CC-NUMA)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/23

CC-NUMA

•Principle
➡Main memory distributed as with shared-nothing
➡However, any processor has access to all other processors’ memories

•Similar to shared-disk, different processors can access the same data
in a conflicting update mode, so global cache consistency protocols
are needed.
➡Cache consistency done in hardware through a special consistent cache

interconnect
✦ Remote memory access very efficient, only a few times (typically between 2

and 3 times) the cost of local access

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/24

Cluster

•Combines good load balancing of SM with extensibility of SN
•Server nodes: off-the-shelf components
➡From simple PC components to more powerful SMP
➡Yields the best cost/performance ratio
➡In its cheapest form,

•Fast standard interconnect (e.g., Ethernet, Infiniband, Omni-Path,
Fibre Channel) with high bandwidth (up to 400 Gb/s)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/25

Cluster
•Set of independent server nodes interconnected to share resources

and form a single system
➡ “clustered” resources: disk or software such as data management services
➡ off-the-shelf components: PC components, SMP-s, ...
➡ Interconnect: local network, fast standard interconnects for clusters
➡ Compared to a distributed system: geographically concentrated and made of

homogeneous nodes

•There are two main technologies to share disks in a cluster: network-
attached storage (NAS) and storage-area network (SAN).
➡ NAS is a dedicated device to shared disks over TCP/IP and NFS (low throughput)
➡ SAN gives similar functionality with lower-level interface
➡ Block-based protocol: easier to manage cache consistency (block-based)
➡ SAN provides high data throughput and can scale up to large numbers of nodes

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/26

Comparison
• SN cluster can yield best cost/performance and extensibility
➡ But adding or replacing cluster nodes requires disk and data reorganization

• SD cluster avoids such reorganization but requires disks to be globally accessible by the
cluster nodes

• Small configuration (20P): SM can provide the highest performance because of better load
balancing

• Shared-disk and shared-nothing architectures outperform shared-memory in terms of extensibility.
• Some years ago, shared-nothing was the only choice for high-end systems.
• Recent progress in disk connectivity technologies such as SAN make SD a viable alternative
• SD is now the preferred architecture for OLTP applications
• OLAP databases that are typically very large and mostly read-only, SN is used
• NUMA and cluster, can combine the efficiency and simplicity of SM and the extensibility and cost of

either SD or SN.
• Using standard PCs and interconnects, clusters provide a better cost/ performance ratio, and,

using SN, they can scale up to very large configurations

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/27

Parallel DBMS Techniques
•Data placement
➡Physical placement of the DB onto multiple nodes
➡Static vs. Dynamic

•Parallel data processing
➡Select is easy
➡Join (and all other non-select operations) is more difficult

•Parallel query optimization
➡Choice of the best parallel execution plans
➡Automatic parallelization of the queries and load balancing

•Transaction management
➡Similar to distributed transaction management

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/28

Data Partitioning
•Each relation is divided in n partitions (subrelations), where n is a

function of relation size and access frequency
• Implementation
➡Round-robin

✦ Maps i-th element to node i mod n
✦ Simple but only exact-match queries

➡B-tree index
✦ Supports range queries but large index

➡Hash function
✦ Only exact-match queries but small index

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/29

Partitioning Schemes

Round-Robin Hashing

Interval

••• •••

•••

•••

•••

•••

•••a-g h-m u-z

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/30

Variable partitioning
•Compromise between clustering and full partitioning
➡Full partitioning has obvious performance advantages
➡Highly parallel execution might cause a serious performance overhead
➡Full partitioning is not appropriate for small relations

•Number of nodes over which a relation is fragmented, is a function of
the size and access frequency of the relation
➡Changes in data distribution may result in reorganization
➡Periodic reorganizations for load balancing are essential
➡Such reorganizations should remain transparent to compiled programs that

run on the database server
➡Compiled programs should remain independent of data location

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/31

Replicated Data Partitioning
•High-availability requires data replication
➡Simple solution is mirrored disks

✦ Hurts load balancing when one node fails
➡More elaborate solutions achieve load balancing

✦ Interleaved partitioning (Teradata)
✦ Chained partitioning (Gamma)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/32

Interleaved Partitioning

Node

 Primary copy R1 R2 R3 R4

Backup copy r1.1 r1.2 r1.3

 r2.3 r2.1 r2.2

 r3.2 r3.2 r3.1

1 2 3 4

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/33

Chained Partitioning

Node

Primary copy R1 R2 R3 R4

Backup copy r4 r1 r2 r3

1 2 3 4

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/34

Placement Directory
•Performs two functions

● F1 (relname, placement attval) = lognode-id

● F2 (lognode-id) = phynode-id

•The global index indicates the
placement of a relation onto a set of
nodes.
 Major clustering on the relation name and a

minor clustering on some attribute of the
relation.

 The index structure can be based on
hashing or on a B-tree like organization.

 B-tree allows range queries.

• In addition, each node has its local
index (to access disk pages)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/35

Parallel Query Processing
•Transform queries into execution plans that can be efficiently

executed in parallel
➡Exploiting parallel data placement and the various forms of parallelism

offered by high-level queries
1) Forms of query parallelism
2) Basic parallel algorithms for data processing

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/36

Query Parallelism
• Inter-query parallelism
➡Parallel execution of multiple queries generated by concurrent transactions, in

order to increase the transactional throughput.

• Intra-query parallelism
➡Within a query: inter-operator and intra-operator parallelism
➡ Inter-operator parallelism is obtained by executing in parallel several

operators of the query tree on several processors
➡ Intra-operator parallelism, the same operator is executed by many processors,

each one working on a subset of the data

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/37

Intra-operator Parallelism
•Decomposition of one operator in a set of independent sub-

operators, called operator instances
➡Static and/or dynamic partitioning of relations

 Each operator instance processes one relation partition, also called a bucket
 Operator decomposition frequently benefits from the initial partitioning of the data

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/38

Intra-operator Parallelism
• If the relation is partitioned on the select attribute, partitioning

properties can be used to eliminate some select instances
• In order to have independent joins, each bucket of the first relation R

may be joined to the entire relation S
➡S needs to be broadcast to each site of R buckets (inefficient!)

• If R and S are partitioned by hashing on the join attribute and if the
join is an equijoin, then we can partition the join into independent
joins

•Partitioning function (hash, range, round robin) is independent of the
local algorithm (e.g., nested loop, hash, sort merge) used to process
the join operator

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/39

Inter-operator Parallelism
•Two forms of inter-operator parallelism can be exploited
➡Pipeline parallelism, several operators with a producer-consumer link are

executed in parallel
 Advantage: intermediate result is not materialized

➡ Independent parallelism is achieved when there is no dependency between
the operators that are executed in parallel

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/40

Join Processing
•Three basic algorithms for intra-operator parallelism
➡Parallel nested loop join: no special assumption
➡Parallel associative join: one relation is declustered on join attribute and

equi-join
➡Parallel hash join: equi-join

•They also apply to other complex operators such as duplicate
elimination, union, intersection, etc. with minor adaptation

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/41

Parallel Nested Loop Join

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/42

Parallel Nested Loop Join

send
partition

node 3 node 4

node 1 node 2

R1:

S1 S2

R2:

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/43

Parallel Nested Loop Join
•PNL composes the Cartesian product of relations R and S in parallel
➡Arbitrarily complex join predicates may be supported

• Join result is produced at the S-nodes (Distributed INGRES)
• In the first phase, each fragment of R is sent and replicated at each

node containing a fragment of S (there are n such nodes)
• In the second phase, each Sj-node receives relation R entirely, and

locally joins R with fragment Sj .
➡This phase is done in parallel by n nodes
➡Depending on the local join algorithm, join processing may or may not start as

soon as data are received (NL algorithm)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/44

Parallel Associative Join

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/45

Parallel Associative Join
node 1

node 3 node 4

node 2

R1: R2:

S1 S2

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/46

Parallel Associative Join
• In the first phase, relation R is sent associatively to the S-nodes based

on the hash function h applied to attribute A
➡Tuple of R with hash value v is sent only to the S-node that contains tuples with

hash value v
➡Tuples of R get distributed but not replicated across the S-nodes

• In the second phase, each Sj-node receives in parallel from the
different R-nodes the relevant subset of R (i.e., Rj) and joins it locally
with the fragments Sj
➡Rj joined locally with the fragments Sj
➡ It depends on the local join if Sj-node starts immediately

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/47

Parallel Hash Join

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/48

Parallel Hash Join
node node node node

node 1 node 2

R1: R2: S1: S2:

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/49

Parallel Hash Join
•Also called (recently) canonical hash join
•Generalization of the parallel associative join algorithm
➡Does not require any particular partitioning of the operand relations
➡The basic idea is to partition relations R and S into the same number p of

mutually exclusive sets
➡Each individual join (Ri JOIN Si) is done in parallel, and the join result is

produced at p nodes
•A build phase and a probe phase
➡The build phase hashes R on the join attribute, sends it to the target p nodes

that build a hash table for the incoming tuples.
➡The probe phase sends S associatively to the target p nodes that probe the

hash table for each incoming tuple.
➡After the hash tables have been built for R, the S tuples can be sent and

processed in pipeline by probing the hash tables.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/50

Example: Parallel Hash Join
● R1 and R2 are fragments of a table R;

S1 and S2 be fragments of S.

● Show the steps in the computation of
the distributed hash join R ⋈A S.

● Hash function h(A) = (A mod 2)+N.

● Set N so that Sites 1-4 are used.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/51

New hardware
•Modern processors provide parallelism at various levels

● Instruction parallelism via super scalar execution
● Data-level parallelism by extended support for SIMD; and
● Thread-level parallelism through multiple cores and simultaneous multi-

threading (SMT).

•Two main types of join algorithms
● Hash Join (abbr. HJ)
● Sort-Merge Join (abbr. SMJ)

•Lines of arguments
● Main-memory parallel joins should be hardware-conscious

● fine tuning the algorithm to the underlying architecture (SIMD curr. not good enough)
● Join algorithms can be made efficient while remaining hardware-oblivious

● less portable and less robust to, e.g., data skew
● SMJ is already better than HJ join and can be efficiently implemented

without SIMD

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/52

Parallel Hash Joins
•No partitioning hash join
•Partitioned hash join
•Radix hash join
•Parallel radix hash join

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/53

No Partitioning (Hash) Join
•Balkesen, et al., ICDE 2013 (T. Ozsu)
•A direct parallel version of the canonical hash join

● It does not depend on any hardware-specific parameters

•NPJ Algorithm (R S)⋈
● Both input relations are divided into equi-sized portions that are assigned to a

number of worker threads
● Build phase: R workers populate shared

hash table that all workers can access
● After synchron. barrier: worker threads

in probe phase read from S and
concurrently find matching join pairs from R

•Concurrent insertions into hash
table must be synchronized

● Latches (contention?)
● Compare-and-Swap (CAS)
● Probe: RO mode

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/54

Observations: Cache and TLB
•Shatdal, et al., VLDB, 1994; Manegold, et al., IEEE TKDE, 2002
•Avoiding cache misses during build and probe phases
•Hashing results in cache misses (while accessing memory)

● When the HT is larger than cache, almost every access to HT results in a cache miss
● Therefore, partitioning HT into cache-sized chunks reduces cache misses and

improves performance

•Effects of translation look-aside buffer (TLB) during partitioning phase
● TLB is a memory cache that stores the recent translations of virtual memory to

physical memory (located in MMU, in CPU)
● Partitions typically reside on different memory pages with a separate entry for virtual

memory mapping (TLB entry) required for each partition.
● # of TLB entries is an upper bound on # of partitions that can be created or accessed

efficiently at the same time
● This led to multi-pass partitioning, now a standard component of radix join

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/55

Partitioned Hash Join
•Build phase: input rels R and S divided into partitions ri and sj

● R and S tuples are divided up using hash partitioning (h1) on their join key values
(consequences? ri ⋈ sj = ∅ (i≠j))

● Parts of R may be assigned to threats
● A separate HT is created for

each ri partition
● A separate thread is created for

each partition ri
● No synchronisation needed for

writing HTs
● Hash tables for partitions ri now fit

into CPU cache!

•Probe phase:
● sj partitions are scanned and
● Respective hash tables are probed

for matching tuples using h2
● One thread is used for one partition si

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/56

Radix Hash Join
•Radix partitioning

● Excessive TLB misses can be avoided by partitioning input data in multiple passes
● ∀ pass j, partitions produced by preceding pass j−1 are refined
● Partitioning fan-out never exceeds the hardware limit given by the number of TLB entries
● Precomputing output memory ranges of each target partition by building histograms

● Each pass looks at different set of bits from hash function h1 ==> radix partitioning
● 2-3 passes sufficient to create partitions without problems with TLB limitations
● Different targeted memory regions ==> no need for further synchronization!

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/57

Radix Hash Join
•Radix join R S⋈

● Both inputs are partitioned
using two-pass radix partitioning

● Built phase:
● Hash tables are then built over

each ri partition of input table R.
● Probe phase:

● All si partitions are scanned and
respective ri partitions probed for
join matches.

● Maximum “fanout” per pass is restricted by TLB size
● log(|R|) (or log(|S|)) passes are necessary

● Complexity of radix hash join is O((|R| + |S|) log |R|) // R is typically smaller
● Hardware parameters:

1) Maximum fanout per radix pass is limited by # TLB entries;

2) Resulting partition size = roughly the size of the system’s CPU cache.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/58

Radix Hash Join
•Mapping tasks to threads

● Dividing R and S into sub-relations that are assigned to individual threads
● During the first pass, all threads create a shared set of partitions
● Number of partitions in this set is limited by hardware parameters and typically small
● They are accessed by potentially many execution threads, creating a contention problem
● For each thread a dedicated range is reserved within each output partition
● Threads scan input relations and write to selected memory regions

● To this end, both input relations are scanned twice
● 1st scan: computes a set of histograms over the input data
● 2nd scan: each thread pre-computes the exclusive location, where it writes its output

•Final partitions used in built and probe phases fit into CPU cache
● In building phase, threads are building the hash tables for each particular partition

● No contention since there are different memory regions for different HTs
● In probing phase, many execution threads write the result table

● No contention since each threat joins exactly two partitions (si and ri)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/59

Sort-Merge Join
•Sort R and S on their join keys and then merge sorted R’ and S’.

● Sorting R and S is the dominant cost
● Usually, merge sort is used for the sort phase of SM join.

•New hardware is used
● Single Instructions on vectors (multiple scalars)
● SIMD registers in novel CPUs (typically, 4x4 SIMD registers)
● There are many SIMD instructions that work on vectors

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/60

Sorting Networks
•Knuth’s notation of sorting networks

● Input 9, 5, 3, 6⟨ ⟩
● Comparator emits the smaller value at the top and larger value on the bottom
● Traversing comparators from left to right

•Comparators can be implemented with min/max operators only
● Five comparators from the above figure is converted into sequence of 10 min/max operations (no branching, fast!)

•Sorting networks are appealing because they can be accelerated through SIMD instructions
● k=4: 4 SIMD vector registers with 4 elements
● If vectors are loaded in SIMD registers then they need to be transposed first (expensive shuffle instructions)
● 4 vectors are sorted in the time used for one in CPU without SIMD (speedup 2.7 because of shuffle ops)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/61

Merging Sorted Runs
•Bitonic Merge Networks

● Merging phase of SM join also benefits from SIMD acceleration
● Networks that combine two pre-sorted inputs into an sorted output

● This allows building larger networks

•A network that combines two input lists of size four
● Using min and max operations, and shuffle operations in between comparators

•Merging Larger Lists
● For larger input sizes, merge

networks scale poorly - O(N log2 N)
● Small merge networks can be used

as a kernel within a merging
algorithm for larger lists

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/62

Balancing Computation & Bandwidth

•Accesses to off-chip memory makes sorting sensitive to the characteristics
of the memory interface.

•8-wide bitonic merge implementation requires 36 assembly instructions
per 8 tuples being merged (29 CPU cycles)
● With a clock frequency of 2.4 GHz, this corresponds to a memory bandwidth 10.6

GB/s for a single merging thread
● This is more than existing interfaces

support (+ 8 cores per CPU)
● Out-of-cache merging is thus severely

bound by the memory bandwidth

•Merging more than 2 runs at once =>
Memory bandwidth demand reduced
● Multi-way merging saves round-trips to memory (memory bandwidth)
● Multi-way merging is implemented with multiple two-way merge units

•Two-way merge units are connected by queues
● FIFO queues are sized such that all queues together still fit into CPU cache

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/63

Sorting and Memory Hierarchy
•Sorting using Advanced Vector Extensions (AVX) in CPUs

● AVX sorting algorithm (2.5 - 3 times faster then C++ sort)

•Cache hierarchies in modern hardware require separating the overall
sorting into several phases to optimize cache access
● In-register sorting, with runs that fit into (SIMD) CPU registers
● In-cache sorting, where runs can still be held in a CPU-local cache
● Out-of-cache sorting, once runs exceed cache sizes

• In-register sorting
● Run-generation using sorting networks (initial sorted runs)

• In-cache sorting
● Initial runs are merged until runs can no longer be contained within CPU caches
● Multi-way merging using a hierarchy of Bitonic Merge Networks

•Out-of-Cache Sorting
● Continues merging until the data is fully sorted
● Memory references will have to be fetched from off-chip memory

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/64

m-way Sort-Merge Join
•Highly parallel sort-merge join

● Balkesen, et al., Multi-Core, Main-Memory Joins: Sort vs. Hash Revisited, VLDB,
2013 (T. Ozsu)

● Relies on both data and thread parallelism
● Data parallelism based on SIMD extensions to standard ISA
● Carefully optimized toward NUMA

•General description of the algorithm
● Initially, input relations R and S are equally distributed across NUMA regions
● 1st phase: each thread is assigned its NUMA-local chunk of R and all the threads

range-partition their local chunks in parallel
● Allowing threads in the subsequent phases to work independently without any synchronization.
● Partitioning fan-out is usually on the order of the number of threads (64–128)
● Then each local partition is sorted locally (NUMA-local) using the AVX sorting algorithm
● Different threads can sort different partitions independently

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/65

m-way Sort-Merge Join

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/66

m-way Sort-Merge Join
•General description of the algorithm

● 2nd phase:
● The only phase that requires shuffling data between NUMA regions (thru interconnect bandwidth)
● Multi-way merging presented before overlaps data transfer and merging (they are in balance)
● Outcome of this phase is a globally sorted copy of R, indicated as R’

● 3rd and 4th phase:
● The same steps 1 and 2 are applied to relation S!

● 5th phase:
● R’ and S’ are stored in the NUMA-local memory of each thread
● Each thread concurrently evaluates the join between NUMA-local sorted runs using a single-

pass merge join

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/67

m-pass and mpsm SM Joins
•Competitors of m-way join
•Sort-Merge Join Algorithm – m-pass

● Algorithm differs solely in Phase 2
● Instead of applying a multi-way merge for merging NUMA-remote runs, m-pass

applies successive two-way bitonic merging
● First iteration of merging of sorted runs is done as data is transferred to local memory

● The number of runs reduces to 1/2 of the initial total number of runs.
● The rest of the merging done in local memory, using multi-pass merging technique

•Massively Parallel Sort-Merge Join – mpsm
● mpsm first globally range-partitions relation R

● Different ranges of R are assigned to different NUMA-regions/threads
● Next, each thread independently sorts its partition, resulting in a globally-sorted R’
● S is sorted only partially

● Each thread sorts its NUMA-local chunk of S without a prior partitioning
● Last phase: a run of R must be merge-joined with all the NUMA-remote runs of

relation S

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/68

Other join algorithms
•To exploit large main memories and multicore
•Symmetric hash join

● The traditional build and probe phases of the basic hash join algorithm are
simply interleaved, using two hash tables.

● When a tuple arrives:
● It is used to probe the hash table corresponding to the other relation and find

matching tuples.
● Then, it is inserted in its corresponding hash table so that tuples of the other relation

arriving later can be joined.

•Ripple join
● Generalization of the nested loop join algorithm where the roles of inner and

outer relation continually alternate during query execution.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/69

Parallel Query Optimization
•Parallel query optimization exhibits similarities with distributed query

processing.
•Taking advantage of both

 intra-operator and inter-operator parallelism.
•A parallel query optimizer can be seen as three components:

 a search space, a cost model, and a search strategy.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/70

Parallel Query Optimization
•Parallel query optimization exhibits similarities with distributed query

processing.
•Taking advantage of both

 intra-operator and inter-operator parallelism.
•A parallel query optimizer can be seen as three components:

 a search space, a cost model, and a search strategy.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/71

Parallel Query Optimization
•The objective is to select the “best” parallel execution plan for a query

using the following components
•Search space
➡ Models alternative execution plans as operator trees
➡ Left-deep vs. Right-deep vs. Bushy trees

•Search strategy
➡ Dynamic programming for small search space
➡ Randomized for large search space

•Cost model (abstraction of execution system)
➡ Physical schema info. (partitioning, indexes, etc.)
➡ Statistics and cost functions

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/72

Search space
•Execution plans are abstracted by means of operator trees
➡Annotations indicate additional execution aspects
➡Algorithm of each operator
➡Pipelined execution (flow of tuples, intermediate results not materialized)
➡One operand is stored (e.g., parallel hash join algorithm in the build phase)
➡Pipeline and stored annotations constrain the scheduling of execution plans
➡Splitting an operator tree into non-overlapping sub-trees, corresponding to

execution phases

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/73

Two hash-join trees with a
different scheduling

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/74

Search space
•Set of nodes where a relation is stored is called its home.
➡The home of an operator is the set of nodes where it is executed
➡The home of an operator must be the home of its operands in order for the

operator to access its operands
➡For binary operators such as join, this might imply repartitioning one of the

operands.
➡Annotations to indicate repartitioning.

•Four operator trees that represent execution plans for a three-way
join.
➡Linear or bushy trees
➡Right-deep trees express full pipelining while left-deep trees express full

materialization of all intermediate results

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/75

Execution Plans as Operator
Trees

R2R1

R4

Result

j2

j3
Left-deep Right-deep

j1 R3

R2R1

R4

Result

j5

j6

j4R3

R2R1

R3j7

R4

Result

j9

Zig-zag Bushyj8

Result

j10

j12

j11

R2R1 R4R3

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/76

Search space
•Long right-deep trees are more efficient then corresponding left-deep
➡ … but tend to consume more memory to store left-hand side relations

•Bushy trees are the only ones to allow independent parallelism
➡ … and some pipeline parallelism
➡ Independent parallelism is useful when the relations are partitioned on disjoint

homes.

•Zigzag trees are intermediate formats between left-deep and right-
deep trees
➡ Sometimes outperform right-deep trees due to a better use of main memory
➡ Use right-deep or zigzag trees when relations are partially fragmented on disjoint

homes and intermediate relations are rather large.
➡When intermediate relations are small, pipelining is not very efficient because it is

difficult to balance the load between the pipeline stages.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/77

Search Strategy
•Research problems
➡No ad-hoc solutions and dynamic optimization?
➡ Improve the cost function; it is always an estimation
➡Problems with skew; hard to find good solutions
➡Properties of cost function; well-designed cost function

•Exhaustive search
➡Possible for small number of joins in relational parallel systems
➡Exhaustive join reordering useful for simple and very specific query languages

(e.g., document search)

•Dynamic programming
➡Many instances of the dynamic programming
➡Dynamic programming “by the book”

 Very complex environment; hard to nail down a clean implementation

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/78

Search Strategy
➡Bottom-up dynamic programming

 Start with the optimal access to relations and build the plan in a bottom-up fashion

➡Memoization
 A variant of dynamic programming storing best approaches for subqueries

•Problems with cost estimation function
➡Cost function is an estimation; very hard to compute precisely
➡Cost function as heuristics

 Monotonicity of the cost function? Structure, properties of cost function?

➡Open problems?

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/79

Search Strategy
•Heuristic-based Optimization
➡See dynamic optimization in distributed databases
➡Push down all selections and projections
➡Select the smallest intermediate result first
➡Select if enough physical memory available
➡More insight in cost function (structure, math.properties, …)

 Gives more possibilities to use heuristics!

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/80

Cost Model
•Cost model is responsible for estimating the cost of a given execution

plan.
➡ Architecture-dependent and architecture-independent

•Architecture-independent
➡ Operator algorithms, e.g., nested loop for join and sequential access for select.

•Architecture-dependent
➡ Data repartitioning and memory consumption

•The total time of a plan
➡ Add CPU, I/O and communication cost components as in distributed query

optimization.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.14/81

Main Products
Vendor Product Architecture Platforms
IBM DB2 Pure Scale

DB2 Database
Partitioning Feature (DPF)

SD
SN

AIX on SP
Linux on cluster

Microsoft SQL Server
SQL Server 2008 R2
Parallel Data Warehouse

SD
SN

Windows on SMP and
cluster

Oracle Real Application Cluster
Exadata Database
Machine

SD Windows, Unix, Linux
on SMP and cluster

NCR Teradata SN
Bynet network

NCR Unix and
Windows

Oracle MySQL SN Linux Cluster

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

