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Course literature

 Textbook
 Tamer Özsu, Patrick Valduriez, Principles of Distributed Database 

Systems, 4th Edition, Springer, ISBN 978-1-4419-8833-1, 2020.
 Transparences

 Tamer Özsu, Patrick Valduriez: based on the textbook
 Presentations of NoSQL and NewSQL systems

 Research papers
 In the 2nd part of the course, each topic will include a list of papers.
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Grading

 Exam (written) = 40%
 120 min, 4 exercises
 >50%!

 Seminar = 40%
 Study of a research paper (new approach, survey, active research)
 Study of a novel DBMS (test app (distrbd), report, presentation)
 >50%!

 Quizzes = 20%
 2-3 questions about the topics from the previous lecture
 15 min - At the beginning of each lecture
 Grade = The average of the best 80% grades of quizzes
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Outline

 Introduction
 Big data
 What is a distributed DBMS?s
 History
 DDBMS promises
 DDBMS issues
 DDBMS architecture
 New database systems 
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Four Vs

 Volume
 Increasing data size: petabytes (1015) to zettabytes (1021)

 Variety
 Multimodal data: structured, images, text, audio, video
 90% of currently generated data unstructured

 Velocity
 Streaming data at high speed
 Real-time processing

 Veracity
 Data quality
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Big Data Software Stack
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Big data database systems

 Distributed database systems
 One server can not store everything

 Relational distributed DBMSs
 IBM, Oracle, Sybase
 Oldest lineage in database area

 NoSQL database systems
 Key/Value store
 Columnar DBMS
 Document store
 Graph DBMS

 NewSQL systems
 Distributed Relational DBMSs 
 Google F1, SAP Hana, VoltDB
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Big Data Analytics 

 Map-Reduce/Spark systems
 Distributed file systems (GFS, Hadoop)
 A query is a graphs of operators
 Tree-structured computation

 Stream query processing
 Data streams
 Stream QLs
 Persistent queries

 Data-flow systems
 Programming environments
 Based on data-flow
 Directed Acyclic graphs (DAGs) 
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Distributed Computing

 A number of autonomous processing elements (not 
necessarily homogeneous) that are interconnected by a 
computer network and that cooperate in performing their 
assigned tasks.

 What is being distributed?
 Processing logic
 Function
 Data
 Control
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Current Distribution – Geographically 
Distributed Data Centers
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What is a Distributed Database System?

A distributed database is a collection of multiple, logically 
interrelated databases distributed over a computer network 

A distributed database management system (Distributed 
DBMS) is the software that manages the DDB and provides 
an access mechanism that makes this distribution 
transparent to the users 
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Distributed DBMS Environment
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Implicit Assumptions

 Data stored at a number of sites → each site logically 
consists of a single processor

 Processors at different sites are interconnected by a 
computer network → not a multiprocessor system
 Parallel database systems

 Distributed database is a database, not a collection of 
files → data logically related as exhibited in the users’ 
access patterns
 Relational data model 

 Distributed DBMS is a full-fledged DBMS
 Not remote file system, not a TP system
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Important Point

Logically integrated
but

Physically distributed
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History – File Systems
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History – Database Management
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History – Early Distribution
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Peer-to-Peer (P2P)



History – Client/Server
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History – Data Integration
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History – Cloud Computing
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On-demand, reliable services provided over the Internet in 
a cost-efficient manner
 Cost savings: no need to maintain dedicated compute 

power
 Elasticity: better adaptivity to changing workload



Data Delivery Alternatives

 Delivery modes
 Pull-only
 Push-only
 Hybrid

 Frequency
 Periodic
 Conditional
 Ad-hoc or irregular

 Communication Methods
 Unicast
 One-to-many

 Note: not all combinations make sense
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Distributed DBMS Promises

Transparent management of distributed, fragmented, and 
replicated data

Improved reliability/availability through distributed 
transactions

Improved performance

Easier and more economical system expansion
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Transparency

 Transparency is the separation of the higher-level 
semantics of a system from the lower level 
implementation issues.

 Fundamental issue is to provide data independence
 in the distributed environment

 Network (distribution) transparency
 Replication transparency
 Fragmentation transparency

 horizontal fragmentation: selection
 vertical fragmentation: projection
 hybrid
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Example
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Transparent Access

SELECT ENAME,SAL
FROM EMP,ASG,PAY
WHERE DUR > 12
AND EMP.ENO = ASG.ENO
AND PAY.TITLE = 

EMP.TITLE

Paris projects
Paris employees
Paris assignments
Boston employees

Montreal projects
Paris projects
New York projects 
    with budget > 200000
Montreal employees
Montreal assignments

Boston

Communication
Network

Montreal

Paris

New
York

Boston projects
Boston employees
Boston assignments

Boston projects
New York employees
New York projects
New York assignments

Tokyo
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Distributed Database - User View

Distributed Database
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Distributed DBMS - Reality

Communication
Subsystem

DBMS
Software

User
ApplicationUser

Query

DBMS
Software

DBMS
Software

DBMS
Software

User
Query

DBMS
Software

User
Query

User
Application
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Types of Transparency

 Data independence
 Network transparency (or distribution transparency)

 Location transparency
 Fragmentation transparency

 Fragmentation transparency
 Replication transparency
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Reliability Through Transactions

 Replicated components and data should make distributed 
DBMS more reliable.

 Distributed transactions provide
 Concurrency transparency
 Failure atomicity

• Distributed transaction support requires implementation of 
 Distributed concurrency control protocols
 Commit protocols

 Data replication
 Great for read-intensive workloads, problematic for updates
 Replication protocols
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Improved Performance
 Proximity of data to its points of use

 Requires some support for fragmentation and replication

 Parallelism in execution
 Inter-query parallelism

 Enables the parallel execution  of multiple queries
 Intra-query parallelism

 Distributed DBMS
 Splitting a query into parts                                                    

 (each part exec on one site)
 Parallel DBMS

 Inter-operator parallelism                                               
(Pipelined + Independent)

 Intra-operator parallelism
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Scalability

 Issue is database scaling and workload scaling

 Adding processing and storage power

 Scale-out: add more servers

 Scale-up: increase the capacity of one server → has limits
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Distributed DBMS Issues

 Distributed database design
 How to distribute the database?
 Units of distribution: fragments, relations
 Horizontal and vertical fragmentation

 Partitioning a table horizontally
 Splitting a table vertically (se later Column stores) 

 Data placement
 Local query processing – no need to copy tables
 Parallel execution of query parts 

 Replicated & non-replicated database distribution
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Distributed DBMS Issues

 Distributed query processing 
 Origins: System R, Ingres, R*, SDD
 Exploiting intra-node and inter-node parallelisms

 Multi-processor and multi-core systems
 Distributed data nodes (normally shared-nothing systems)
 Pipelined, data and independent parallelisms

 Optimization problem (data transmission + local processing)
 Two phase optimization: global optimization and join ordering
 Algorithms: Exhausive search, dynamic programming, randimized search, 

genetic algorithms
 Query execution

 Heavy use of indexes; index-only plans
 Join algorithms: nested loop join, hash joins, associative join, merge-sort join, 

semi-joins
 Volcano query optimizer (Graefe, Wisconsin)
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Distributed DBMS Issues
 Parallel DBMS

 Objectives: high scalability and performance
 Distributed and parallel DBMSs are merging into one area

 Common hardware, methods and algoritms.
 Parallel DBMS uses new, usually sophisticated hardware. 

 Parallel system architecture
 Shared-Memory, Shared-Disk and Shared-Nothing 

 Query processing
 Exploring parallel processing, new hardware, join processing
 The pool for join algorithms is the same as for distributed systems.
 Load-balancing, data partitioning, data placement, multi-processor and multi-

core environemt, etc.
 Cluster computing

 Autonomous dbms-s interconnected by middleware, often used recently.
 Paper:

 Schuh, et.al., Experimental Comparison of Thirteen Relational Equi-Joins in 
Main Memory, SIGMOD 2016.

© 2020, M.T. Özsu & P. Valduriez 38



Distributed DBMS Issues
 In-memory DBMS

 There is finally enough RAM 
 First in-memory DBMSs were proposed in 80’.

 Classical relational systems are based on a buffer manager.
 In-memory DBMS stores tables in main memory.

 Different data structures possible (current research)
 Indexes are in main-memory as well; new proposals

 New game!
 Instead of hard disc we now have main memory and 10-100X faster cache.
 Processor caches have memory of the size 1-120M (L1, L2, L3).
 Concurrency control remains but there are different bottlenecks
 Lock trashing, Timestamp allocation, Memory allocation.
 WAL protocol still needed for recovery 
 New indexes were proposed (BW-tree, LSM tree, Hash tables, Trie index)

 Paper:
 Yu, et.al.,Staring into the Abyss: An Evaluation of CC with One Thousand 

Cores, VLDB 2014.
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Distributed DBMS Issues

 Concurrency Control (CC)
 Synchronization of concurrent transactions

 Transaction can work in parallel (in some cases)
 Protocols and techniques of CC
 2PC protocol

 Problem in distributed environment
 Timestamp ordering
 Multi-version CC

 Very popular recently (e.g., Postgres)
 Optimistic CC
 Snapshot Isolation (SI)
 Deadlock management
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Distributed DBMS Issues

 Synchronization and coordination
 Novel approaches: Quorums 

 Majority of nodes in a group required for a decision (not all!).
 Consensus on a decision (Paxos, Raft)

 Tasks: Replicated write, leader election, etc.
 Paxos used in F1 (Google)

 Coordination of a system (ZooKeeper, Yahoo)
 Coordination primitives 
 Similar to Chubby in Bigtable (Google)
 Tasks; Linearization of requests, ordering events, Lock manager, etc.
 Used in Apache Hadoop, Accumulo, HBase, Hive, Spark, Druid, etc.

 Paper:
 Wu, et.al., Empirical Evaluation of In-Memory MVCC, VLDB2017
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Distributed DBMS Issues

 Replication
 Mutual consistency: strict and weak 

 Eventual consistency
 Eager vs lazy & Centralized vs distributed
 Eager-centralized 

 Classical 2PL protocol, slow, no inconsistencies, no need for coordination
 Eager-distributed 

 No inconsistencies, elegant (symmetrical), slow, updates coordinated
 Lazy-centralized 

 Short response time, local copy out of date, inconsistencies, no coordination
 Lazy-distributed 

 Shortest response time, inconsistencies, lost updates, no coordination
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Distributed DBMS Issues

 Availability
 Basic relational distributed 2PC breaks availability

 No way to replicate the data
 Fault tolerance required

 What to do when 2PC participant, Coordination leader, ... is not available?
 Some solutions presented (e.g., Dynamo)

 Network partitions
 What to do when the network is partitioned? 
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Distributed DBMS Issues

 Big data processing
 4V: volume, variety, velocity, veracity
 MapReduce & Spark
 Stream data
 Graph analytics
 NoSQL
 NewSQL
 Polystores

 Presented in the second part of course!
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DBMS Implementation Alternatives
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Dimensions of the Problem

 Distribution
 Whether components of the system are located on the same machine or not

 Heterogeneity
 Various levels (hardware, communications, operating system)
 DBMS important one

 data model, query language,transaction management algorithms
 Autonomy

 Types: Tight integration, semi-autonomous, total isolation
 Various versions

 Design autonomy: Ability of a component DBMS to decide on issues related to its 
own design.

 Communication autonomy: Ability of a component DBMS to decide whether and 
how to communicate with other DBMSs.

 Execution autonomy: Ability of a component DBMS to execute local operations in 
any manner it wants to.
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Client/Server Architecture
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Advantages of Client-Server 
Architectures

 More efficient division of labor 
 Horizontal and vertical scaling of resources
 Better price/performance on client machines
 Ability to use familiar tools on client machines
 Client access to remote data (via standards)
 Full DBMS functionality provided to client workstations
 Overall better system price/performance

© 2020, M.T. Özsu & P. Valduriez 49



Database Server
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Distributed Database Servers
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Peer-to-Peer Component Architecture
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Peer-to-Peer Component Architecture

© 2020, M.T. Özsu & P. Valduriez 53



MDBS Components & Execution
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Mediator/Wrapper Architecture
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Cloud Computing
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On-demand, reliable services provided over the Internet in 
a cost-efficient manner
 IaaS – Infrastructure-as-a-Service
 PaaS – Platform-as-a-Service
 SaaS – Software-as-a-Service 
 DaaS – Database-as-a-Service



Simplified Cloud Architecture
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New DBMSs and Big Data Processing 

 Key-Value stores
 Document stores
 Column-oriented DBMS
 Graph database systems
 NewSQL DDBMS
 Map-Reduce systems
 Data-flow systems
 Stream query processing
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The End of an Architectural Era

 Paper:
 Stonebraker, et.al, The End of an Architectural Era (It’s Time for a 

Complete Rewrite), VLDB 2007.
 Michael Stonebraker, UCB

 Current DBMSs: “one size fits all” solution, in fact, excel at nothing”
 H-Store developed at the M.I.T. beats up RDBMSs by nearly two orders of 

magnitude in the TPC-C benchmark (see commercialization VaultDB)
 RDBMSs“ are 25 year old legacy code lines that should be retired in favor 

of a collection of “from scratch” specialized engines. 
 Code lines and architectures designed for yesterday’s needs”

 Popular relational DBMSs all trace their roots to System R from the 1970s
 IBM’s DB2 is a direct descendant of System R, 
 Microsoft’s SQL Server has evolved from Sybase System 5 (another direct System R 

descendant) and 
 Oracle implemented System R’s user interface in its first release.
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Design considerations

 Yesterday’s vs. Today’s Needs
 Movements in Programming Languages and Development Frameworks
 Large Main Memory available
 Multi-Threading and Resource Control
 Grid Computing and Fork-Lift Upgrades
 High Availability needed!
 Horizontal Scalability and Running on Commodity Hardware
 Shared-nothing support at the bottom of the system
 No Knobs

 Current RDBMSs were designed in an era, when computers were expensive and 
people were cheap. Today we have the reverse.equirements of Cloud Computing
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Design Considerations

 High Throughput and Scalability
 Complexity and Cost of Setting up Database Clusters
 Myth of Effortless Distribution and Partitioning of Centralized Data Models
 Most data can be stored in Main Memory (see new caches)
 Multi-Threading can be used effectively
 Systems need to be Built from Scratch with Scalability in Mind
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Design Considerations

 Unneeded Complexity and Performance Bottlenecks
 Avoidance of Expensive Object-Relational Mapping
 Persistent redo-logs have to be avoided when possible
 JDBC/ODBC-like interfaces
 Eliminate an undo-log wherever practical
 Dynamic locking to allow concurrent access
 Multi-threaded datastructures lead to latching of transactions
 Two-phase-commit (2PC) transactions should be avoided 

whenever possible 
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Design Considerations

 Covering simple types of transactions
 Tree Schemes

 1-n relationship with its ancestor require joins 
 The schema is a tree of 1-n relationships
 Equality predicates on the primary key(s) of the root node

 Single-Sited Transactions
 One-Shot Transactions
 Two-Phase Transactions

 Strongly Two-Phase Transactions

 Transaction Commutativity
 Sterile Transactions Classes
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Consequences

 We are heading toward a world with at least 5 
specialized engines 

 Death of the “one size fits all” legacy systems
 1970s: DBMS world contained only business data processing applications

 Areas which need specialized DBMSs
 Data warehouses, Big data, Internet data, Text, Scientific data, Semi-

structured data, Graphs, Streams, etc.
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Key-/Value-Stores

 A simple, common data model:
 a map/dictionary, allowing clients to put and request values per key.

 Modern key-value stores favor high scalability over 
consistency

 Most of them also omit rich ad-hoc querying and analytic 
features 

 Especially joins and aggregate operations are set aside
 Key-/value-stores have existed for a long time 

 e.g. Berkeley DB

© 2020, M.T. Özsu & P. Valduriez 66



Key-/Value-Stores

 Examples of systems
 Key-value cache

 Memcached, Coherence (Oracle), Velocity, Repcached, ElastiCache,
 Infinispan, Jboss Cache, Aerospike

 Key-Value Store
 Dynamo, Voldemort, Dynomite, Riak, Redis, RAMCloud, LevelDB
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Document stores

 Data model
 Documents

 Self-describing
 Hierarchical tree structures (JSON, XML, …)

 Scalar values, maps, lists, sets, nested documents, …
 Identified by a unique identifier (key, …)

 Documents are organized into collections
 Query patterns

 Create, update or remove a document
 Retrieve documents according to complex query conditions

 Observation
 Extended key-value stores where the value part is examinable!
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Document stores

 Suitable use cases
 Event logging, content management systems, blogs, web analytics, e-

commerce applications, …
 i.e. for structured documents with similar schema

 When not to use
 Set operations involving multiple documents
 Design of document structure is constantly changing

 i.e. when the required level of granularity would outbalance the advantages of 
aggregates
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Document stores

 Representatives
 MongoDB 
 Couchbase 
 CouchDB
 RavenDB
 Terrastore
 Multi-model: 

 MarkLogic
 OrientDB
 OpenLink Virtuoso
 ArangoDB
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Column-Oriented Databases
 The approach to store and process data                           

by column instead of row
 Origin in analytics and business intelligence 

 Column-stores operating in a shared-nothing massively parallel processing 
architecture can be used to build high-performance applications

 Column-orientation has a number of advantages
 One column is always accessed (not whole table of records)
 An index on a column is a representation of column
 Scalability of the column-oriented database

 Puristic column-oriented stores 
 Sybase IQ  
 Vertica 
 C-store 
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Column-Oriented Databases

 Column store features
 Index-only plans, heavy compression, late materialization, block iteration, 

 Column stores outperform commercial row-oriented DBs
 Daniel Abadi, 

© 2020, M.T. Özsu & P. Valduriez 72



Column-Oriented Databases
 Less puristic column stores subsume datastores that 

integrate column- and row-orientation
 Bigtable (Google) based on GFS
 Hypertable based on HDFS (Hadoop file system)
 Hstore also based on HDFS 
 Cassandra Derived from Bigtable and Dynamo
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Graph database systems

 Graph data model
 Data is represented in the form of the graph
 Any representation can be converted to a graph representation

 Graph representations
 Adjacency lists, adjecency matrix, triples and triple tables, special data 

structures
 Indexes, bitmaps, signature trees, …

 RDF data model 
 Many levels of representation: data, schema, logic
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Graph database systems

 Declarative query language
 Initially in-memory systems
 SPARQL query language

 Data and knowledge query language (RDF inference)
 Heavy use of indexing 

 Special new index structures
 Query optimization

 Dynamic programming, pipelines, bushy trees
 Distributed databases and query processing
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Graph database systems

 Example Graph DBMSs
 RDF-3X
 Neo4j
 Virtuoso
 ArangoDB
 OrientDB
 Dgraph
 GraphDB
 Neptune (Amazon)
 Titan
 IBM Graph
 Oracle Graph
 ...
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New relational DDBMS

 Google F1, 2013 (Megastore. 2011)
 F1 is a fault-tolerant globally-distributed DBMS
 Storage of Google’s AdWords system
 Genetics: Filial 1 hybrid
 Combining best aspects of traditional RDBMS and scalable 

NoSQL systems
 The key goals of F1’s design

 Scalability, availability (never go down), consistency (ACID),  
usability (full SQL+expected)

 These design goals were considered to be mutually exclusive
 F1 is built on top of Spanner 

 Scalable data storage, synchronous replication, and strong 
consistency and ordering properties.
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New relational DDBMS
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Big Data Analytics 

 Map-Reduce systems
 Stream query processing 
 Data-flow systems
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Map-Reduce Systems

 Brought up by Google employees in 2004
 Task split into two stages: 

 Map: 
 a coordinater designates pieces of data to process a number of nodes which execute a 

given map function and produce intermediate output.
 Reduce: 

 the intermediate output is processed by a number of machines executing a given 
reduce function whose purpose it is to create the final output from the intermediate 
results, e. g. by some aggregation

 Map and Reduce computation model 
 Map-Reduce is a programming technique
 Have to be understood in a real functional manner
 It is used for programming streams

 Restricted to the Map-Reduce model of computation
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Map-Reduce Systems
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Map-Reduce Systems

 MapReduce paradigm has been adopted by
 Programming languages (e. g. Python)
 Frameworks (e.g. Apache Hadoop)
 NoSQL databases (e. g. CouchDB)
 Even JavaScript toolkits (e. g. Dojo)  
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Spark

 Addresses MapReduce shortcomings
 Data sharing abstraction: 

 Resilient Distributed Dataset (RDD)
 Computation model:

1) Cache working set (i.e. RDDs) so no writing-to/reading-from HDFS

2) Assign partitions to the same machine across iterations

3) Maintain lineage for fault-tolerance
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Stream data management

 Stream is an append-only sequence of timestamped 
items that arrive in some order 

 Unbounded stream
 Typical arrival: <timestamp, payload>

 Records, triples, structured texts, ...

 Processing models
 Continuous = arrival is processed as soon as received in the system

 Apache Storm, Heron
 Windowed = arrivals are batched in windows, executed in batch

 Aurora, STREAM, Spark Streaming
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Stream data management

 Stream Query Models
 Persistent queries
 Push-based (data-driven)
 Monotonic: result set always grows, output is continuous
 Non-monotonic: some answers in the result set become invalid with new 

arrivals, re-computation of the result set
 Stream Query Languages

 Declarative: SQL-like QLs; CQL, GSQL, ...
 Procedural: an acyclic graph of operators; Aurora
 Windowed: Windowed languages; size, slide, …
 Stateless and Statefull (blocking) operators
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Dataflow systems

 Application domain
 Data-intensive analytics is moving towards complex data-processing 

tasks such as statistical modeling, graph analysis, machine learning, and 
scientific computing

 Computation model
 MapReduce model is restricted

 Dataflow systems are extending the MapReduce framework with a more 
generalized dataflow-based execution model

 new primitive operations in addition to Map and Reduce
 Systems: Spark, Hyracks, and Nephele

 Dataflow model can express a wide range of data access and 
communication patterns

 Various dataflow-based execution models have been proposed
 directed acyclic graphs in Dryad, 
 serving trees in Dremel, and 
 bulk synchronous parallel processing in Pregel
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Dataflow systems
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