
Database Systems for Big Data

Iztok Savnik, FAMNIT

© 2020, M.T. Özsu & P. Valduriez 1

Course literature

 Textbook
 Tamer Özsu, Patrick Valduriez, Principles of Distributed Database

Systems, 4th Edition, Springer, ISBN 978-1-4419-8833-1, 2020.
 Transparences

 Tamer Özsu, Patrick Valduriez: based on the textbook
 Presentations of NoSQL and NewSQL systems

 Research papers
 In the 2nd part of the course, each topic will include a list of papers.

© 2020, M.T. Özsu & P. Valduriez 2

Grading

 Exam (written) = 40%
 120 min, 4 exercises
 >50%!

 Seminar = 40%
 Study of a research paper (new approach, survey, active research)
 Study of a novel DBMS (test app (distrbd), report, presentation)
 >50%!

 Quizzes = 20%
 2-3 questions about the topics from the previous lecture
 15 min - At the beginning of each lecture
 Grade = The average of the best 80% grades of quizzes

© 2020, M.T. Özsu & P. Valduriez 3

Outline

 Introduction
 Big data
 What is a distributed DBMS?s
 History
 DDBMS promises
 DDBMS issues
 DDBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 4

Four Vs

 Volume
 Increasing data size: petabytes (1015) to zettabytes (1021)

 Variety
 Multimodal data: structured, images, text, audio, video
 90% of currently generated data unstructured

 Velocity
 Streaming data at high speed
 Real-time processing

 Veracity
 Data quality

© 2020, M.T. Özsu & P. Valduriez 5

Big Data Software Stack

© 2020, M.T. Özsu & P. Valduriez 6

Big data database systems

 Distributed database systems
 One server can not store everything

 Relational distributed DBMSs
 IBM, Oracle, Sybase
 Oldest lineage in database area

 NoSQL database systems
 Key/Value store
 Columnar DBMS
 Document store
 Graph DBMS

 NewSQL systems
 Distributed Relational DBMSs
 Google F1, SAP Hana, VoltDB

© 2020, M.T. Özsu & P. Valduriez 7

Big Data Analytics

 Map-Reduce/Spark systems
 Distributed file systems (GFS, Hadoop)
 A query is a graphs of operators
 Tree-structured computation

 Stream query processing
 Data streams
 Stream QLs
 Persistent queries

 Data-flow systems
 Programming environments
 Based on data-flow
 Directed Acyclic graphs (DAGs)

© 2020, M.T. Özsu & P. Valduriez 8

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 DDBMS issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 9

Distributed Computing

 A number of autonomous processing elements (not
necessarily homogeneous) that are interconnected by a
computer network and that cooperate in performing their
assigned tasks.

 What is being distributed?
 Processing logic
 Function
 Data
 Control

© 2020, M.T. Özsu & P. Valduriez 10

Current Distribution – Geographically
Distributed Data Centers

© 2020, M.T. Özsu & P. Valduriez 11

What is a Distributed Database System?

A distributed database is a collection of multiple, logically
interrelated databases distributed over a computer network

A distributed database management system (Distributed
DBMS) is the software that manages the DDB and provides
an access mechanism that makes this distribution
transparent to the users

© 2020, M.T. Özsu & P. Valduriez 12

Distributed DBMS Environment

© 2020, M.T. Özsu & P. Valduriez 13

Implicit Assumptions

 Data stored at a number of sites → each site logically
consists of a single processor

 Processors at different sites are interconnected by a
computer network → not a multiprocessor system
 Parallel database systems

 Distributed database is a database, not a collection of
files → data logically related as exhibited in the users’
access patterns
 Relational data model

 Distributed DBMS is a full-fledged DBMS
 Not remote file system, not a TP system

© 2020, M.T. Özsu & P. Valduriez 14

Important Point

Logically integrated
but

Physically distributed

© 2020, M.T. Özsu & P. Valduriez 15

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 DDBMS issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 16

History – File Systems

© 2020, M.T. Özsu & P. Valduriez 17

History – Database Management

© 2020, M.T. Özsu & P. Valduriez 18

History – Early Distribution

© 2020, M.T. Özsu & P. Valduriez 19

Peer-to-Peer (P2P)

History – Client/Server

© 2020, M.T. Özsu & P. Valduriez 20

History – Data Integration

© 2020, M.T. Özsu & P. Valduriez 21

History – Cloud Computing

© 2020, M.T. Özsu & P. Valduriez 22

On-demand, reliable services provided over the Internet in
a cost-efficient manner
 Cost savings: no need to maintain dedicated compute

power
 Elasticity: better adaptivity to changing workload

Data Delivery Alternatives

 Delivery modes
 Pull-only
 Push-only
 Hybrid

 Frequency
 Periodic
 Conditional
 Ad-hoc or irregular

 Communication Methods
 Unicast
 One-to-many

 Note: not all combinations make sense

© 2020, M.T. Özsu & P. Valduriez 23

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 DDBMS issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 24

Distributed DBMS Promises

Transparent management of distributed, fragmented, and
replicated data

Improved reliability/availability through distributed
transactions

Improved performance

Easier and more economical system expansion

© 2020, M.T. Özsu & P. Valduriez

Transparency

 Transparency is the separation of the higher-level
semantics of a system from the lower level
implementation issues.

 Fundamental issue is to provide data independence
 in the distributed environment

 Network (distribution) transparency
 Replication transparency
 Fragmentation transparency

 horizontal fragmentation: selection
 vertical fragmentation: projection
 hybrid

© 2020, M.T. Özsu & P. Valduriez

Example

© 2020, M.T. Özsu & P. Valduriez 27

Transparent Access

SELECT ENAME,SAL
FROM EMP,ASG,PAY
WHERE DUR > 12
AND EMP.ENO = ASG.ENO
AND PAY.TITLE =

EMP.TITLE

Paris projects
Paris employees
Paris assignments
Boston employees

Montreal projects
Paris projects
New York projects
 with budget > 200000
Montreal employees
Montreal assignments

Boston

Communication
Network

Montreal

Paris

New
York

Boston projects
Boston employees
Boston assignments

Boston projects
New York employees
New York projects
New York assignments

Tokyo

© 2020, M.T. Özsu & P. Valduriez 28

Distributed Database - User View

Distributed Database

© 2020, M.T. Özsu & P. Valduriez 29

Distributed DBMS - Reality

Communication
Subsystem

DBMS
Software

User
ApplicationUser

Query

DBMS
Software

DBMS
Software

DBMS
Software

User
Query

DBMS
Software

User
Query

User
Application

© 2020, M.T. Özsu & P. Valduriez 30

Types of Transparency

 Data independence
 Network transparency (or distribution transparency)

 Location transparency
 Fragmentation transparency

 Fragmentation transparency
 Replication transparency

© 2020, M.T. Özsu & P. Valduriez 31

Reliability Through Transactions

 Replicated components and data should make distributed
DBMS more reliable.

 Distributed transactions provide
 Concurrency transparency
 Failure atomicity

• Distributed transaction support requires implementation of
 Distributed concurrency control protocols
 Commit protocols

 Data replication
 Great for read-intensive workloads, problematic for updates
 Replication protocols

© 2020, M.T. Özsu & P. Valduriez 32

Improved Performance
 Proximity of data to its points of use

 Requires some support for fragmentation and replication

 Parallelism in execution
 Inter-query parallelism

 Enables the parallel execution of multiple queries
 Intra-query parallelism

 Distributed DBMS
 Splitting a query into parts

 (each part exec on one site)
 Parallel DBMS

 Inter-operator parallelism
(Pipelined + Independent)

 Intra-operator parallelism

© 2020, M.T. Özsu & P. Valduriez 33

Scalability

 Issue is database scaling and workload scaling

 Adding processing and storage power

 Scale-out: add more servers

 Scale-up: increase the capacity of one server → has limits

© 2020, M.T. Özsu & P. Valduriez 34

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 DDBMS issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 35

Distributed DBMS Issues

 Distributed database design
 How to distribute the database?
 Units of distribution: fragments, relations
 Horizontal and vertical fragmentation

 Partitioning a table horizontally
 Splitting a table vertically (se later Column stores)

 Data placement
 Local query processing – no need to copy tables
 Parallel execution of query parts

 Replicated & non-replicated database distribution

© 2020, M.T. Özsu & P. Valduriez 36

Distributed DBMS Issues

 Distributed query processing
 Origins: System R, Ingres, R*, SDD
 Exploiting intra-node and inter-node parallelisms

 Multi-processor and multi-core systems
 Distributed data nodes (normally shared-nothing systems)
 Pipelined, data and independent parallelisms

 Optimization problem (data transmission + local processing)
 Two phase optimization: global optimization and join ordering
 Algorithms: Exhausive search, dynamic programming, randimized search,

genetic algorithms
 Query execution

 Heavy use of indexes; index-only plans
 Join algorithms: nested loop join, hash joins, associative join, merge-sort join,

semi-joins
 Volcano query optimizer (Graefe, Wisconsin)

© 2020, M.T. Özsu & P. Valduriez 37

Distributed DBMS Issues
 Parallel DBMS

 Objectives: high scalability and performance
 Distributed and parallel DBMSs are merging into one area

 Common hardware, methods and algoritms.
 Parallel DBMS uses new, usually sophisticated hardware.

 Parallel system architecture
 Shared-Memory, Shared-Disk and Shared-Nothing

 Query processing
 Exploring parallel processing, new hardware, join processing
 The pool for join algorithms is the same as for distributed systems.
 Load-balancing, data partitioning, data placement, multi-processor and multi-

core environemt, etc.
 Cluster computing

 Autonomous dbms-s interconnected by middleware, often used recently.
 Paper:

 Schuh, et.al., Experimental Comparison of Thirteen Relational Equi-Joins in
Main Memory, SIGMOD 2016.

© 2020, M.T. Özsu & P. Valduriez 38

Distributed DBMS Issues
 In-memory DBMS

 There is finally enough RAM
 First in-memory DBMSs were proposed in 80’.

 Classical relational systems are based on a buffer manager.
 In-memory DBMS stores tables in main memory.

 Different data structures possible (current research)
 Indexes are in main-memory as well; new proposals

 New game!
 Instead of hard disc we now have main memory and 10-100X faster cache.
 Processor caches have memory of the size 1-120M (L1, L2, L3).
 Concurrency control remains but there are different bottlenecks
 Lock trashing, Timestamp allocation, Memory allocation.
 WAL protocol still needed for recovery
 New indexes were proposed (BW-tree, LSM tree, Hash tables, Trie index)

 Paper:
 Yu, et.al.,Staring into the Abyss: An Evaluation of CC with One Thousand

Cores, VLDB 2014.

© 2020, M.T. Özsu & P. Valduriez 39

Distributed DBMS Issues

 Concurrency Control (CC)
 Synchronization of concurrent transactions

 Transaction can work in parallel (in some cases)
 Protocols and techniques of CC
 2PC protocol

 Problem in distributed environment
 Timestamp ordering
 Multi-version CC

 Very popular recently (e.g., Postgres)
 Optimistic CC
 Snapshot Isolation (SI)
 Deadlock management

© 2020, M.T. Özsu & P. Valduriez 40

Distributed DBMS Issues

 Synchronization and coordination
 Novel approaches: Quorums

 Majority of nodes in a group required for a decision (not all!).
 Consensus on a decision (Paxos, Raft)

 Tasks: Replicated write, leader election, etc.
 Paxos used in F1 (Google)

 Coordination of a system (ZooKeeper, Yahoo)
 Coordination primitives
 Similar to Chubby in Bigtable (Google)
 Tasks; Linearization of requests, ordering events, Lock manager, etc.
 Used in Apache Hadoop, Accumulo, HBase, Hive, Spark, Druid, etc.

 Paper:
 Wu, et.al., Empirical Evaluation of In-Memory MVCC, VLDB2017

© 2020, M.T. Özsu & P. Valduriez 41

Distributed DBMS Issues

 Replication
 Mutual consistency: strict and weak

 Eventual consistency
 Eager vs lazy & Centralized vs distributed
 Eager-centralized

 Classical 2PL protocol, slow, no inconsistencies, no need for coordination
 Eager-distributed

 No inconsistencies, elegant (symmetrical), slow, updates coordinated
 Lazy-centralized

 Short response time, local copy out of date, inconsistencies, no coordination
 Lazy-distributed

 Shortest response time, inconsistencies, lost updates, no coordination

© 2020, M.T. Özsu & P. Valduriez 42

Distributed DBMS Issues

 Availability
 Basic relational distributed 2PC breaks availability

 No way to replicate the data
 Fault tolerance required

 What to do when 2PC participant, Coordination leader, ... is not available?
 Some solutions presented (e.g., Dynamo)

 Network partitions
 What to do when the network is partitioned?

© 2020, M.T. Özsu & P. Valduriez 43

Distributed DBMS Issues

 Big data processing
 4V: volume, variety, velocity, veracity
 MapReduce & Spark
 Stream data
 Graph analytics
 NoSQL
 NewSQL
 Polystores

 Presented in the second part of course!

© 2020, M.T. Özsu & P. Valduriez 44

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 Design issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 45

DBMS Implementation Alternatives

© 2020, M.T. Özsu & P. Valduriez 46

Dimensions of the Problem

 Distribution
 Whether components of the system are located on the same machine or not

 Heterogeneity
 Various levels (hardware, communications, operating system)
 DBMS important one

 data model, query language,transaction management algorithms
 Autonomy

 Types: Tight integration, semi-autonomous, total isolation
 Various versions

 Design autonomy: Ability of a component DBMS to decide on issues related to its
own design.

 Communication autonomy: Ability of a component DBMS to decide whether and
how to communicate with other DBMSs.

 Execution autonomy: Ability of a component DBMS to execute local operations in
any manner it wants to.

© 2020, M.T. Özsu & P. Valduriez 47

Client/Server Architecture

© 2020, M.T. Özsu & P. Valduriez 48

Advantages of Client-Server
Architectures

 More efficient division of labor
 Horizontal and vertical scaling of resources
 Better price/performance on client machines
 Ability to use familiar tools on client machines
 Client access to remote data (via standards)
 Full DBMS functionality provided to client workstations
 Overall better system price/performance

© 2020, M.T. Özsu & P. Valduriez 49

Database Server

© 2020, M.T. Özsu & P. Valduriez 50

Distributed Database Servers

© 2020, M.T. Özsu & P. Valduriez 51

Peer-to-Peer Component Architecture

© 2020, M.T. Özsu & P. Valduriez 52

Peer-to-Peer Component Architecture

© 2020, M.T. Özsu & P. Valduriez 53

MDBS Components & Execution

© 2020, M.T. Özsu & P. Valduriez 54

Mediator/Wrapper Architecture

© 2020, M.T. Özsu & P. Valduriez 55

Cloud Computing

© 2020, M.T. Özsu & P. Valduriez 56

On-demand, reliable services provided over the Internet in
a cost-efficient manner
 IaaS – Infrastructure-as-a-Service
 PaaS – Platform-as-a-Service
 SaaS – Software-as-a-Service
 DaaS – Database-as-a-Service

Simplified Cloud Architecture

© 2020, M.T. Özsu & P. Valduriez 57

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 Design issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 58

New DBMSs and Big Data Processing

 Key-Value stores
 Document stores
 Column-oriented DBMS
 Graph database systems
 NewSQL DDBMS
 Map-Reduce systems
 Data-flow systems
 Stream query processing

© 2020, M.T. Özsu & P. Valduriez 59

The End of an Architectural Era

 Paper:
 Stonebraker, et.al, The End of an Architectural Era (It’s Time for a

Complete Rewrite), VLDB 2007.
 Michael Stonebraker, UCB

 Current DBMSs: “one size fits all” solution, in fact, excel at nothing”
 H-Store developed at the M.I.T. beats up RDBMSs by nearly two orders of

magnitude in the TPC-C benchmark (see commercialization VaultDB)
 RDBMSs“ are 25 year old legacy code lines that should be retired in favor

of a collection of “from scratch” specialized engines.
 Code lines and architectures designed for yesterday’s needs”

 Popular relational DBMSs all trace their roots to System R from the 1970s
 IBM’s DB2 is a direct descendant of System R,
 Microsoft’s SQL Server has evolved from Sybase System 5 (another direct System R

descendant) and
 Oracle implemented System R’s user interface in its first release.

© 2020, M.T. Özsu & P. Valduriez 60

Design considerations

 Yesterday’s vs. Today’s Needs
 Movements in Programming Languages and Development Frameworks
 Large Main Memory available
 Multi-Threading and Resource Control
 Grid Computing and Fork-Lift Upgrades
 High Availability needed!
 Horizontal Scalability and Running on Commodity Hardware
 Shared-nothing support at the bottom of the system
 No Knobs

 Current RDBMSs were designed in an era, when computers were expensive and
people were cheap. Today we have the reverse.equirements of Cloud Computing

© 2020, M.T. Özsu & P. Valduriez 61

Design Considerations

 High Throughput and Scalability
 Complexity and Cost of Setting up Database Clusters
 Myth of Effortless Distribution and Partitioning of Centralized Data Models
 Most data can be stored in Main Memory (see new caches)
 Multi-Threading can be used effectively
 Systems need to be Built from Scratch with Scalability in Mind

© 2020, M.T. Özsu & P. Valduriez 62

Design Considerations

 Unneeded Complexity and Performance Bottlenecks
 Avoidance of Expensive Object-Relational Mapping
 Persistent redo-logs have to be avoided when possible
 JDBC/ODBC-like interfaces
 Eliminate an undo-log wherever practical
 Dynamic locking to allow concurrent access
 Multi-threaded datastructures lead to latching of transactions
 Two-phase-commit (2PC) transactions should be avoided

whenever possible

© 2020, M.T. Özsu & P. Valduriez 63

Design Considerations

 Covering simple types of transactions
 Tree Schemes

 1-n relationship with its ancestor require joins
 The schema is a tree of 1-n relationships
 Equality predicates on the primary key(s) of the root node

 Single-Sited Transactions
 One-Shot Transactions
 Two-Phase Transactions

 Strongly Two-Phase Transactions

 Transaction Commutativity
 Sterile Transactions Classes

© 2020, M.T. Özsu & P. Valduriez 64

Consequences

 We are heading toward a world with at least 5
specialized engines

 Death of the “one size fits all” legacy systems
 1970s: DBMS world contained only business data processing applications

 Areas which need specialized DBMSs
 Data warehouses, Big data, Internet data, Text, Scientific data, Semi-

structured data, Graphs, Streams, etc.

© 2020, M.T. Özsu & P. Valduriez 65

Key-/Value-Stores

 A simple, common data model:
 a map/dictionary, allowing clients to put and request values per key.

 Modern key-value stores favor high scalability over
consistency

 Most of them also omit rich ad-hoc querying and analytic
features

 Especially joins and aggregate operations are set aside
 Key-/value-stores have existed for a long time

 e.g. Berkeley DB

© 2020, M.T. Özsu & P. Valduriez 66

Key-/Value-Stores

 Examples of systems
 Key-value cache

 Memcached, Coherence (Oracle), Velocity, Repcached, ElastiCache,
 Infinispan, Jboss Cache, Aerospike

 Key-Value Store
 Dynamo, Voldemort, Dynomite, Riak, Redis, RAMCloud, LevelDB

© 2020, M.T. Özsu & P. Valduriez 67

Document stores

 Data model
 Documents

 Self-describing
 Hierarchical tree structures (JSON, XML, …)

 Scalar values, maps, lists, sets, nested documents, …
 Identified by a unique identifier (key, …)

 Documents are organized into collections
 Query patterns

 Create, update or remove a document
 Retrieve documents according to complex query conditions

 Observation
 Extended key-value stores where the value part is examinable!

© 2020, M.T. Özsu & P. Valduriez 68

Document stores

 Suitable use cases
 Event logging, content management systems, blogs, web analytics, e-

commerce applications, …
 i.e. for structured documents with similar schema

 When not to use
 Set operations involving multiple documents
 Design of document structure is constantly changing

 i.e. when the required level of granularity would outbalance the advantages of
aggregates

© 2020, M.T. Özsu & P. Valduriez 69

Document stores

 Representatives
 MongoDB
 Couchbase
 CouchDB
 RavenDB
 Terrastore
 Multi-model:

 MarkLogic
 OrientDB
 OpenLink Virtuoso
 ArangoDB

© 2020, M.T. Özsu & P. Valduriez 70

Column-Oriented Databases
 The approach to store and process data

by column instead of row
 Origin in analytics and business intelligence

 Column-stores operating in a shared-nothing massively parallel processing
architecture can be used to build high-performance applications

 Column-orientation has a number of advantages
 One column is always accessed (not whole table of records)
 An index on a column is a representation of column
 Scalability of the column-oriented database

 Puristic column-oriented stores
 Sybase IQ
 Vertica
 C-store

© 2020, M.T. Özsu & P. Valduriez 71

Column-Oriented Databases

 Column store features
 Index-only plans, heavy compression, late materialization, block iteration,

 Column stores outperform commercial row-oriented DBs
 Daniel Abadi,

© 2020, M.T. Özsu & P. Valduriez 72

Column-Oriented Databases
 Less puristic column stores subsume datastores that

integrate column- and row-orientation
 Bigtable (Google) based on GFS
 Hypertable based on HDFS (Hadoop file system)
 Hstore also based on HDFS
 Cassandra Derived from Bigtable and Dynamo

© 2020, M.T. Özsu & P. Valduriez 73

Graph database systems

 Graph data model
 Data is represented in the form of the graph
 Any representation can be converted to a graph representation

 Graph representations
 Adjacency lists, adjecency matrix, triples and triple tables, special data

structures
 Indexes, bitmaps, signature trees, …

 RDF data model
 Many levels of representation: data, schema, logic

© 2020, M.T. Özsu & P. Valduriez 74

Graph database systems

 Declarative query language
 Initially in-memory systems
 SPARQL query language

 Data and knowledge query language (RDF inference)
 Heavy use of indexing

 Special new index structures
 Query optimization

 Dynamic programming, pipelines, bushy trees
 Distributed databases and query processing

© 2020, M.T. Özsu & P. Valduriez 75

Graph database systems

 Example Graph DBMSs
 RDF-3X
 Neo4j
 Virtuoso
 ArangoDB
 OrientDB
 Dgraph
 GraphDB
 Neptune (Amazon)
 Titan
 IBM Graph
 Oracle Graph
 ...

© 2020, M.T. Özsu & P. Valduriez 76

New relational DDBMS

 Google F1, 2013 (Megastore. 2011)
 F1 is a fault-tolerant globally-distributed DBMS
 Storage of Google’s AdWords system
 Genetics: Filial 1 hybrid
 Combining best aspects of traditional RDBMS and scalable

NoSQL systems
 The key goals of F1’s design

 Scalability, availability (never go down), consistency (ACID),
usability (full SQL+expected)

 These design goals were considered to be mutually exclusive
 F1 is built on top of Spanner

 Scalable data storage, synchronous replication, and strong
consistency and ordering properties.

© 2020, M.T. Özsu & P. Valduriez 77

New relational DDBMS

© 2020, M.T. Özsu & P. Valduriez 78

Big Data Analytics

 Map-Reduce systems
 Stream query processing
 Data-flow systems

© 2020, M.T. Özsu & P. Valduriez 79

Map-Reduce Systems

 Brought up by Google employees in 2004
 Task split into two stages:

 Map:
 a coordinater designates pieces of data to process a number of nodes which execute a

given map function and produce intermediate output.
 Reduce:

 the intermediate output is processed by a number of machines executing a given
reduce function whose purpose it is to create the final output from the intermediate
results, e. g. by some aggregation

 Map and Reduce computation model
 Map-Reduce is a programming technique
 Have to be understood in a real functional manner
 It is used for programming streams

 Restricted to the Map-Reduce model of computation

© 2020, M.T. Özsu & P. Valduriez 80

Map-Reduce Systems

© 2020, M.T. Özsu & P. Valduriez 81

Map-Reduce Systems

 MapReduce paradigm has been adopted by
 Programming languages (e. g. Python)
 Frameworks (e.g. Apache Hadoop)
 NoSQL databases (e. g. CouchDB)
 Even JavaScript toolkits (e. g. Dojo)

© 2020, M.T. Özsu & P. Valduriez 82

Spark

 Addresses MapReduce shortcomings
 Data sharing abstraction:

 Resilient Distributed Dataset (RDD)
 Computation model:

1) Cache working set (i.e. RDDs) so no writing-to/reading-from HDFS

2) Assign partitions to the same machine across iterations

3) Maintain lineage for fault-tolerance

© 2020, M.T. Özsu & P. Valduriez 83

Stream data management

 Stream is an append-only sequence of timestamped
items that arrive in some order

 Unbounded stream
 Typical arrival: <timestamp, payload>

 Records, triples, structured texts, ...

 Processing models
 Continuous = arrival is processed as soon as received in the system

 Apache Storm, Heron
 Windowed = arrivals are batched in windows, executed in batch

 Aurora, STREAM, Spark Streaming

© 2020, M.T. Özsu & P. Valduriez 84

Stream data management

 Stream Query Models
 Persistent queries
 Push-based (data-driven)
 Monotonic: result set always grows, output is continuous
 Non-monotonic: some answers in the result set become invalid with new

arrivals, re-computation of the result set
 Stream Query Languages

 Declarative: SQL-like QLs; CQL, GSQL, ...
 Procedural: an acyclic graph of operators; Aurora
 Windowed: Windowed languages; size, slide, …
 Stateless and Statefull (blocking) operators

© 2020, M.T. Özsu & P. Valduriez 85

Dataflow systems

 Application domain
 Data-intensive analytics is moving towards complex data-processing

tasks such as statistical modeling, graph analysis, machine learning, and
scientific computing

 Computation model
 MapReduce model is restricted

 Dataflow systems are extending the MapReduce framework with a more
generalized dataflow-based execution model

 new primitive operations in addition to Map and Reduce
 Systems: Spark, Hyracks, and Nephele

 Dataflow model can express a wide range of data access and
communication patterns

 Various dataflow-based execution models have been proposed
 directed acyclic graphs in Dryad,
 serving trees in Dremel, and
 bulk synchronous parallel processing in Pregel

© 2020, M.T. Özsu & P. Valduriez 86

Dataflow systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

