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Distribution Design
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Outline

 Distributed and Parallel Database Design
 Fragmentation
 Data distribution
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Fragmentation

 Can't we just distribute relations?
 What is a reasonable unit of distribution?

 relation
 views are subsets of relations  locality 
 extra communication

 fragments of relations (sub-relations)
 concurrent execution of a number of transactions that access 

different portions of a relation
 views that cannot be defined on a single fragment will require extra 

processing
 semantic data control (especially integrity enforcement) more 

difficult

© 2020, M.T. Özsu & P. Valduriez 5



Example Database
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Fragmentation Alternatives – Horizontal

PROJ1 : projects with budgets 
less than $200,000

PROJ2 : projects with budgets 
greater than or equal 
to $200,000
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Fragmentation Alternatives – Vertical

PROJ1: information about 
project budgets

PROJ2: information about 
project names and 
locations
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Correctness of Fragmentation

 Completeness
 Decomposition of relation R into fragments R1, R2, ..., Rn is 

complete if and only if each data item in R can also be found in 
some Ri

 Reconstruction
 If relation R  is decomposed into fragments R1, R2, ..., Rn, then 

there should exist some relational operator ∇ such that              
R = ∇1≤i≤nRi

 Disjointness 
 If relation R is decomposed into fragments R1, R2, ..., Rn, and 

data item di is in Rj, then di should not be in any other fragment 
Rk (k ≠ j ).
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Allocation Alternatives

 Non-replicated
 partitioned : each fragment resides at only one site

 Replicated
 fully replicated : each fragment at each site
 partially replicated : each fragment at some of the sites

 Rule of thumb:
 (update queries) / (read-only queries) << 1
 replication is advantageous, otherwise not
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Comparison of Replication Alternatives
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Fragmentation

 Horizontal Fragmentation (HF)
 Primary Horizontal Fragmentation (PHF)
 Derived Horizontal Fragmentation (DHF)

 Vertical Fragmentation (VF)
 Hybrid Fragmentation (HF)
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PHF – Information Requirements

 Database Information
 relationship

 cardinality of each relation: card(R)
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PHF - Information Requirements

 Application Information
 simple predicates : Given R[A1, A2, …, An], a simple predicate pj 

 is
pj : Ai θValue

where θ  {=,<,≤,>,≥,≠}, Value  Di  and Di  is the domain of 
Ai.

For  relation R  we define Pr = {p1, p2, …,pm}
Example :

                     PNAME = "Maintenance"
                     BUDGET ≤ 200000

 minterm predicates : Given  R and Pr = {p1, p2, …,pm}
define M = {m1,m2,…,mr} as

M = { mi | mi =  ∧pjPr pj* }, 1≤j≤m, 1≤i≤z
where pj* = pj or pj* = ¬(pj).
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PHF – Information Requirements

Example
m1: PNAME="Maintenance"  BUDGET≤200000
m2: NOT(PNAME="Maintenance")  BUDGET≤200000
m3: PNAME= "Maintenance"  NOT(BUDGET≤200000)
m4: NOT(PNAME="Maintenance")  NOT(BUDGET≤200000)
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PHF – Information Requirements

 Application Information
 minterm selectivities: sel(mi)

 The number of tuples of the relation that would be 
accessed by a user query which is specified according to a 
given minterm predicate mi.

 access frequencies: acc(qi)
 The frequency with which a user application qi  accesses 

data.
 Access frequency for a minterm predicate can also be 

defined.

© 2020, M.T. Özsu & P. Valduriez 16



Primary Horizontal Fragmentation

Definition :
Rj = Fj

(R),  1 ≤ j ≤ w

where Fj is a selection formula, which is (preferably) a minterm 
predicate.

Therefore,
A horizontal fragment Ri of relation R consists of all the tuples of R 

which satisfy a minterm predicate mi. 


Given a set of minterm predicates M, there are as many horizontal 

fragments of relation R as there are minterm predicates. 
Set of horizontal fragments also referred to as minterm fragments.
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PHF – Algorithm

Given: A relation R, the set of simple predicates Pr
Output: The set of fragments of R = {R1, R2,…,Rw} which 

obey the fragmentation rules.

Preliminaries :
 Pr  should be complete
 Pr  should be minimal
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Completeness of Simple Predicates

 A set of simple predicates Pr is said to be complete if 
and only if the accesses to the tuples of the minterm 
fragments defined on Pr requires that two tuples of the 
same minterm fragment have the same probability of 
being accessed by any application.

 Example :
 Assume PROJ[PNO,PNAME,BUDGET,LOC] has two 

applications defined on it.
 Find the budgets of projects at each location. (1)
 Find projects with budgets less than $200000. (2)
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Completeness of Simple Predicates

According to (1),
Pr={LOC=“Montreal”,LOC=“New York”,LOC=“Paris”} 

which is not complete with respect to (2). 

Modify
Pr ={LOC=“Montreal”,LOC=“New York”,LOC=“Paris”, 

BUDGET≤200000,BUDGET>200000}

 which is complete.
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Minimality of Simple Predicates

 If a predicate influences how fragmentation is performed, 
(i.e., causes a fragment f to be further fragmented into, 
say, fi and fj) then there should be at least one 
application that accesses fi  and fj differently. 

 In other words, the simple predicate should be relevant 
in determining a fragmentation. 

 If all the predicates of a set Pr are relevant, then Pr is 
minimal.
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Minimality of Simple Predicates

Example :
Pr ={LOC=“Montreal”,LOC=“New York”, LOC=“Paris”, 
BUDGET≤200000,BUDGET>200000}

is minimal (in addition to being complete). However, if we 
add
PNAME = “Instrumentation”

then Pr  is not minimal.
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COM_MIN Algorithm

Given: a relation R and a set of simple predicates Pr 
Output: a complete and minimal set of simple predicates 

Pr' for Pr

Rule 1: a relation or fragment is partitioned into at least 
two parts which are accessed differently by at 
least one application.
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COM_MIN Algorithm

 Initialization :
 find a pi  Pr such that pi partitions R according to Rule 1
 set Pr' = pi  ; Pr Pr – {pi} ; F  {fi}

 Iteratively add predicates to Pr'  until it is complete
 find a pj  Pr such that pj partitions some fk  defined according to 

minterm predicate over Pr' according to Rule 1
 set Pr' = Pr'  {pi}; Pr Pr – {pi}; F  F  {fi}        
 if pk  Pr' which is nonrelevant then

                 Pr'  Pr’ – {pi}
                 F   F – {fi}
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COM_MIN Algorithm
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PHORIZONTAL Algorithm

Makes use of COM_MIN to perform fragmentation.
Input: a relation R  and a set of simple predicates Pr
Output: a set of minterm predicates M according to which  

relation R is to be fragmented

Pr'  COM_MIN (R,Pr)
 determine the set M of minterm predicates
determine the set I of implications among pi  Pr’
 eliminate the contradictory minterms from M 
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PHF – Example

 Two candidate relations : PAY and PROJ.
 Fragmentation of relation PAY 

 Application: Check the salary info and determine raise.
 Employee records kept at two sites  application run at two sites
 Simple predicates

p1 :  SAL ≤ 30000
p2 :  SAL > 30000
Pr = {p1,p2} which is complete and minimal Pr'=Pr

 Minterm predicates
m1 : (SAL ≤ 30000)
m2 : NOT(SAL ≤ 30000) = (SAL > 30000)
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PHF – Example
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PHF – Example
 Fragmentation of relation PROJ 

 Applications:
 Find the name and budget of projects given their location

 Issued at three sites
 Access project information according to budget 

 one site accesses ≤200000 other accesses >200000
 Simple predicates
 For application (1)

p1 : LOC = “Montreal”
p2 : LOC = “New York”
p3 : LOC = “Paris”

 For application (2)
p4 : BUDGET ≤ 200000
p5 : BUDGET > 200000

 Pr = Pr' = {p1,p2,p3,p4,p5}
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PHF – Example

 Fragmentation of relation PROJ continued
 Minterm fragments left after elimination

m1 : (LOC = “Montreal”)  (BUDGET ≤ 200000)
m2 : (LOC = “Montreal”)  (BUDGET > 200000)
m3 : (LOC = “New York”)  (BUDGET ≤ 200000)
m4 : (LOC = “New York”)  (BUDGET > 200000)
m5 : (LOC = “Paris”)  (BUDGET ≤ 200000)
m6 : (LOC = “Paris”)  (BUDGET > 200000)

© 2020, M.T. Özsu & P. Valduriez 30



PHF – Example
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 Completeness
 Since Pr' is complete and minimal, the selection predicates are 

complete

 Reconstruction
 If relation R is fragmented into FR = {R1,R2,…,Rr}

           R  =   Ri FR Ri 

 Disjointness
 Minterm predicates that form the basis of fragmentation should 

be mutually exclusive.  

PHF – Correctness
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Derived Horizontal Fragmentation

 Defined on a member relation of a link according to a 
selection operation specified on its owner.
 Each link is an equijoin.
 Equijoin can be implemented by means of semijoins.
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DHF – Definition

Given a link L where owner(L)=S and member(L)=R, the 
derived horizontal fragments of R are defined as

Ri = R ⋉F  Si, 1≤i≤w

where w is the maximum number of fragments that will be 
defined on R and Si = Fi

 (S)

where Fi is the formula according to which the primary 
horizontal fragment Si is defined.
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DHF – Example

Given link L1 where owner(L1)=SKILL and member(L1)=EMP
EMP1 = EMP ⋉ SKILL1

EMP2 = EMP ⋉ SKILL2

where
SKILL1 = SAL≤30000(SKILL)
SKILL2 = SAL>30000(SKILL)
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DHF – Correctness

 Completeness
 Referential integrity
 Let R be the member relation of a link whose owner is relation S 

which is fragmented as FS = {S1, S2, ..., Sn}. Furthermore, let A 
be the join attribute between R and S. Then, for each tuple t of 
R, there should be a tuple t' of S such that

           t[A] = t' [A]
 Reconstruction

 Same as primary horizontal fragmentation.
 Disjointness

 Simple join graphs between the owner and the member 
fragments.
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 Has been studied within the centralized context
 design methodology
 physical clustering

 More difficult than horizontal, because more alternatives 
exist.
Two approaches :
 grouping

 attributes to fragments
 splitting

 relation to fragments

Vertical Fragmentation
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 Overlapping fragments
 grouping

 Non-overlapping fragments
 splitting

We do not consider the replicated key attributes to be 
overlapping.

Advantage:
Easier to enforce functional dependencies 
(for integrity checking etc.)

Vertical Fragmentation
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VF – Information Requirements

 Application Information
 Attribute affinities

 a measure that indicates how closely related the attributes are
 This is obtained from more primitive usage data

 Attribute usage values
 Given a set of queries Q = {q1, q2,…, qq} that will run on the relation   

        R[A1, A2,…, An],

                  use(qi,•) can be defined accordingly

use(qi,Aj) =
1 if attribute Aj is referenced by query qi

0 otherwise



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VF – Definition of use(qi,Aj)

Consider the following 4 queries for relation PROJ

q1: SELECT BUDGET q2: SELECT PNAME,BUDGET
FROM PROJ      FROM PROJ
WHERE  PNO=Value

q3: SELECT PNAME q4: SELECT SUM(BUDGET)
FROM PROJ      FROM PROJ
WHERE LOC=Value      WHERE LOC=Value
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VF – Affinity Measure aff(Ai,Aj)

The attribute affinity measure between two attributes Ai and Aj 
of a relation R[A1, A2, …, An] with respect to the set of 
applications  Q = (q1, q2, …, qq) is defined as follows : 

aff (Ai, Aj)  (query access)
all queries that access Ai and Aj 


    
query access        access frequency of a query  access

  execution
    all sites


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VF – Calculation of aff(Ai, Aj)

Assume each query in the previous example accesses the attributes once 
during each execution. 
Also assume the access frequencies

Then 
aff(A1, A3) = 15*1 + 20*1+10*1

= 45
and  the attribute affinity matrix AA is
(Let A1=PNO, A2=PNAME, A3=BUDGET,
 A4=LOC)
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VF – Clustering Algorithm

 Take the attribute affinity matrix AA and reorganize the 
attribute orders to form clusters where the attributes in 
each cluster demonstrate high affinity to one another.

 Bond Energy Algorithm (BEA) has been used for 
clustering of entities.  BEA finds an ordering of entities 
(in our case attributes) such that the global affinity 
measure is maximized.
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AM  (affinity of Ai and Aj with their neighbors) 
j


i




VF – Clustering Algorithm
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The AA matrix is symmetrical:



Bond Energy Algorithm

Input: The AA matrix
Output: The clustered affinity matrix CA  which is a 

perturbation of AA 
 Initialization: Place and fix one of the columns of AA in 

CA.
 Iteration: Place the remaining n-i columns in the 

remaining i+1 positions in the CA matrix. For each 
column, choose the placement that makes the most 
contribution to the global affinity measure.

 Row order: Order the rows according to the column 
ordering.
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Bond Energy Algorithm

“Best” placement? Define contribution of a placement:

cont(Ai, Ak, Aj) = 2bond(Ai, Ak)+2bond(Ak, Aj) –2bond(Ai, Aj)

where

    

bond(Ax,Ay) = aff(Az,Ax)aff(Az,Ay)
  z 1

n

   
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BEA – Example
Consider the following AA matrix and the corresponding CA matrix where 
PNO (A1) and PNAME (A2) have been placed. Place BUDGET(A3):

Ordering (0-3-1) :
cont(A0,A3,A1) = 2bond(A0 , A3)+2bond(A3 , A1)–2bond(A0 , A1)

= 2* 0 + 2* 4410 – 2*0 = 8820
Ordering (1-3-2) :
cont(A1,A3,A2) = 2bond(A1 , A3)+2bond(A3 , A2)–2bond(A1,A2)

= 2* 4410 + 2* 890 – 2*225 = 10150
Ordering (2-3-4) :
cont (A2,A3,A4) = 1780
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BEA – Example

 Therefore, the CA matrix has the form

 When LOC is placed, the final form of the CA matrix 
(after row organization) is
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How can you divide a set of clustered attributes {A1, A2, 
…, An} into two (or more) sets {A1, A2, …, Ai} and {Ai, …, 
An} such that there are no (or minimal) applications that 
access both (or more than one) of the sets.

VF – Algorithm
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Define
TQ = set of applications that access only TA
BQ = set of applications that access only BA
OQ = set of applications that access both TA and BA
and
CTQ = total number of accesses to attributes by applications 

that access only TA
CBQ = total number of accesses to attributes by applications 

that access only BA
COQ = total number of accesses to attributes by applications 

that access both TA and BA
Then find the point along the diagonal that maximizes

VF – ALgorithm

    

CTQCBQCOQ2
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Two problems :
● Cluster forming in the middle of the CA matrix

 Shift a row up and a column left and apply the algorithm to find 
the “best” partitioning point

 Do this for all possible shifts
 Cost O(m2)

 More than two clusters
 m-way partitioning
 try 1, 2, …, m–1 split points along diagonal and try to find the 

best point for each of these 
 Cost O(2m)

VF – Algorithm
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VF – Correctness

A relation R, defined over attribute set A and key K, 
generates the vertical partitioning FR = {R1, R2, …, Rr}.
 Completeness

 The following should be true for A:
A =  ARi

 Reconstruction
 Reconstruction can be achieved by

R = ⋈K Ri, Ri  FR    

 Disjointness
 TID's are not considered to be overlapping since they are 

maintained by the system
 Duplicated keys are not considered to be overlapping
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Hybrid Fragmentation
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Reconstruction of HF
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Outline

 Distributed and Parallel Database Design
 Fragmentation
 Data distribution
 Combined approaches
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Fragment Allocation

 Problem Statement
Given 
F = {F1, F2, …, Fn} fragments
S ={S1, S2, …, Sm} network sites 
Q = {q1, q2,…, qq} applications 
Find the "optimal" distribution of F to S.
 Optimality

 Minimal cost
 Communication + storage + processing (read & update)
 Cost in terms of time (usually)

 Performance
 Response time and/or throughput

 Constraints
 Per site constraints (storage & processing)
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Information Requirements

 Database information
 selectivity of fragments 
 size of a fragment 

 Application information
 access types and numbers 
 access localities 

 Computer system information 
 unit cost of storing data at a site 
 unit cost of processing at a site 

 Communication network information 
 bandwidth 
 latency 
 communication overhead 

© 2020, M.T. Özsu & P. Valduriez 57



General Form
min(Total Cost)

subject to
response time constraint
storage constraint
processing constraint

Decision Variable

Allocation Model

xij 
1 if fragment Fi is stored at site Sj 
0 otherwise
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 Total Cost

 Storage Cost (of fragment Fj at Sk)

 Query Processing Cost (for one query)
processing component + transmission component

Allocation Model

    
(unit storage cost at Sk)  (size of Fj)  xjk 

  

query processing cost 
all queries


        cost of storing a fragment at a site

all fragments


all sites
   
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Allocation Model

 Query Processing Cost

Processing component
access cost + integrity enforcement cost + concurrency control cost

 Access cost

 Integrity enforcement and concurrency control costs
 Can be similarly calculated

    

 

                                         (no. of update accesses+ no. of read accesses) 
all fragments


all sites


xij  local processing cost at a site
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 Query Processing Cost
Transmission component
cost of processing updates + cost of processing retrievals

 Cost of updates

 Retrieval Cost

Allocation Model

  

update message cost  

all fragments


all sites


                acknowledgment cost   

all fragments


all sites


  

min all sites

all fragments
 (cost of retrieval command   

cost of sending back the result)
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Allocation Model

 Constraints
 Response Time

execution time of query  ≤ max. allowable response time for that query
    

 Storage Constraint (for a site)

 Processing constraint (for a site)
  

storage requirement of a fragment at that site       

all fragments


storage capacity at that site

  

processing load of a query at that site      
all queries


processing capacity of that site
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Allocation Model

 Solution Methods
 FAP is NP-complete
 DAP also NP-complete

 Heuristics based on
 single commodity warehouse location (for FAP)
 knapsack problem
 branch and bound techniques
 network flow
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Allocation Model

 Attempts to reduce the solution space

 assume all candidate partitionings known; select the “best” 
partitioning

 ignore replication at first

 sliding window on fragments

© 2020, M.T. Özsu & P. Valduriez 65



Outline

 Distributed and Parallel Database Design
 Fragmentation
 Data distribution
 Combined approaches
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Combining Fragmentation & Allocation

Partition the data to dictate where it is located
 Workload-agnostic techniques

 Round-robin partitioning
 Hash partitioning
 Range partitioning

 Workload-aware techniques
 Graph-based approach
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Round-robin Partitioning
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Hash Partitioning
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Range Partitioning
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Workload-Aware Partitioning

 Examplar: Schism
 Graph G=(V,E) where 

 vertex vi  ∈ V represents a tuple in database, 
 edge e=(vi,vj)  ∈ E represents a query that accesses both  tuples vi 

and vj; 
 each edge has weight counting the no. of queries that access both 

tuples
 Perform vertex disjoint graph partitioning

 Each vertex is assigned to a separate partition

© 2020, M.T. Özsu & P. Valduriez 71



Incorporating Replication

 Replicate each vertex based on the no. of transactions 
accessing that tuple  each transaction accesses a 
separate copy 
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Dealing with graph size

 Each tuple a vertex  graph too big  directory too big
 SWORD

 Use hypergraph model 
 Compress the directory
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Adaptive approaches

 Redesign as physical (network characteristics, available 
storage) and logical (workload) changes occur.

 Most focus on logical
 Most follow combined approach
 Three issues:

 How to detect workload changes?
 How to determine impacted data items?
 How to perform changes efficiently?
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Detecting workload changes

 Not much work
 Periodically analyze system logs
 Continuously monitor workload within DBMS

 SWORD: no. of distributed queries
 E-Store: monitor system-level metrics (e.g., CPU utilization) and 

tuple-level access
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Detecting affected data items

 Depends on the workload change detection method
 If monitoring queries  queries will identify data items

  Apollo: generalize from “similar” queries
SELECT PNAME FROM PROJ WHERE BUDGET>20000 AND LOC=‘LONDON’

⇩
SELECT PNAME FROM PROJ WHERE BUDGET>? AND LOC=‘?’
 If monitoring tuple-level access (E-Store), this will tell 

you
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Performing changes

 Periodically compute redistribution
 Not efficient

 Incremental computation and migration
 Graph representation  look at changes in graph

 SWORD and AdaptCache: Incremental graph partitioning initiates 
data migration for reconfiguration

 E-Store: determine hot tuples for which a migration plan is 
prepared determine; cold tuple reallocation as well

 Optimization problem; real-time heuristic solutions
 Database cracking: continuously reorganize data to match query 

workload
 Incoming queries are used as advice
 When a node needs data for a local query, this is hint that data may 

need to be moved
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