
Principles of Distributed Database
Systems

M. Tamer Özsu
Patrick Valduriez

© 2020, M.T. Özsu & P. Valduriez 1

Outline

 Introduction
 Distributed and Parallel Database Design
 Distributed Data Control
 Distributed Query Processing
 Distributed Transaction Processing
 Data Replication
 Database Integration – Multidatabase Systems
 Parallel Database Systems
 Peer-to-Peer Data Management
 Big Data Processing
 NoSQL, NewSQL and Polystores
 Web Data Management

© 2020, M.T. Özsu & P. Valduriez 2

Distribution Design

© 2020, M.T. Özsu & P. Valduriez 3

Outline

 Distributed and Parallel Database Design
 Fragmentation
 Data distribution
 Combined approaches

© 2020, M.T. Özsu & P. Valduriez 4

Fragmentation

 Can't we just distribute relations?
 What is a reasonable unit of distribution?

 relation
 views are subsets of relations  locality
 extra communication

 fragments of relations (sub-relations)
 concurrent execution of a number of transactions that access

different portions of a relation
 views that cannot be defined on a single fragment will require extra

processing
 semantic data control (especially integrity enforcement) more

difficult

© 2020, M.T. Özsu & P. Valduriez 5

Example Database

© 2020, M.T. Özsu & P. Valduriez 6

Fragmentation Alternatives – Horizontal

PROJ1 : projects with budgets
less than $200,000

PROJ2 : projects with budgets
greater than or equal
to $200,000

© 2020, M.T. Özsu & P. Valduriez 7

Fragmentation Alternatives – Vertical

PROJ1: information about
project budgets

PROJ2: information about
project names and
locations

© 2020, M.T. Özsu & P. Valduriez 8

Correctness of Fragmentation

 Completeness
 Decomposition of relation R into fragments R1, R2, ..., Rn is

complete if and only if each data item in R can also be found in
some Ri

 Reconstruction
 If relation R is decomposed into fragments R1, R2, ..., Rn, then

there should exist some relational operator ∇ such that
R = ∇1≤i≤nRi

 Disjointness
 If relation R is decomposed into fragments R1, R2, ..., Rn, and

data item di is in Rj, then di should not be in any other fragment
Rk (k ≠ j).

© 2020, M.T. Özsu & P. Valduriez 9

Allocation Alternatives

 Non-replicated
 partitioned : each fragment resides at only one site

 Replicated
 fully replicated : each fragment at each site
 partially replicated : each fragment at some of the sites

 Rule of thumb:
 (update queries) / (read-only queries) << 1
 replication is advantageous, otherwise not

© 2020, M.T. Özsu & P. Valduriez 10

Comparison of Replication Alternatives

© 2020, M.T. Özsu & P. Valduriez 11

Fragmentation

 Horizontal Fragmentation (HF)
 Primary Horizontal Fragmentation (PHF)
 Derived Horizontal Fragmentation (DHF)

 Vertical Fragmentation (VF)
 Hybrid Fragmentation (HF)

© 2020, M.T. Özsu & P. Valduriez 12

PHF – Information Requirements

 Database Information
 relationship

 cardinality of each relation: card(R)

© 2020, M.T. Özsu & P. Valduriez 13

PHF - Information Requirements

 Application Information
 simple predicates : Given R[A1, A2, …, An], a simple predicate pj

 is
pj : Ai θValue

where θ  {=,<,≤,>,≥,≠}, Value  Di and Di is the domain of
Ai.

For relation R we define Pr = {p1, p2, …,pm}
Example :

 PNAME = "Maintenance"
 BUDGET ≤ 200000

 minterm predicates : Given R and Pr = {p1, p2, …,pm}
define M = {m1,m2,…,mr} as

M = { mi | mi = ∧pjPr pj* }, 1≤j≤m, 1≤i≤z
where pj* = pj or pj* = ¬(pj).

© 2020, M.T. Özsu & P. Valduriez 14

PHF – Information Requirements

Example
m1: PNAME="Maintenance"  BUDGET≤200000
m2: NOT(PNAME="Maintenance")  BUDGET≤200000
m3: PNAME= "Maintenance"  NOT(BUDGET≤200000)
m4: NOT(PNAME="Maintenance")  NOT(BUDGET≤200000)

© 2020, M.T. Özsu & P. Valduriez 15

PHF – Information Requirements

 Application Information
 minterm selectivities: sel(mi)

 The number of tuples of the relation that would be
accessed by a user query which is specified according to a
given minterm predicate mi.

 access frequencies: acc(qi)
 The frequency with which a user application qi accesses

data.
 Access frequency for a minterm predicate can also be

defined.

© 2020, M.T. Özsu & P. Valduriez 16

Primary Horizontal Fragmentation

Definition :
Rj = Fj

(R), 1 ≤ j ≤ w

where Fj is a selection formula, which is (preferably) a minterm
predicate.

Therefore,
A horizontal fragment Ri of relation R consists of all the tuples of R

which satisfy a minterm predicate mi.


Given a set of minterm predicates M, there are as many horizontal

fragments of relation R as there are minterm predicates.
Set of horizontal fragments also referred to as minterm fragments.

© 2020, M.T. Özsu & P. Valduriez 17

PHF – Algorithm

Given: A relation R, the set of simple predicates Pr
Output: The set of fragments of R = {R1, R2,…,Rw} which

obey the fragmentation rules.

Preliminaries :
 Pr should be complete
 Pr should be minimal

© 2020, M.T. Özsu & P. Valduriez 18

Completeness of Simple Predicates

 A set of simple predicates Pr is said to be complete if
and only if the accesses to the tuples of the minterm
fragments defined on Pr requires that two tuples of the
same minterm fragment have the same probability of
being accessed by any application.

 Example :
 Assume PROJ[PNO,PNAME,BUDGET,LOC] has two

applications defined on it.
 Find the budgets of projects at each location. (1)
 Find projects with budgets less than $200000. (2)

© 2020, M.T. Özsu & P. Valduriez 19

Completeness of Simple Predicates

According to (1),
Pr={LOC=“Montreal”,LOC=“New York”,LOC=“Paris”}

which is not complete with respect to (2).

Modify
Pr ={LOC=“Montreal”,LOC=“New York”,LOC=“Paris”,

BUDGET≤200000,BUDGET>200000}

 which is complete.

© 2020, M.T. Özsu & P. Valduriez 20

Minimality of Simple Predicates

 If a predicate influences how fragmentation is performed,
(i.e., causes a fragment f to be further fragmented into,
say, fi and fj) then there should be at least one
application that accesses fi and fj differently.

 In other words, the simple predicate should be relevant
in determining a fragmentation.

 If all the predicates of a set Pr are relevant, then Pr is
minimal.

© 2020, M.T. Özsu & P. Valduriez 21

Minimality of Simple Predicates

Example :
Pr ={LOC=“Montreal”,LOC=“New York”, LOC=“Paris”,
BUDGET≤200000,BUDGET>200000}

is minimal (in addition to being complete). However, if we
add
PNAME = “Instrumentation”

then Pr is not minimal.

© 2020, M.T. Özsu & P. Valduriez 22

COM_MIN Algorithm

Given: a relation R and a set of simple predicates Pr
Output: a complete and minimal set of simple predicates

Pr' for Pr

Rule 1: a relation or fragment is partitioned into at least
two parts which are accessed differently by at
least one application.

© 2020, M.T. Özsu & P. Valduriez 23

COM_MIN Algorithm

 Initialization :
 find a pi  Pr such that pi partitions R according to Rule 1
 set Pr' = pi ; Pr Pr – {pi} ; F  {fi}

 Iteratively add predicates to Pr' until it is complete
 find a pj  Pr such that pj partitions some fk defined according to

minterm predicate over Pr' according to Rule 1
 set Pr' = Pr'  {pi}; Pr Pr – {pi}; F  F  {fi}
 if pk  Pr' which is nonrelevant then

 Pr'  Pr’ – {pi}
 F  F – {fi}

© 2020, M.T. Özsu & P. Valduriez 24

COM_MIN Algorithm

© 2020, M.T. Özsu & P. Valduriez 25

PHORIZONTAL Algorithm

Makes use of COM_MIN to perform fragmentation.
Input: a relation R and a set of simple predicates Pr
Output: a set of minterm predicates M according to which

relation R is to be fragmented

Pr'  COM_MIN (R,Pr)
 determine the set M of minterm predicates
determine the set I of implications among pi  Pr’
 eliminate the contradictory minterms from M

© 2020, M.T. Özsu & P. Valduriez 26

PHF – Example

 Two candidate relations : PAY and PROJ.
 Fragmentation of relation PAY

 Application: Check the salary info and determine raise.
 Employee records kept at two sites  application run at two sites
 Simple predicates

p1 : SAL ≤ 30000
p2 : SAL > 30000
Pr = {p1,p2} which is complete and minimal Pr'=Pr

 Minterm predicates
m1 : (SAL ≤ 30000)
m2 : NOT(SAL ≤ 30000) = (SAL > 30000)

© 2020, M.T. Özsu & P. Valduriez 27

PHF – Example

© 2020, M.T. Özsu & P. Valduriez 28

PHF – Example
 Fragmentation of relation PROJ

 Applications:
 Find the name and budget of projects given their location

 Issued at three sites
 Access project information according to budget

 one site accesses ≤200000 other accesses >200000
 Simple predicates
 For application (1)

p1 : LOC = “Montreal”
p2 : LOC = “New York”
p3 : LOC = “Paris”

 For application (2)
p4 : BUDGET ≤ 200000
p5 : BUDGET > 200000

 Pr = Pr' = {p1,p2,p3,p4,p5}

© 2020, M.T. Özsu & P. Valduriez 29

PHF – Example

 Fragmentation of relation PROJ continued
 Minterm fragments left after elimination

m1 : (LOC = “Montreal”)  (BUDGET ≤ 200000)
m2 : (LOC = “Montreal”)  (BUDGET > 200000)
m3 : (LOC = “New York”)  (BUDGET ≤ 200000)
m4 : (LOC = “New York”)  (BUDGET > 200000)
m5 : (LOC = “Paris”)  (BUDGET ≤ 200000)
m6 : (LOC = “Paris”)  (BUDGET > 200000)

© 2020, M.T. Özsu & P. Valduriez 30

PHF – Example

© 2020, M.T. Özsu & P. Valduriez 31

 Completeness
 Since Pr' is complete and minimal, the selection predicates are

complete

 Reconstruction
 If relation R is fragmented into FR = {R1,R2,…,Rr}

 R = Ri FR Ri

 Disjointness
 Minterm predicates that form the basis of fragmentation should

be mutually exclusive.

PHF – Correctness

© 2020, M.T. Özsu & P. Valduriez 32

Derived Horizontal Fragmentation

 Defined on a member relation of a link according to a
selection operation specified on its owner.
 Each link is an equijoin.
 Equijoin can be implemented by means of semijoins.

© 2020, M.T. Özsu & P. Valduriez 33

DHF – Definition

Given a link L where owner(L)=S and member(L)=R, the
derived horizontal fragments of R are defined as

Ri = R ⋉F Si, 1≤i≤w

where w is the maximum number of fragments that will be
defined on R and Si = Fi

 (S)

where Fi is the formula according to which the primary
horizontal fragment Si is defined.

© 2020, M.T. Özsu & P. Valduriez 34

DHF – Example

Given link L1 where owner(L1)=SKILL and member(L1)=EMP
EMP1 = EMP ⋉ SKILL1

EMP2 = EMP ⋉ SKILL2

where
SKILL1 = SAL≤30000(SKILL)
SKILL2 = SAL>30000(SKILL)

© 2020, M.T. Özsu & P. Valduriez 35

DHF – Correctness

 Completeness
 Referential integrity
 Let R be the member relation of a link whose owner is relation S

which is fragmented as FS = {S1, S2, ..., Sn}. Furthermore, let A
be the join attribute between R and S. Then, for each tuple t of
R, there should be a tuple t' of S such that

 t[A] = t' [A]
 Reconstruction

 Same as primary horizontal fragmentation.
 Disjointness

 Simple join graphs between the owner and the member
fragments.

© 2020, M.T. Özsu & P. Valduriez 36

 Has been studied within the centralized context
 design methodology
 physical clustering

 More difficult than horizontal, because more alternatives
exist.
Two approaches :
 grouping

 attributes to fragments
 splitting

 relation to fragments

Vertical Fragmentation

© 2020, M.T. Özsu & P. Valduriez 37

 Overlapping fragments
 grouping

 Non-overlapping fragments
 splitting

We do not consider the replicated key attributes to be
overlapping.

Advantage:
Easier to enforce functional dependencies
(for integrity checking etc.)

Vertical Fragmentation

© 2020, M.T. Özsu & P. Valduriez 38

VF – Information Requirements

 Application Information
 Attribute affinities

 a measure that indicates how closely related the attributes are
 This is obtained from more primitive usage data

 Attribute usage values
 Given a set of queries Q = {q1, q2,…, qq} that will run on the relation

 R[A1, A2,…, An],

 use(qi,•) can be defined accordingly

use(qi,Aj) =
1 if attribute Aj is referenced by query qi

0 otherwise




© 2020, M.T. Özsu & P. Valduriez 39

VF – Definition of use(qi,Aj)

Consider the following 4 queries for relation PROJ

q1: SELECT BUDGET q2: SELECT PNAME,BUDGET
FROM PROJ FROM PROJ
WHERE PNO=Value

q3: SELECT PNAME q4: SELECT SUM(BUDGET)
FROM PROJ FROM PROJ
WHERE LOC=Value WHERE LOC=Value

© 2020, M.T. Özsu & P. Valduriez 40

A1=PNO
A2=PNAME
A3=BUDGET
A4=LOC)

VF – Affinity Measure aff(Ai,Aj)

The attribute affinity measure between two attributes Ai and Aj
of a relation R[A1, A2, …, An] with respect to the set of
applications Q = (q1, q2, …, qq) is defined as follows :

aff (Ai, Aj)  (query access)
all queries that access Ai and Aj


query access  access frequency of a query  access

 execution
 all sites



© 2020, M.T. Özsu & P. Valduriez 41

VF – Calculation of aff(Ai, Aj)

Assume each query in the previous example accesses the attributes once
during each execution.
Also assume the access frequencies

Then
aff(A1, A3) = 15*1 + 20*1+10*1

= 45
and the attribute affinity matrix AA is
(Let A1=PNO, A2=PNAME, A3=BUDGET,
 A4=LOC)

© 2020, M.T. Özsu & P. Valduriez 42

VF – Clustering Algorithm

 Take the attribute affinity matrix AA and reorganize the
attribute orders to form clusters where the attributes in
each cluster demonstrate high affinity to one another.

 Bond Energy Algorithm (BEA) has been used for
clustering of entities. BEA finds an ordering of entities
(in our case attributes) such that the global affinity
measure is maximized.

© 2020, M.T. Özsu & P. Valduriez 43

AM  (affinity of Ai and Aj with their neighbors)
j


i


VF – Clustering Algorithm

© 2020, M.T. Özsu & P. Valduriez 44

The AA matrix is symmetrical:

Bond Energy Algorithm

Input: The AA matrix
Output: The clustered affinity matrix CA which is a

perturbation of AA
 Initialization: Place and fix one of the columns of AA in

CA.
 Iteration: Place the remaining n-i columns in the

remaining i+1 positions in the CA matrix. For each
column, choose the placement that makes the most
contribution to the global affinity measure.

 Row order: Order the rows according to the column
ordering.

© 2020, M.T. Özsu & P. Valduriez 45

Bond Energy Algorithm

“Best” placement? Define contribution of a placement:

cont(Ai, Ak, Aj) = 2bond(Ai, Ak)+2bond(Ak, Aj) –2bond(Ai, Aj)

where

bond(Ax,Ay) = aff(Az,Ax)aff(Az,Ay)
 z 1

n

 

© 2020, M.T. Özsu & P. Valduriez 46

BEA – Example
Consider the following AA matrix and the corresponding CA matrix where
PNO (A1) and PNAME (A2) have been placed. Place BUDGET(A3):

Ordering (0-3-1) :
cont(A0,A3,A1) = 2bond(A0 , A3)+2bond(A3 , A1)–2bond(A0 , A1)

= 2* 0 + 2* 4410 – 2*0 = 8820
Ordering (1-3-2) :
cont(A1,A3,A2) = 2bond(A1 , A3)+2bond(A3 , A2)–2bond(A1,A2)

= 2* 4410 + 2* 890 – 2*225 = 10150
Ordering (2-3-4) :
cont (A2,A3,A4) = 1780

© 2020, M.T. Özsu & P. Valduriez 47

BEA – Example

 Therefore, the CA matrix has the form

 When LOC is placed, the final form of the CA matrix
(after row organization) is

© 2020, M.T. Özsu & P. Valduriez 48

How can you divide a set of clustered attributes {A1, A2,
…, An} into two (or more) sets {A1, A2, …, Ai} and {Ai, …,
An} such that there are no (or minimal) applications that
access both (or more than one) of the sets.

VF – Algorithm

© 2020, M.T. Özsu & P. Valduriez 49

Define
TQ = set of applications that access only TA
BQ = set of applications that access only BA
OQ = set of applications that access both TA and BA
and
CTQ = total number of accesses to attributes by applications

that access only TA
CBQ = total number of accesses to attributes by applications

that access only BA
COQ = total number of accesses to attributes by applications

that access both TA and BA
Then find the point along the diagonal that maximizes

VF – ALgorithm

CTQCBQCOQ2

© 2020, M.T. Özsu & P. Valduriez 50

Two problems :
● Cluster forming in the middle of the CA matrix

 Shift a row up and a column left and apply the algorithm to find
the “best” partitioning point

 Do this for all possible shifts
 Cost O(m2)

 More than two clusters
 m-way partitioning
 try 1, 2, …, m–1 split points along diagonal and try to find the

best point for each of these
 Cost O(2m)

VF – Algorithm

© 2020, M.T. Özsu & P. Valduriez 51

VF – Correctness

A relation R, defined over attribute set A and key K,
generates the vertical partitioning FR = {R1, R2, …, Rr}.
 Completeness

 The following should be true for A:
A =  ARi

 Reconstruction
 Reconstruction can be achieved by

R = ⋈K Ri, Ri  FR

 Disjointness
 TID's are not considered to be overlapping since they are

maintained by the system
 Duplicated keys are not considered to be overlapping

© 2020, M.T. Özsu & P. Valduriez 52

Hybrid Fragmentation

© 2020, M.T. Özsu & P. Valduriez 53

Reconstruction of HF

© 2020, M.T. Özsu & P. Valduriez 54

Outline

 Distributed and Parallel Database Design
 Fragmentation
 Data distribution
 Combined approaches

© 2020, M.T. Özsu & P. Valduriez 55

Fragment Allocation

 Problem Statement
Given
F = {F1, F2, …, Fn} fragments
S ={S1, S2, …, Sm} network sites
Q = {q1, q2,…, qq} applications
Find the "optimal" distribution of F to S.
 Optimality

 Minimal cost
 Communication + storage + processing (read & update)
 Cost in terms of time (usually)

 Performance
 Response time and/or throughput

 Constraints
 Per site constraints (storage & processing)

© 2020, M.T. Özsu & P. Valduriez 56

Information Requirements

 Database information
 selectivity of fragments
 size of a fragment

 Application information
 access types and numbers
 access localities

 Computer system information
 unit cost of storing data at a site
 unit cost of processing at a site

 Communication network information
 bandwidth
 latency
 communication overhead

© 2020, M.T. Özsu & P. Valduriez 57

General Form
min(Total Cost)

subject to
response time constraint
storage constraint
processing constraint

Decision Variable

Allocation Model

xij 
1 if fragment Fi is stored at site Sj
0 otherwise

© 2020, M.T. Özsu & P. Valduriez 59

 Total Cost

 Storage Cost (of fragment Fj at Sk)

 Query Processing Cost (for one query)
processing component + transmission component

Allocation Model

(unit storage cost at Sk)  (size of Fj)  xjk

query processing cost 
all queries


 cost of storing a fragment at a site

all fragments


all sites


© 2020, M.T. Özsu & P. Valduriez 60

Allocation Model

 Query Processing Cost

Processing component
access cost + integrity enforcement cost + concurrency control cost

 Access cost

 Integrity enforcement and concurrency control costs
 Can be similarly calculated

 (no. of update accesses+ no. of read accesses) 
all fragments


all sites


xij  local processing cost at a site

© 2020, M.T. Özsu & P. Valduriez 61

 Query Processing Cost
Transmission component
cost of processing updates + cost of processing retrievals

 Cost of updates

 Retrieval Cost

Allocation Model

update message cost 

all fragments


all sites


 acknowledgment cost

all fragments


all sites


min all sites

all fragments
 (cost of retrieval command 

cost of sending back the result)

© 2020, M.T. Özsu & P. Valduriez 62

Allocation Model

 Constraints
 Response Time

execution time of query ≤ max. allowable response time for that query

 Storage Constraint (for a site)

 Processing constraint (for a site)

storage requirement of a fragment at that site 

all fragments


storage capacity at that site

processing load of a query at that site 
all queries


processing capacity of that site

© 2020, M.T. Özsu & P. Valduriez 63

Allocation Model

 Solution Methods
 FAP is NP-complete
 DAP also NP-complete

 Heuristics based on
 single commodity warehouse location (for FAP)
 knapsack problem
 branch and bound techniques
 network flow

© 2020, M.T. Özsu & P. Valduriez 64

Allocation Model

 Attempts to reduce the solution space

 assume all candidate partitionings known; select the “best”
partitioning

 ignore replication at first

 sliding window on fragments

© 2020, M.T. Özsu & P. Valduriez 65

Outline

 Distributed and Parallel Database Design
 Fragmentation
 Data distribution
 Combined approaches

© 2020, M.T. Özsu & P. Valduriez 66

Combining Fragmentation & Allocation

Partition the data to dictate where it is located
 Workload-agnostic techniques

 Round-robin partitioning
 Hash partitioning
 Range partitioning

 Workload-aware techniques
 Graph-based approach

© 2020, M.T. Özsu & P. Valduriez 67

Round-robin Partitioning

© 2020, M.T. Özsu & P. Valduriez 68

Hash Partitioning

© 2020, M.T. Özsu & P. Valduriez 69

Range Partitioning

© 2020, M.T. Özsu & P. Valduriez 70

Workload-Aware Partitioning

 Examplar: Schism
 Graph G=(V,E) where

 vertex vi ∈ V represents a tuple in database,
 edge e=(vi,vj) ∈ E represents a query that accesses both tuples vi

and vj;
 each edge has weight counting the no. of queries that access both

tuples
 Perform vertex disjoint graph partitioning

 Each vertex is assigned to a separate partition

© 2020, M.T. Özsu & P. Valduriez 71

Incorporating Replication

 Replicate each vertex based on the no. of transactions
accessing that tuple  each transaction accesses a
separate copy

© 2020, M.T. Özsu & P. Valduriez 72

Dealing with graph size

 Each tuple a vertex  graph too big  directory too big
 SWORD

 Use hypergraph model
 Compress the directory

© 2020, M.T. Özsu & P. Valduriez 73

Adaptive approaches

 Redesign as physical (network characteristics, available
storage) and logical (workload) changes occur.

 Most focus on logical
 Most follow combined approach
 Three issues:

 How to detect workload changes?
 How to determine impacted data items?
 How to perform changes efficiently?

© 2020, M.T. Özsu & P. Valduriez 74

Detecting workload changes

 Not much work
 Periodically analyze system logs
 Continuously monitor workload within DBMS

 SWORD: no. of distributed queries
 E-Store: monitor system-level metrics (e.g., CPU utilization) and

tuple-level access

© 2020, M.T. Özsu & P. Valduriez 75

Detecting affected data items

 Depends on the workload change detection method
 If monitoring queries  queries will identify data items

 Apollo: generalize from “similar” queries
SELECT PNAME FROM PROJ WHERE BUDGET>20000 AND LOC=‘LONDON’

⇩
SELECT PNAME FROM PROJ WHERE BUDGET>? AND LOC=‘?’
 If monitoring tuple-level access (E-Store), this will tell

you

© 2020, M.T. Özsu & P. Valduriez 76

Performing changes

 Periodically compute redistribution
 Not efficient

 Incremental computation and migration
 Graph representation  look at changes in graph

 SWORD and AdaptCache: Incremental graph partitioning initiates
data migration for reconfiguration

 E-Store: determine hot tuples for which a migration plan is
prepared determine; cold tuple reallocation as well

 Optimization problem; real-time heuristic solutions
 Database cracking: continuously reorganize data to match query

workload
 Incoming queries are used as advice
 When a node needs data for a local query, this is hint that data may

need to be moved

© 2020, M.T. Özsu & P. Valduriez 77

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

