Principles of Distributed Database Systems

M. Tamer Özsu
Patrick Valduriez

Outline

- Introduction
- Distributed and Parallel Database Design
- Distributed Data Control
- Distributed Query Processing
- Distributed Transaction Processing
- Data Replication
- Database Integration - Multidatabase Systems
- Parallel Database Systems
- Peer-to-Peer Data Management
- Big Data Processing
- NoSQL, NewSQL and Polystores
- Web Data Management

Distribution Design

Outline

- Distributed and Parallel Database Design
- Fragmentation
- Data distribution
- Combined approaches

Fragmentation

- Can't we just distribute relations?
- What is a reasonable unit of distribution?
\square relation
- views are subsets of relations \square locality
- extra communication
\square fragments of relations (sub-relations)
- concurrent execution of a number of transactions that access different portions of a relation
- views that cannot be defined on a single fragment will require extra processing
- semantic data control (especially integrity enforcement) more difficult

Example Database

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng.
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

ASG

ENO	PNO	RESP	DUR
E1	P1	Manager	12
E2	P1	Analyst	24
E2	P2	Analyst	6
E3	P3	Consultant	10
E3	P4	Engineer	48
E4	P2	Programmer	18
E5	P2	Manager	24
E6	P4	Manager	48
E7	P3	Engineer	36
E8	P3	Manager	40

PROJ

PNO	PNAME	BUDGET	LOC	TITLE	SAL
P1	Instrumentation	150000	Montreal	Elect. Eng.	40000
P2	Database Develop.	135000	New York	Syst. Anal.	34000
P3	CAD/CAM	250000	New York	Mech. Eng.	27000
P4	Maintenance	310000	Paris	Programmer	24000

Fragmentation Alternatives - Horizontal

PROJ_{1} : projects with budgets less than \$200,000
PROJ_{2} : projects with budgets greater than or equal
PROJ

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal
P2	Database Develop.	135000	New York
P3	CAD/CAM	250000	New York
P4	Maintenance	310000	Paris

PROJ_{1}

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal
P2	Database Develop.	135000	New York

PROJ_{2}

PNO	PNAME	BUDGET	LOC
P3	CAD/CAM	255000	New York
P4	Maintenance	310000	Paris

Fragmentation Alternatives - Vertical

PROJ_{1} : information about project budgets
PROJ_{2} : information about project names and locations
PROJ

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal
P2	Database Develop.	135000	New York
P3	CAD/CAM	250000	New York
P4	Maintenance	310000	Paris

PROJ $_{1}$

PNO	BUDGET
P1	150000
P2	135000
P3	250000
P4	310000

PROJ_{2}

PNO	PNAME	LOC
P1	Instrumentation	Montreal
P2	Database Develop.	New York
P3	CAD/CAM	New York
P4	Maintenance	Paris

Correctness of Fragmentation

- Completeness
- Decomposition of relation R into fragments $R_{1}, R_{2}, \ldots, R_{n}$ is complete if and only if each data item in R can also be found in some R_{i}
- Reconstruction
- If relation R is decomposed into fragments $R_{1}, R_{2}, \ldots, R_{n}$, then there should exist some relational operator ∇ such that $R=\nabla_{1 \leq i s h} R_{i}$
- Disjointness
- If relation R is decomposed into fragments $R_{1}, R_{2}, \ldots, R_{n}$, and data item d_{i} is in R_{j}, then d_{i} should not be in any other fragment $R_{k}(k \neq j)$.

Allocation Alternatives

- Non-replicated
a partitioned : each fragment resides at only one site
- Replicated
- fully replicated : each fragment at each site
\square partially replicated : each fragment at some of the sites
- Rule of thumb:
\square (update queries) / (read-only queries) << 1
\square replication is advantageous, otherwise not

Comparison of Replication Alternatives

	Full replication	Partial replication	Partitioning
QUERY PROCESSING	Easy	Same difficulty	
DIRECTORY MANAGEMENT	Easy or nonexistent	Same difficulty	
CONCURRENCY CONTROL	Moderate	Difficult	Easy
RELIABILITY	Very high	High	Low
REALITY	Possible application	Realistic	Possible application

Fragmentation

- Horizontal Fragmentation (HF)
- Primary Horizontal Fragmentation (PHF)
- Derived Horizontal Fragmentation (DHF)
- Vertical Fragmentation (VF)
- Hybrid Fragmentation (HF)

PHF - Information Requirements

- Database Information
- relationship

- cardinality of each relation: $\operatorname{card}(R)$

PHF - Information Requirements

- Application Information
\square simple predicates: Given $R\left[A_{1}, A_{2}, \ldots, A_{n}\right]$, a simple predicate p_{j} is

$$
p_{j}: A_{i} \theta \text { Value }
$$

where $\theta \in\{=,<, \leq,>, \geq, \neq\}$, Value $\in D_{i}$ and D_{i} is the domain of
A_{i}.
For relation R we define $\operatorname{Pr}=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$
Example:
PNAME = "Maintenance"
BUDGET ≤ 200000

- minterm predicates: Given R and $\operatorname{Pr}=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ define $M=\left\{m_{1}, m_{2}, \ldots, m_{r}\right\}$ as

$$
M=\left\{m_{i} \mid m_{i}=\wedge_{p_{j} \in P r} p_{j}^{\star}\right\}, 1 \leq j \leq m, 1 \leq i \leq z
$$

where $p_{j}^{*}=p_{j}$ or $p_{j}{ }^{*}=\neg\left(p_{j}\right)$.

PHF - Information Requirements

Example
m_{1} : PNAME="Maintenance" ^ BUDGET ≤ 200000 m_{2} : NOT(PNAME="Maintenance") ^BUDGET ≤ 200000
m_{3} : PNAME= "Maintenance" ^ NOT(BUDGET ≤ 200000)
$m_{4}:$ NOT(PNAME="Maintenance") ^ NOT(BUDGET ≤ 200000)

PHF - Information Requirements

- Application Information
- minterm selectivities: $\mathrm{sel}\left(m_{i}\right)$
- The number of tuples of the relation that would be accessed by a user query which is specified according to a given minterm predicate m_{i}.
\square access frequencies: $\operatorname{acc}\left(q_{i}\right)$
- The frequency with which a user application qi accesses data.
- Access frequency for a minterm predicate can also be defined.

Primary Horizontal Fragmentation

Definition :

$R_{j}=\sigma_{F_{j}}(R), \quad 1 \leq j \leq w$
where F_{j} is a selection formula, which is (preferably) a minterm predicate.
Therefore,
A horizontal fragment R_{i} of relation R consists of all the tuples of R which satisfy a minterm predicate m_{i}.

—

Given a set of minterm predicates M, there are as many horizontal fragments of relation R as there are minterm predicates.
Set of horizontal fragments also referred to as minterm fragments.

PHF - Algorithm

Given: A relation R, the set of simple predicates Pr
Output: The set of fragments of $R=\left\{R_{1}, R_{2}, \ldots, R_{w}\right\}$ which obey the fragmentation rules.

Preliminaries :

- Pr should be complete
\square Pr should be minimal

Completeness of Simple Predicates

- A set of simple predicates Pr is said to be complete if and only if the accesses to the tuples of the minterm fragments defined on Pr requires that two tuples of the same minterm fragment have the same probability of being accessed by any application.
- Example:
\square Assume PROJ[PNO,PNAME,BUDGET,LOC] has two applications defined on it.
a Find the budgets of projects at each location.
\square Find projects with budgets less than $\$ 200000$.

Completeness of Simple Predicates

According to (1),
Pr=\{LOC="Montreal",LOC="New York",LOC="Paris"\}
which is not complete with respect to (2).
Modify
Pr =\{LOC="Montreal",LOC="New York",LOC="Paris", BUDGET $\leq 200000, B U D G E T>200000\}$
which is complete.

Minimality of Simple Predicates

- If a predicate influences how fragmentation is performed, (i.e., causes a fragment f to be further fragmented into, say, f_{i} and f_{j}) then there should be at least one application that accesses f_{i} and f_{j} differently.
- In other words, the simple predicate should be relevant in determining a fragmentation.
- If all the predicates of a set Pr are relevant, then Pr is minimal.

Minimality of Simple Predicates

Example :
Pr =\{LOC="Montreal",LOC="New York", LOC="Paris", BUDGET $\leq 200000, B U D G E T>200000\}$
is minimal (in addition to being complete). However, if we add
PNAME = "Instrumentation"
then $P r$ is not minimal.

COM_MIN Algorithm

Given: a relation R and a set of simple predicates $P r$
Output: a complete and minimal set of simple predicates Pr' for Pr

Rule 1: a relation or fragment is partitioned into at least two parts which are accessed differently by at least one application.

COM_MIN Algorithm

(1) Initialization :
\square find a $p_{i} \in \operatorname{Pr}$ such that p_{i} partitions R according to Rule 1
\square set $P r^{\prime}=p_{i} ; \operatorname{Pr} \leftarrow \operatorname{Pr}-\left\{p_{i}\right\} ; F \leftarrow\left\{f_{i}\right\}$
(2) Iteratively add predicates to Pr^{\prime} until it is complete
\square find a $p_{j} \in \operatorname{Pr}$ such that p_{j} partitions some f_{k} defined according to minterm predicate over Pr ' according to Rule 1
\square set $\operatorname{Pr}=\operatorname{Pr} \cup\left\{p_{i}\right\} ; \operatorname{Pr} \leftarrow \operatorname{Pr}-\left\{p_{i}\right\} ; F \leftarrow F \cup\left\{f_{i}\right\}$
\square if $\exists p_{k} \in P r^{\prime}$ which is nonrelevant then

$$
\begin{aligned}
& P r^{\prime} \leftarrow P r^{\prime}-\left\{p_{i}\right\} \\
& F \leftarrow F-\left\{f_{i}\right\}
\end{aligned}
$$

COM_MIN Algorithm

```
Algorithm 3.1: COM_MIN Algorithm
    Input: \(R\) : relation; Pr: set of simple predicates
    Output: \(P r^{\prime}\) : set of simple predicates
    Declare: \(F\) : set of minterm fragments
    begin
        find \(p_{i} \in \operatorname{Pr}\) such that \(p_{i}\) partitions \(R\) according to Rule 1 ;
        \(P r^{\prime} \leftarrow p_{i} ;\)
        \(\operatorname{Pr} \leftarrow \operatorname{Pr}-p_{i} ;\)
        \(F \leftarrow f_{i} \quad\left\{f_{i}\right.\) is the minterm fragment according to \(\left.p_{i}\right\} ;\)
        repeat
            find a \(p_{j} \in \operatorname{Pr}\) such that \(p_{j}\) partitions some \(f_{k}\) of \(\mathrm{Pr}^{\prime}\) according to Rule 1
            ;
            \(P r^{\prime} \leftarrow P r^{\prime} \cup p_{j} ;\)
            \(\operatorname{Pr} \leftarrow \operatorname{Pr}-p_{j} ;\)
            \(F \leftarrow F \cup f_{j}\);
            if \(\exists p_{k} \in \operatorname{Pr}^{\prime}\) which is not relevant then
            \(P r^{\prime} \leftarrow P r^{\prime}-p_{k} ;\)
            \(F \leftarrow F-f_{k} ;\)
        until \(\mathrm{Pr}^{\prime}\) is complete;
    end
```


PHORIZONTAL Algorithm

Makes use of COM_MIN to perform fragmentation.
Input: \quad a relation R and a set of simple predicates Pr
Output: a set of minterm predicates M according to which relation R is to be fragmented
© $\mathrm{Pr}^{\prime} \leftarrow$ COM_MIN $(R, P r)$
(2) determine the set M of minterm predicates
(3) determine the set I of implications among $p_{i} \in \operatorname{Pr}$ '
${ }^{4}$ eliminate the contradictory minterms from M

PHF - Example

- Two candidate relations : PAY and PROJ.
- Fragmentation of relation PAY
\square Application: Check the salary info and determine raise.
- Employee records kept at two sites \Rightarrow application run at two sites
- Simple predicates
p_{1} : SAL ≤ 30000
$p_{2}: S A L>30000$
$\operatorname{Pr}=\left\{p_{1}, p_{2}\right\}$ which is complete and minimal $\operatorname{Pr}=P r$
\square Minterm predicates
$m_{1}:(\mathrm{SAL} \leq 30000)$
$m_{2}: \operatorname{NOT}(S A L \leq 30000)=(S A L>30000)$

PHF - Example

PAY $_{1}$

TITLE	SAL
Mech. Eng.	27000
Programmer	24000

PAY_{2}

TITLE	SAL
Elect. Eng.	40000
Syst. Anal.	34000

PHF - Example

- Fragmentation of relation PROJ
- Applications:
- Find the name and budget of projects given their location \square Issued at three sites
- Access project information according to budget
\square one site accesses ≤ 200000 other accesses >200000
- Simple predicates
- For application (1)
p_{1} : LOC = "Montreal"
p_{2} : LOC = "New York"
p_{3} : LOC = "Paris"
- For application (2)
$p_{4}:$ BUDGET ≤ 200000
p_{5} : BUDGET > 200000
- Pr $=$ Pr' $=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$

PHF - Example

- Fragmentation of relation PROJ continued
- Minterm fragments left after elimination

```
m
m}\mp@code{: (LOC = "Montreal")^(BUDGET > 200000)
m
m
m
m
```


PHF - Example

PROJ_{1}

PNO	PNAME	BUDGET	LOC
P1	Instrumentation	150000	Montreal

PROJ_{3}

PNO	PNAME	BUDGET	LOC
P2	Database Develop.	135000	New York

PROJ_{4}

PNO	PNAME	BUDGET	LOC
P3	CAD/CAM	255000	New York

PROJ_{6}

PNO	PNAME	BUDGET	LOC
P4	Maintenance	310000	Paris

PHF - Correctness

- Completeness
- Since Pr' is complete and minimal, the selection predicates are complete
- Reconstruction
- If relation R is fragmented into $F_{R}=\left\{R_{1}, R_{2}, \ldots, R_{\mathrm{r}}\right\}$

$$
R=\bigcup_{\forall R_{i} \in F R} R_{i}
$$

- Disjointness
- Minterm predicates that form the basis of fragmentation should be mutually exclusive.

Derived Horizontal Fragmentation

- Defined on a member relation of a link according to a selection operation specified on its owner.
- Each link is an equijoin.
\square Equijoin can be implemented by means of semijoins.

DHF - Definition

Given a link L where owner $(L)=S$ and member $(L)=R$, the derived horizontal fragments of R are defined as

$$
R_{i}=R \complement_{F} S_{i}, 1 \leq i \leq w
$$

where w is the maximum number of fragments that will be defined on R and $S_{i}=\sigma_{F_{i}}(S)$
where F_{i} is the formula according to which the primary horizontal fragment S_{i} is defined.

DHF - Example

Given link L_{1} where owner $\left(L_{1}\right)=\operatorname{SKILL}$ and member $\left(L_{1}\right)=E M P$ $E M P_{1}=\mathrm{EMP} \ltimes$ SKILL $_{1}$
$E M P_{2}=E M P \ltimes$ SKILL $_{2}$
where
SKILL $_{1}=\sigma_{\text {SAL } \leq 30000}($ SKILL $)$
SKILL $_{2}=\sigma_{\text {SAL } 30000}($ SKILL $)$
EMP $_{1}$

ENO	ENAME	TITLE
E3	A. Lee	Mech, Eng.
E4	J. Miller	Programmer
E7	R. Davis	Mech, Eng.

$E M P_{2}$

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng.
E2	M. Smith	Syst, Anal.
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E8	J. Jones	Syst. Anal.

DHF - Correctness

- Completeness
- Referential integrity
\square Let R be the member relation of a link whose owner is relation S which is fragmented as $F_{S}=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$. Furthermore, let A be the join attribute between R and S. Then, for each tuple t of R, there should be a tuple t^{\prime} of S such that $t[A]=t^{\prime}[A]$
- Reconstruction
- Same as primary horizontal fragmentation.
- Disjointness
- Simple join graphs between the owner and the member fragments.

Vertical Fragmentation

- Has been studied within the centralized context
- design methodology
- physical clustering
- More difficult than horizontal, because more alternatives exist.
Two approaches :
- grouping
- attributes to fragments
- splitting
- relation to fragments

Vertical Fragmentation

- Overlapping fragments
- grouping
- Non-overlapping fragments
- splitting

We do not consider the replicated key attributes to be overlapping.

Advantage:
Easier to enforce functional dependencies (for integrity checking etc.)

VF - Information Requirements

- Application Information
- Attribute affinities
- a measure that indicates how closely related the attributes are
- This is obtained from more primitive usage data
- Attribute usage values
- Given a set of queries $Q=\left\{q_{1}, q_{2}, \ldots, q_{q}\right\}$ that will run on the relation $R\left[A_{1}, A_{2}, \ldots, A_{n}\right]$,

$$
u s e\left(q_{i} A_{j}\right)=\left\{\begin{array}{l}
1 \text { if attribute } A_{j} \text { is referenced by query } q_{i} \\
0 \text { otherwise }
\end{array}\right.
$$

use $\left(q_{i} \cdot{ }^{\bullet}\right)$ can be defined accordingly

VF - Definition of $u s e\left(q_{i}, A_{j}\right)$

Consider the following 4 queries for relation PROJ
q_{1} : SELECT BUDGET FROM PROJ WHERE PNO=Value
q_{3} : SELECT PNAME FROM PROJ WHERE LOC=Value
$q_{2}:$ SELECT PNAME,BUDGET
FROM PROJ
q_{4} : SELECT SUM(BUDGET)
FROM PROJ
WHERE LOC=Value

$$
\begin{aligned}
& \\
& q_{1} \\
& q_{2} \\
& q_{3} \\
& q_{4}
\end{aligned}\left[\begin{array}{cccc}
A_{1} & A_{2} & A_{3} & A_{4} \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

$\mathrm{A} 1=\mathrm{PNO}$
A2=PNAME
A3=BUDGET A4=LOC)

VF - Affinity Measure aff $\left(A_{i}, A_{j}\right)$

The attribute affinity measure between two attributes A_{i} and A_{j} of a relation $R\left[A_{1}, A_{2}, \ldots, A_{n}\right]$ with respect to the set of applications $Q=\left(q_{1}, q_{2}, \ldots, q_{q}\right)$ is defined as follows :

$$
\begin{aligned}
& \operatorname{aff}\left(A_{i j} A_{j}\right)=\sum_{\text {all queries that access } A_{i} \text { and } A_{j}} \quad \text { (query access) } \\
& \text { query access }=\sum_{\text {all sites }} \text { access frequency of a query * } \frac{\text { access }}{\text { execution }}
\end{aligned}
$$

VF - Calculation of aff $\left(A_{i}, A_{j}\right)$

Assume each query in the previous example accesses the attributes once during each execution.
Also assume the access frequencies
q_{1}
q_{2}
q_{3}
$q_{4}$$\left[\begin{array}{rrr}S_{1} & S_{2} & S_{3} \\ 15 & 20 & 10 \\ 5 & 0 & 0 \\ 25 & 25 & 25 \\ 3 & 0 & 0\end{array}\right]$

Then

$$
\begin{aligned}
\operatorname{aff}\left(A_{1}, A_{3}\right) & =15 * 1+20 * 1+10 * 1 \\
& =45
\end{aligned}
$$

and the attribute affinity matrix $A A$ is (Let $A_{1}=$ PNO, $A_{2}=$ PNAME, $A_{3}=$ BUDGET, $A_{4}=$ LOC $)$

A_{1}	A_{2}	A_{3}	A_{4}	
A_{1}	45	0	45	0
A_{2}	0	80	5	75
A_{3}	45	5	53	3
A_{4}	0	75	3	78

VF - Clustering Algorithm

- Take the attribute affinity matrix $A A$ and reorganize the attribute orders to form clusters where the attributes in each cluster demonstrate high affinity to one another.
- Bond Energy Algorithm (BEA) has been used for clustering of entities. BEA finds an ordering of entities (in our case attributes) such that the global affinity measure is maximized.

$$
A M=\sum_{i} \sum_{j} \text { (affinity of } A_{i} \text { and } A_{j} \text { with their neighbors) }
$$

VF - Clustering Algorithm

$$
\begin{gathered}
A M=\sum_{i=1}^{n} \sum_{j=1}^{n} a f f\left(A_{i}, A_{j}\right)\left[a f f\left(A_{i}, A_{j-1}\right)+a f f\left(A_{i}, A_{j+1}\right)\right. \\
\left.+a f f\left(A_{i-1}, A_{j}\right)+a f f\left(A_{i+1}, A_{j}\right)\right]
\end{gathered}
$$

where

$$
\operatorname{aff}\left(A_{0}, A_{j}\right)=\operatorname{aff}\left(A_{i}, A_{0}\right)=\operatorname{aff}\left(A_{n+1}, A_{j}\right)=\operatorname{aff}\left(A_{i}, A_{n+1}\right)=0
$$

The AA matrix is symmetrical:

$$
A M=\sum_{i=1}^{n} \sum_{j=1}^{n} a f f\left(A_{i}, A_{j}\right)\left[a f f\left(A_{i}, A_{j-1}\right)+a f f\left(A_{i}, A_{j+1}\right)\right]
$$

Bond Energy Algorithm

Input: The AA matrix
Output: The clustered affinity matrix $C A$ which is a perturbation of $A A$
(1) Initialization: Place and fix one of the columns of $A A$ in CA.
(2) Iteration: Place the remaining $n-i$ columns in the remaining $i+1$ positions in the CA matrix. For each column, choose the placement that makes the most contribution to the global affinity measure.
(3) Row order: Order the rows according to the column ordering.

Bond Energy Algorithm

"Best" placement? Define contribution of a placement:
$\operatorname{cont}\left(A_{i}, A_{k}, A_{j}\right)=2 \operatorname{bond}\left(A_{i}, A_{k}\right)+2 \operatorname{bond}\left(A_{k}, A_{j}\right)-2 \operatorname{bond}\left(A_{i}, A_{j}\right)$
where

$$
\operatorname{bond}\left(A_{x}, A_{y}\right)=\sum_{z=1}^{n} \operatorname{aff}\left(A_{z}, A_{x}\right) \operatorname{aff}\left(A_{z}, A_{y}\right)
$$

BEA - Example

Consider the following $A A$ matrix and the corresponding $C A$ matrix where PNO $\left(\mathrm{A}_{1}\right)$ and PNAME $\left(\mathrm{A}_{2}\right)$ have been placed. Place $\operatorname{BUDGET}\left(\mathrm{A}_{3}\right)$:

Ordering (0-3-1) :
$\operatorname{cont}\left(A_{0}, A_{3}, A_{1}\right)=2 \operatorname{bond}\left(A_{0}, A_{3}\right)+2 \operatorname{bond}\left(A_{3}, A_{1}\right)-2 \operatorname{bond}\left(A_{0}, A_{1}\right)$

$$
=2 * 0+2 * 4410-2 * 0=8820
$$

Ordering (1-3-2) :
$\operatorname{cont}\left(A_{1}, A_{3}, A_{2}\right)=2 \operatorname{bond}\left(A_{1}, A_{3}\right)+2 \operatorname{bond}\left(A_{3}, A_{2}\right)-2 \operatorname{bond}\left(A_{1}, A_{2}\right)$

$$
=2 * 4410+2 * 890-2 * 225=10150
$$

Ordering (2-3-4) :
$\operatorname{cont}\left(A_{2}, A_{3}, A_{4}\right)=1780$

BEA - Example

- Therefore, the CA matrix has the form $\quad A_{1} A_{3} A_{2}$
$\left[\begin{array}{rrr}45 & 45 & 0 \\ 0 & 5 & 80 \\ 45 & 53 & 5 \\ 0 & 3 & 75\end{array}\right]$
- When LOC is placed, the final form of the CA matrix (after row organization) is
$\begin{array}{r}\text { PNO } \\ \text { BUDGET }\end{array}$ PNAME $\left.\begin{array}{c}\text { LOC } \\ \text { PNO }\left[\begin{array}{cccc}45 & 45 & 0 & 0 \\ \text { BUDGET }\end{array}\left[\begin{array}{ccc}45 & 53 & 5 \\ 3 \\ 0 & 5 & 80 \\ \text { LOC } & 75 \\ 0 & 3 & 75\end{array}\right] 78\right.\end{array}\right]$

VF - Algorithm

How can you divide a set of clustered attributes $\left\{A_{1}, A_{2}\right.$,
$\left.\ldots, A_{n}\right\}$ into two (or more) sets $\left\{A_{1}, A_{2}, \ldots, A_{j}\right\}$ and $\left\{A_{j}, \ldots\right.$, $\left.A_{n}\right\}$ such that there are no (or minimal) applications that access both (or more than one) of the sets.

VF - ALgorithm

Define
TQ = set of applications that access only TA
$B Q \quad=\quad$ set of applications that access only $B A$
$O Q \quad=\quad$ set of applications that access both $T A$ and $B A$
and
$C T Q=$ total number of accesses to attributes by applications that access only TA
$C B Q=\quad$ total number of accesses to attributes by applications that access only $B A$
$C O Q=$ total number of accesses to attributes by applications that access both TA and BA
Then find the point along the diagonal that maximizes
$C T Q * C B Q-C O Q^{2}$

VF - Algorithm

Two problems :

- Cluster forming in the middle of the CA matrix
- Shift a row up and a column left and apply the algorithm to find the "best" partitioning point
- Do this for all possible shifts
- Cost $O\left(m^{2}\right)$
- More than two clusters
- m-way partitioning
\square try $1,2, \ldots, m-1$ split points along diagonal and try to find the best point for each of these
- Cost $O\left(2^{m}\right)$

VF - Correctness

A relation R, defined over attribute set A and key K, generates the vertical partitioning $F_{R}=\left\{R_{1}, R_{2}, \ldots, R_{r}\right\}$.

- Completeness
\square The following should be true for A :
$A=\cup A_{R_{i}}$
- Reconstruction
\square Reconstruction can be achieved by
$R=\bowtie_{\kappa} R_{i j} \forall R_{i} \in F_{R}$
- Disjointness
\square TID's are not considered to be overlapping since they are maintained by the system
\square Duplicated keys are not considered to be overlapping

Hybrid Fragmentation

Reconstruction of HF

Outline

- Distributed and Parallel Database Design
- Fragmentation
- Data distribution
- Combined approaches

Fragment Allocation

- Problem Statement

Given

$F=\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ fragments
$S=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ network sites
$Q=\left\{q_{1}, q_{2}, \ldots, q_{q}\right\} \quad$ applications
Find the "optimal" distribution of F to S.

- Optimality
- Minimal cost
- Communication + storage + processing (read \& update)
- Cost in terms of time (usually)
- Performance
- Response time and/or throughput
- Constraints
- Per site constraints (storage \& processing)

Information Requirements

- Database information
\square selectivity of fragments
\square size of a fragment
- Application information
\square access types and numbers
\square access localities
- Computer system information
\square unit cost of storing data at a site
\square unit cost of processing at a site
- Communication network information
- bandwidth
- latency
\square communication overhead

Allocation Model

General Form

min(Total Cost)
subject to
response time constraint
storage constraint
processing constraint

Decision Variable

$$
x_{i j}=\left\{\begin{array}{l}
1 \text { if fragment } F_{i} \text { is stored at site } S_{j} \\
0 \text { otherwise }
\end{array}\right.
$$

Allocation Model

- Total Cost

- Storage Cost (of fragment F_{j} at S_{k}) (unit storage cost at $\left.S_{k}\right) *\left(\right.$ size of $\left.F_{j}\right) * x_{j k}$
- Query Processing Cost (for one query) processing component + transmission component

Allocation Model

- Query Processing Cost

Processing component

access cost + integrity enforcement cost + concurrency control cost

- Access cost

$$
\sum_{\text {all sites }} \sum_{\text {all fragments }} \text { (no. of update accesses }+ \text { no. of read accesses) } *
$$

- Integrity enforcement and concurrency control costs
- Can be similarly calculated

Allocation Model

- Query Processing Cost

Transmission component

cost of processing updates + cost of processing retrievals

- Cost of updates

$$
\sum_{\text {all sites }} \sum_{\text {all fragments }} \sum_{\text {altes fragments }} \text { apdate message cost }+
$$

- Retrieval Cost

$$
\sum_{\text {all fragments }} \min _{\text {all sites }} \text { (cost of retrieval command }+
$$

Allocation Model

- Constraints
- Response Time
execution time of query $\leq \max$. allowable response time for that query
- Storage Constraint (for a site)
$\sum_{\text {all fragments }}$ storage requirement of a fragment at that site \leq
- Processing constraint (for a site)
$\sum_{\text {all queries }}$ processing load of a query at that site \leq

Allocation Model

- Solution Methods
\square FAP is NP-complete
- DAP also NP-complete
- Heuristics based on
\square single commodity warehouse location (for FAP)
- knapsack problem
\square branch and bound techniques
- network flow

Allocation Model

- Attempts to reduce the solution space
\square assume all candidate partitionings known; select the "best" partitioning
- ignore replication at first
\square sliding window on fragments

Outline

- Distributed and Parallel Database Design
- Fragmentation
- Data distribution
- Combined approaches

Combining Fragmentation \& Allocation

Partition the data to dictate where it is located

- Workload-agnostic techniques
- Round-robin partitioning
- Hash partitioning
- Range partitioning
- Workload-aware techniques
\square Graph-based approach

Round-robin Partitioning

Hash Partitioning

Range Partitioning

Workload-Aware Partitioning

- Examplar: Schism
- Graph $G=(V, E)$ where
- vertex $v_{i} \in V$ represents a tuple in database,
- edge $e=\left(v_{i}, v_{j}\right) \in E$ represents a query that accesses both tuples v_{i} and v_{j};
- each edge has weight counting the no. of queries that access both tuples
- Perform vertex disjoint graph partitioning
- Each vertex is assigned to a separate partition

Incorporating Replication

- Replicate each vertex based on the no. of transactions accessing that tuple each transaction accesses a separate copy

Dealing with graph size

- Each tuple a vertex \square graph too big \square directory too big
- SWORD
- Use hypergraph model
- Compress the directory

Adaptive approaches

- Redesign as physical (network characteristics, available storage) and logical (workload) changes occur.
- Most focus on logical
- Most follow combined approach
- Three issues:
(1) How to detect workload changes?
(2) How to determine impacted data items?
(3) How to perform changes efficiently?

Detecting workload changes

- Not much work
- Periodically analyze system logs
- Continuously monitor workload within DBMS
\square SWORD: no. of distributed queries
\square E-Store: monitor system-level metrics (e.g., CPU utilization) and tuple-level access

Detecting affected data items

- Depends on the workload change detection method
- If monitoring queries Q queries will identify data items
- Apollo: generalize from "similar" queries

SELECT PNAME FROM PROJ WHERE BUDGET>20000 AND LOC='LONDON'

$$
\sqrt{\downarrow}
$$

SELECT PNAME FROM PROJ WHERE BUDGET>? AND LOC=‘?'

- If monitoring tuple-level access (E-Store), this will tell you

Performing changes

- Periodically compute redistribution
- Not efficient
- Incremental computation and migration
- Graph representation \square look at changes in graph
- SWORD and AdaptCache: Incremental graph partitioning initiates data migration for reconfiguration
E E-Store: determine hot tuples for which a migration plan is prepared determine; cold tuple reallocation as well
- Optimization problem; real-time heuristic solutions

ㅁ Database cracking: continuously reorganize data to match query workload

- Incoming queries are used as advice
- When a node needs data for a local query, this is hint that data may need to be moved

