
Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/1

Outline
• Introduction
• Background
• Distributed Database Design
• Database Integration
• Semantic Data Control
• Distributed Query Processing
• Multidatabase Query Processing
• Distributed Transaction Management
➡ Transaction Concepts and Models
➡ Distributed Concurrency Control
➡ Distributed Reliability

• Data Replication
• Parallel Database Systems
• Distributed Object DBMS
• Peer-to-Peer Data Management
• Web Data Management 
• Current Issues



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/2

Concurrency Control
•The problem of synchronizing concurrent transactions such that the 

consistency of the database is maintained while, at the same time, 
maximum degree of concurrency is achieved.

•Anomalies:
➡Lost updates

✦ The effects of some transactions are not reflected on the database.
➡Inconsistent retrievals

✦ A transaction, if it reads the same data item more than once, should always 
read the same value.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/3

Execution History (or Schedule)
•An order in which the operations of a set of transactions are executed.
•A history (schedule) can be defined as a partial order over the 

operations of a set of transactions.

H1={W2(x),R1(x), R3(x),W1(x),C1,W2(y),R3(y),R2(z),C2,R3(z),C3}

T1: Read(x)   T2: Write(x)  T3: Read(x)
     Write(x)           Write(y)           Read(y)
     Commit          Read(z)      ,     Read(z)
                             Commit           Commit



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/4

Formalization of History
A complete history over a set of transactions T={T1, …, Tn} is a partial order 

Hc(T) = {∑T, ≺H} where

∑T = i ∑i   , for  i = 1, 2, …, n

≺H   i ≺Ti 
, for  i = 1, 2, …, n

 For any two conflicting operations Oij, Okl  ∑T, either Oij ≺H  Okl or Okl ≺H  Oij



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/5

Complete Schedule – Example1



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/6

Complete Schedule – Example1



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/7

Complete Schedule – Example2
Given three transactions
          T1: Read(x)     T2: Write(x)    T3: Read(x)

      Write(x) Write(y)         Read(y)
      Commit Read(z)    Read(z)

                   Commit       Commit
A possible complete 
schedule is given 
as the DAG

C1 

R3(x)R1(x) W2(x)

W1(x) W2(y) R3(y)

R3(z)R2(z)

C2 C3 



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/8

A schedule is a prefix of a complete schedule such that only some 
of the operations and only some of the ordering relationships are 
included.
          T1: Read(x)     T2: Write(x)     T3: Read(x)

     Write(x)       Write(y)     Read(y)
     Commit      Read(z)     Read(z)

                    Commit     Commit

Schedule Definition

R1(x)

C1 

R3(x)R1(x) R3(x)W2(x)W2(x)

W1(x) W2(y)W2(y) R3(y)R3(y)

R3(z)R3(z) R2(z)R2(z)

C2 C3 



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/9

Serial History
•All the actions of a transaction occur consecutively.
•No interleaving of transaction operations.
• If each transaction is consistent (obeys integrity rules), then the 

database is guaranteed to be consistent at the end of executing a 
serial history.

                        T1: Read(x)  T2: Write(x) T3: Read(x)
                             Write(x)         Write(y)      Read(y)
                             Commit       Read(z)      Read(z)
                                               Commit Commit



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/10

Serializable History
•Transactions execute concurrently, but the net effect of the resulting 

history upon the database is equivalent to some serial history.
•Equivalent with respect to what?
➡Conflict equivalence: the relative order of execution of the conflicting 

operations belonging to unaborted transactions in two histories are the 
same.

➡Conflicting operations: two incompatible operations (e.g., Read and 
Write) conflict if they both access the same data item.
✦ Incompatible operations of each transaction is assumed to conflict; do not 

change their execution orders.
✦ If two operations from two different transactions conflict, the corresponding 

transactions are also said to conflict.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/11

Serializable History

The following are not conflict equivalent
Hs={W2(x),W2(y),R2(z),R1(x),W1(x),R3(x),R3(y),R3(z)}

H1={W2(x),R1(x), R3(x),W1(x),W2(y),R3(y),R2(z),R3(z)}

The following are conflict equivalent; therefore H2 is serializable.

Hs={W2(x),W2(y),R2(z),R1(x),W1(x),R3(x),R3(y),R3(z)}

H2={W2(x),R1(x),W1(x),R3(x),W2(y),R3(y),R2(z),R3(z)}

  T1: Read(x)  T2: Write(x) T3: Read(x)
Write(x)    Write(y)      Read(y)
Commit  Read(z)      Read(z)

           Commit Commit



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/12

Serializability in Distributed 
DBMS
•Somewhat more involved. Two histories have to be considered:
➡local histories 
➡global history

•For global transactions (i.e., global history)  to be serializable, two 
conditions are necessary:
➡Each local history should be serializable.
➡Two conflicting operations should be in the same relative order in all of 

the local histories where they appear together.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/13

Global Non-serializability 

•x stored at Site 1, y stored at Site 2
•LH1, LH2 are individually serializable (in fact serial), but the two 

transactions are not globally serializable.

  T1: Read(x)       T2: Read(x)
   x ←x-100              Read(y)
   Write(x)         Commit

    Read(y)
   y ←y+100
   Write(y)
   Commit

LH1={R1(x),W1(x), R2(x)}

LH2={R2(y), R1(y),W1(y)}



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/14

Concurrency Control 
Algorithms
•Pessimistic
➡Two-Phase Locking-based (2PL)

✦ Centralized (primary site) 2PL
✦ Primary copy 2PL
✦ Distributed 2PL

➡Timestamp Ordering (TO)
✦ Basic TO
✦ Multiversion TO
✦ Conservative TO

➡Hybrid
•Optimistic
➡Locking-based
➡Timestamp ordering-based



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/15

Locking-Based Algorithms
•Transactions indicate their intentions by requesting locks from the 

scheduler (called lock manager).
•Locks are either read lock (rl) [also called shared lock] or write lock (wl) 

[also called exclusive lock]
•Read locks and write locks conflict (because Read and Write operations 

are incompatible
   rl  wl

rl  yes no
wl  no no

•Locking works nicely to allow concurrent processing of transactions.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/16

Naive Locking Algorithm



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/17

Naive Locking Algorithm
•The locking algorithm releases the locks that are held by a transaction 

(say, Ti ) as soon as the associated database command (read or write) 
is executed. 
 The transaction itself is locking other items (say, y), after it releases 

its lock on x. 
•This may seem to be advantageous from the viewpoint of increased 

concurrency
 It permits transactions to interfere with one another
 Loss of isolation and atomicity



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/18

Two-Phase Locking (2PL)
 A Transaction locks an object before using it.
 When an object is locked by another transaction, the requesting 

transaction must wait.
 When a transaction releases a lock, it may not request another lock.

Obtain lock

Release lock

Lock point

Phase 1 Phase 2

BEGIN END

N
o.

 o
f l

oc
ks



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/19

Two-Phase Locking (2PL)
•Two-phase locking rule simply states that no transaction should 

request a lock after it releases one of its locks!
•2PL algorithms execute transactions in two phases. 

 growing phase: it obtains locks and accesses data items, and 
 a shrinking phase, during which it releases locks

•Lock point 
 when the transaction has achieved all its locks 
 End of the growing phase, beginning of the shrinking phase of a 

transaction.
• It has been proven that any history generated by a concurrency 

control algorithm that obeys the 2PL rule is serializable 



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/20

Strict 2PL

Hold locks until the end.

Obtain lock

Release lock

BEGIN END Transaction
duration

period of
data item

use

N
o.

 o
f l

oc
ks



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/21

Distributed Transaction Processing

•Database consistency and transaction consistency
● DB is in a consistent state if it obeys all of the consistency (integrity) constraints.

● DB may be inconsistent during the execution of txn but consistent after txn terminates.
● Txn consistency refers to the ops of concurrent txns.

● DB remains in a consistent state when a number of txns running concurrently.

•On-Line Transaction Processing (OLTP) and On-Line Analytical 
Processing (OLAP)
● OLTP apps (airline reservation or banking systems) are high-throughput 

transaction-oriented.
● High-throughput transaction-oriented, need extensive data control and availability, and 

fast response times.
● OLAP apps are, for example, trend analysis or forecasting, need to analyze 

historical, summarized data. 
● They use complex queries over potentially very large tables.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/22

Concurrency control algorithms

•CC algorithms enforce the isolation property 
● No interference among the concurrent txns.

● Concurrent txn see a consistent db state and leave the db in a consistent state!
•CC algorithms implement a notion of “correct concurrent execution.”

● The most common correctness notion is serializability
● History generated by concurrent exec of txns ≡ some serial history of txns.

● Any serial execution order is, by definition, correct.
● A more relaxed correctness notion called snapshot isolation (SI).

•CC algorithms are basically concerned with enforcing different levels of 
isolation among concurrent transactions very efficiently.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/23

Concurrency control algorithms

•When a txn commits, its actions need to be made permanent.
● Management of txn logs where each action of a txn is recorded.
● Commit protocols ensure that DB updates as well as logs are saved into 

persistent storage so that they are made permanent.
● Abort protocols use the logs to erase all actions of the aborted transaction.
● Recovery from system crashes uses logs to bring the DB to a consistent state.

•Distributed execution monitor consists of two modules: 
● A transaction manager (TM) and a scheduler (SC).
● TM coordinates execution of the DB operations on behalf of an application.
● SC is responsible for synchronizing access to the database.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/24

Concurrency control algorithms

•TM implements an interface (for the app) to the txn commands:
● Begin_Transaction,                                                                                   Read, Write, Commit,                                                                                                        

and Abort. (BT,R,W,C,A)
● TM can communicate                                                                                                           

with SCs and data                                                                                                      
processors (DP) at                                                                                                            
the same or at different                                                                                                  
sites.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/25

Locking-Based CC Algorithms

•Prevent isolation violation by requiring each operation to obtain a lock 
on the data item before it is accessed.

•Lock can either be a read (shared) lock, or a write (exclusive) lock.
•Locks are usually maintained in a lock table.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/26

Centralized 2PL
•2PL algorithm can be extended to the distributed DBMS environment

● Delegating lock management to a single site.
•Each site has a Transaction Manager (TM)
•There is only one 2PL scheduler in the distributed system.

● All lock requests are issued to the central scheduler.
● TMs at the other sites communicate with it to obtain locks.

•Coordinating TM coordinates txns on behalf of an application.
● C2PL-TM is a process that runs forever and waits for messages from  an 

application, a lock manager, or from a data processor.
● C2PL-LM and data processor (DP) algorithms are procedures that are called 

when needed (or, processes).
•Common criticism of C2PL algorithms 

● Bottleneck may quickly form around the central site.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/27

Centralized 2PL

Data Processors at 
  participating sites Coordinating TM Central Site LM

Lock Request

Lock Granted

Operation

End of Operation

Release Locks



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/28

C2PL-TM



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/29

C2PL-LM



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/30

Data Processor



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/31

Distributed 2PL
•The distributed 2PL TM algorithm is similar to the C2PL-TM
•TM-s and 2PL schedulers are placed at each site. 

 Each scheduler handles lock requests for data at that site.
•Major modifications:

 The messages that are sent to the central site LM in C2PL-TM 
 Sent to LM-s at all participating sites in D2PL-TM

 Operations are not passed to the DP-s by the coordinating TM
 Set to DP-s by the participating lock managers
 Coordinating TM does not wait for a “lock request granted”

 The participating DP-s send the “end of operation” messages to the 
coordinating TM.

 The alternative is for each DP to send it to its own lock manager who can then 
release the locks and inform the coordinating TM.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/32

Distributed 2PL Execution

Coordinating TM Participating LMs Participating DPs

Lock Request
Operation

End of Operation

Release Locks



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/33

Distributed 2PL

• In case of replication:
 A transaction may read any of the replicated copies of item x, by obtaining a 

read lock on one of the copies of x. 
 Writing into x requires obtaining write locks for all copies of x.

•Replication will be presented in the next lecture.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/34

Deadlock
•A transaction is deadlocked if it is blocked and will remain blocked 

until there is intervention.
•Locking-based CC algorithms may cause deadlocks.
•TO-based algorithms that involve waiting may cause deadlocks.
•Wait-for graph
➡If transaction Ti waits for another transaction Tj to release a lock on an 

entity, then Ti  → Tj in WFG.

Ti Tj



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/35

Local versus Global WFG
Assume T1 and T2 run at site 1, T3 and T4 run at site 2. Also assume T3 
waits for a lock held by T4 which waits for a lock held by T1 which waits for 
a lock held by T2 which, in turn,  waits for a lock held by T3.
Local WFG

Global WFG

T1

Site 1 Site 2

T2

T4

T3

T1

T2

T4

T3



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/36

Deadlock Management
• Ignore
➡Let the application programmer deal with it, or restart the system

•Prevention
➡Guaranteeing that deadlocks can never occur in the first place. Check 

transaction when it is initiated. Requires no run time support.
•Avoidance
➡Detecting potential deadlocks in advance and taking action to insure that 

deadlock will not occur. Requires run time support.
•Detection and Recovery
➡Allowing deadlocks to form and then finding and breaking them. As in 

the avoidance scheme, this requires run time support.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/37

Deadlock Prevention
•All resources which may be needed by a transaction must be 

predeclared.
➡The system must guarantee that none of the resources will be needed 

by an ongoing transaction.
➡Resources must only be reserved, but not necessarily allocated a priori
➡Unsuitability of the scheme in database environment
➡Suitable for systems that have no provisions for undoing processes.

•Evaluation:
– Reduced concurrency due to preallocation
– Evaluating whether an allocation is safe leads to added overhead.
– Difficult to determine (partial order)
+ No transaction rollback or restart is involved.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/38

Deadlock Avoidance
•Transactions are not required to request resources a priori.
•Transactions are allowed to proceed unless a requested resource is 

unavailable.
• In case of conflict, transactions may be allowed to wait for a fixed time 

interval. 
•Order either the data items or the sites and always request locks in 

that order.
•More attractive than prevention in a database environment.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/39

Deadlock Avoidance –
Wait-Die Algorithm
If Ti requests a lock on a data item which is already locked by Tj, then Ti is 
permitted to wait iff ts(Ti)<ts(Tj). If ts(Ti)>ts(Tj), then Ti is aborted and 
restarted with the same timestamp.

➡if ts(Ti)<ts(Tj) then Ti waits else Ti dies

➡non-preemptive: Ti never preempts Tj

➡prefers younger transactions



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/40

Deadlock Avoidance –
Wound-Wait Algorithm
If Ti requests a lock on a data item which is already locked by Tj , then Ti is 
permitted to wait iff ts(Ti)>ts(Tj). If ts(Ti)<ts(Tj), then Tj is aborted and the 
lock is granted to Ti.

➡if ts(Ti)<ts(Tj) then Tj is wounded else Ti waits

➡preemptive: Ti preempts Tj if it is younger

➡prefers older transactions



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/41

Deadlock Detection
•Transactions are allowed to wait freely.
•Wait-for graphs and cycles.
•Topologies for deadlock detection algorithms
➡Centralized
➡Distributed
➡Hierarchical



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/42

Centralized Deadlock Detection
•One site is designated as the deadlock detector for the system. Each 

scheduler periodically sends its local WFG to the central site which 
merges them to a global WFG to determine cycles.

•How often to transmit?
➡Too often  higher communication cost but lower delays due to ⇒

undetected deadlocks
➡Too late  higher delays due to deadlocks, but lower communication cost⇒

•Would be a reasonable choice if the concurrency control algorithm is 
also centralized.

•Proposed for Distributed INGRES



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/43

Build a hierarchy of detectors

Hierarchical Deadlock Detection

Site 1 Site 2 Site 3 Site 4
DD21 DD22 DD23 DD24

DD11 DD14

DD0x



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/44

Distributed Deadlock Detection
•Sites cooperate in detection of deadlocks.
•One example:
➡ The local WFGs are formed at each site and passed on to other sites. 

Each local WFG is  modified as follows:
 Since each site receives the potential deadlock cycles from other sites, 

these edges are added to the local WFGs
 The edges in the local WFG which show that local transactions are 

waiting for transactions at other sites are joined with edges in the local 
WFGs which show that remote transactions are waiting for local ones.

➡ Each local deadlock detector:
✦ looks for a cycle that does not involve the external edge. If it exists, there 

is a local deadlock which can be handled locally.
✦ looks for a cycle involving the external edge. If it exists, it indicates a 

potential global deadlock. Pass on the information to the next site.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/45

Timestamp-Based Algorithms
•Timestamp-based CC algorithms select, a priori, a serialization order.

●  … and txns are executed accordingly.
•Transaction manager (TM) assigns each txn Ti a unique TS, ts(Ti), at its 

initiation.
● Maintaining uniqueness and monotonicity of TS-s is not easy.
● Global (system-wide) monotonically increasing counter. (not realistic)
● Each site autonomously assigns timestamps based on its local counter.
● To maintain uniqueness, each site appends its own identifier.
● TS = ⟨local counter value, site identifier⟩; (note most/least significant positions)

•TM attaches TS to each database operation (passed to scheduler).
● Site identifiers are used for keeping track of R/W timestamps as well as 

performing the serializability check.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/46

Timestamp Ordering

Transaction (Ti) is assigned a globally unique timestamp ts(Ti).
Transaction manager attaches the timestamp to all operations issued 

by the transaction.
Each data item is assigned a write timestamp (wts) and a read 

timestamp (rts):
rts(x) = largest timestamp of any read on x
wts(x) = largest timestamp of any read on x

Conflicting operations are resolved by timestamp order.

46



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/47

Basic Timestamp Ordering

Two conflicting operations Oij of Ti and Okl of Tk ⟹ Oij executed before 
Okl iff ts(Ti) < ts(Tk).

Ti is called older transaction

Tk is called younger transaction

for Ri(x)                         for Wi(x)

if ts(Ti) < wts(x)                if ts(Ti) < rts(x) and ts(Ti) < wts(x) 

    then reject Ri(x)              then reject Wi(x)

    else accept Ri(x)          else accept Wi(x)

rts(x)  ts(Ti)                 wts(x)  ts(Ti) 

47



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/48

Basic TO Algorithm
•Basic TO algorithm runs on coordinating TM:

● assigns the timestamp to each transaction Ti [ts(Ti )], 
● determines the sites where each data item is stored, and
● sends the ops to these sites (R/W/C/A ops thru scheduler).

•The data manager is the same as in 2PL algorithm.
•When op is rejected by a scheduler, the corresponding txn is restarted 

by TM with a new TS.
● More recent TS ⟹ more chances to execute in its next try.
● Txns never wait while they hold access rights to data items ⟹ No deadlocks.
● Penalty of deadlock freedom = potential restart of txn numerous times.
● See later Conservative timestamp ordering algorithm.

•DP executes ops in the order in which scheduler passes them on.
● Scheduler does not send new ops to DP until current is finished (accptd+acknw).
● Scheduler can enforce the ordering by maintaining a queue.
● In 2P algorithms locks are ordering txn by releasing them at the end of txn.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/49

Basic TO Algorithm
•Example: 

● TO scheduler first receives Wi(x) and then Wj(x), where ts(Ti) < ts(Tj).
● The result of these two operations is that wts(x) = ts(Tj).     (Wi(x) overwritten)
● No ordering of ops ⟹ Different (wrong) outcome possible.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/50

BTO-TM



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/51

BTO-SC



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/52

Conservative Timestamp Ordering

 Basic timestamp ordering tries to execute an operation as soon as it 
receives it
 progressive
 too many restarts since there is no delaying

 Conservative timestamping delays each operation until there is an 
assurance that it will not be restarted

 Assurance?
 No other operation with a smaller timestamp can arrive at the scheduler
 Note that the delay may result in the formation of deadlocks

© 2020, M.T. Özsu & P. Valduriez 52



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/53

Multiversion Concurrency Control 
(MVCC)
 Do not modify the values in the database, create new values.
 Another attempt at eliminating the restart overhead of txn 

● Maintaining multiple versions of data items and 
● Scheduling operations on the appropriate version of the data item

 Time travel queries -- track the change of data item values over time.
● Proliferation of multiple versions of updated data items ⟹ Purging old versions

 MVCC typically use timestamps to maintain transaction isolation
● There are also implementations with locking-based CC.

 Original proposal dates back to 1978.
● Implemented in a number of systems: 
● IBM DB2, Oracle, SQL Server, SAP HANA, BerkeleyDB, PostgreSQL

 We will focus on timestamp-based implementation that enforces 
serializability

53



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/54

MVCC Reads

 Each version of a data item is labeled with TS of txn that creates it.
● Read op accesses the version that is appropriate for its timestamp. 
● Reducing transaction aborts and restarts.

 The use of the following two rules is guaranteeing a serializable history.

1) Ri(x) is translated into a read on one version of x. 
 Find a version of x (say xv) such that ts(xv) is the largest timestamp less than ts(Ti).

54



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/55

MVCC Writes

2) Wi(x) is translated into Wi(xw) and accepted if the scheduler has not      

 yet processed any Rj(xr) such that:  ts(Ti) < ts(xr) < ts(Tj).
    Otherwise, txn is rejected. 

55



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/56

Optimistic Concurrency Control 
Algorithms

Pessimistic execution

Optimistic execution

Validate Read Compute Write

ValidateRead Compute Write



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/57

Optimistic Concurrency Control 
Algorithms
•Transaction execution model: divide into subtransactions each of 

which execute at a site
➡Tij: transaction Ti that executes at site j

•Transactions run independently at each site until they reach the end of 
their read phases

•All subtransactions are assigned a timestamp at the end of their read 
phase

•Validation test  performed during validation phase. If one fails, all 
rejected.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/58

Optimistic CC Validation Test
 If all transactions Tk where ts(Tk) < ts(Tij) have completed their write 

phase before Tij has started its read phase, then validation succeeds
➡ Transaction executions in serial order

Tk
R V W

R V WTij



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/59

Optimistic CC Validation Test
 If there is any transaction Tk such that ts(Tk)<ts(Tij) and which 

completes its write phase while Tij is in its read phase, then validation 
succeeds if  WS(Tk)  RS(Tij) = Ø
➡Read and write phases overlap, but Tij does not read data items 

written by Tk

R V WTk R V WTij



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/60

Optimistic CC Validation Test
  If there is any transaction Tk such that ts(Tk)< ts(Tij) and which 

completes its read phase before Tij completes its read phase, then 
validation succeeds if WS(Tk)  RS(Tij) = Ø and WS(Tk)  WS(Tij) = Ø
➡They overlap, but don't access any common data items.

R V WTk
R V WTij



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/61

Snapshot Isolation (SI)

 Serializability is the most studied correctness criterion 
for concurrent txns
● Too strict for some applications (creates a bottleneck)
● The main reason: large read queries conflict with updates

 Snapshot isolation (SI) as an alternative
● Repeatable reads, but not serializable isolation

 Each txn “sees” a consistent snapshot of db when it 
starts, and R|W this snapshot
● Reads and writes are performed on this snapshot
● Read-only txns proceed without significant synchronization overhead

● Writes are not visible to other txns
● Txn does not see the writes of other transactions once it starts executing

61



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/62

Snapshot Isolation (SI)

 MV approach allowing txns to read approp. snapshot
● RO txns can proceed without significant synchronization overhead
● For update txns, CC algorithm (in centralized systems) is as follows

 Centralized SI-based CC
1) Ti starts, obtains a begin timestamp tsb(Ti)

2) Ti ready to commit, obtains a commit timestamp tsc(Ti) that is greater 
than any of the existing tsb or tsc

3) Ti commits if no other Tj such that tsc(Tj)∈[tsb(Ti), tsc(Ti)]; otherwise 
aborted (first committer wins)
● No other transaction has committed since Ti started!

4)  When Ti commits, changes visible to all Tk where tsb(Tk)> tsc(Ti)
 Problem: 

● How to compute the consistent snapshot (version) on which txn Ti operates

62



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/63

Distributed CC with SI

 Computing a consistent distributed snapshot is hard
 If read and write sets of txn are known up-front

● May be possible to centrally compute the snapshot (at coordinating TM) by 
collecting information from the participating sites.

● Not realistic.
 Similar rules to serializability

● Each local history should be SI
● Global history is SI ⟹ commitment orders at each site are the same

 Dependence relationship: Ti at site s (Ti
s) is dependent on Ti

s 
(dependent(,)) iff
● Conditions that need to be satisfied for the above guarantee

● If there is any participating site where this dependence holds, then 
dependent (Ti,Tj) holds.

63



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/64

Distributed CC with SI

 Conditions that need to hold to ensure global SI:
● For a transaction Ti to see a globally consistent snapshot, the 

following conditions have to hold for each pair of transactions

● (1) and (2) ensure that dependent(Ti,Tj) is true at all the sites.
● (3) ensures commit order among transactions is the same at all 

participating sites.
● Prevents 2 snapshots from including partial incompatible commits. 

64



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/65

Distributed CC with SI

 Before presenting distributed SI CC, we identify the 
information that each site s maintains:
● For any active transaction Ti, the set of active and committed 
transactions at s are categorized into two groups: 

1) Those that are concurrent with Ti: any Tj where tsb(Ti
s) < tsc(Tj

s)),

2)Those that are serial: any Tj where tsc(Tj
s) < tsb(Ti

s))
● A monotonically increasing event clock.

 Basic distributed SI algorithm implements step (3) of the 
centralized SI CC algorithm
● It decides whether transaction Ti can be committed or needs 
to be aborted

65



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/66

Basic distributed SI algorithm

1) Coordinating TM (CTM) of Ti asks ∀s to send its set of txns concurrent 
with Ti . (Event clock is piggybacked.)2)∀s responds to the CTM with local set of txns concurrent with Ti.

3) CTM merges all local concurrent txns sets into global set for Ti.
4) CTM sends global list of concurrent tran to ∀s.5)∀s checks C1 and C2: 

● Check ∀Tj in local history that: Tj executed before Ti, and dependent(Ti, Tj) holds. 
● If that is the case, Ti does not see a consistent snapshot at site s, so it should be 

aborted. Otherwise Ti is validated at site s.6)∀s sends validation to CTM. 
● If validation positive, max(local clock, TM clock) is piggybacked.

7) CTM receives one negative validation: Ti is aborted, 
● At least one site where Ti does not see a consistent snapshot.
● Otherwise, CTM globally certifies Ti and allows it to commit its updates. 
● Further, CTM sets clock to max(clocks it received, own clock).



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/67

Basic distributed SI algorithm

8) CTM informs all participating sites that Ti is validated and can be 
committed. (Piggybacks its new event clock tsc(Ti).

9) Upon receipt of this message, ∀s makes Ti ’s updates persistent, and 
also updates its own event clock as before.



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/68

Distributed CC with SI – Executing  

68

Coordinating TM Each site sAsks concurrent transactions,event clock

Local set of concurrent tx

Check if first 2 
Conditions hold

Compiled global concurrent tx set

Positive validation/Negative validation

Update event clock:
max(own,coord TM)

Update event clock:
Max(event clocks of all s)

Any 
neg?

Positive?

Wait

Yes

No

Yes, global abort

Global commit,event clock

 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

