Outline

- Introduction
- Background
 - Relational database systems
 - Computer networks
- Distributed Database Design
- Database Integration
- Semantic Data Control
- Distributed Query Processing
- Multidatabase Query Processing
- Distributed Transaction Management
- Data Replication
- Parallel Database Systems
- Distributed Object DBMS
- Peer-to-Peer Data Management
- Web Data Management
- Current Issues

Distributed DBMS

Relational Model

Relation

- ↑ A relation *R* with attributes $A = \{A_1, A_2, ..., A_n\}$ defined over *n* domains *D* = $\{D_1, D_2, ..., D_n\}$ (not necessarily distinct) with values $\{Dom_1, Dom_2, ..., Dom_n\}$ is a finite, time varying set of *n*-tuples $\langle d_1, d_2, ..., d_n \rangle$ such that $d_1 \in Dom_1, d_2 \in Dom_2, ..., d_n \in Dom_n$, and $A_1 \subseteq D_1, A_2 \subseteq D_2, ..., A_n \subseteq D_n$.
- * Notation: $R(A_1, A_2, ..., A_n)$ or $R(A_1; D_1, A_2; D_2, ..., A_n; D_n)$
- Alternatively, given R as defined above, an instance of it at a given time is a set of *n*-tuples:

 $\{\langle A_1: d_1, A_2: d_2, ..., A_n: d_n \rangle \mid d_1 \in Dom_1, d_2 \in Dom_2, ..., d_n \in Dom_n\}$

- Tabular structure of data where
 - R is the table heading
 - Attributes are table columns
 - Each tuple is a row

Relation Schemes and Instances

Relational scheme

* A relation scheme is the definition; i.e., a set of attributes

- A relational database scheme is a set of relation schemes:
 - i.e., a set of sets of attributes
- Relation instance (simply relation)
 - * An relation is an instance of a relation scheme
 - * a relation **r** over a relation scheme $R = \{A_1, ..., A_n\}$ is a subset of the Cartesian product of the domains of all attributes, i.e.,

 $\mathbf{r} \subseteq Dom_1 \times Dom_2 \times \ldots \times Dom_n$

Domains

- A domain is a *type* in the programming language sense
 - Name: String
 - Salary: Real
- Domain values is a set of acceptable values for a variable of a given type.
 - * Name: CdnNames = {...},
 - Salary: ProfSalary = {45,000 150,000}
 - Simple/Composite domains
 - * Address = Street name+street number+city+province+ postal code
- Domain compatibility
 - Binary operations (e.g., comparison to one another, addition, etc.) can be performed on them.
- Full support for domains is not provided in many current relational DBMSs

Distributed DBMS

Relation Schemes

EMP(<u>ENO</u>, ENAME, TITLE, SAL, <u>PNO</u>, RESP, DUR) PROJ (<u>PNO</u>, PNAME, BUDGET)

Underlined attributes are relation keys (tuple identifiers).
Tabular form

Distributed DBMS

Example Relation Instances

EMP

ENO	ENAME	TITLE	SAL	PNO	RESP	DUR
E1	J. Doe	Elect. Eng.	40000	P1	Manager	12
E2	M. Smith	Analyst	34000	P1	Analyst	24
E3	M. Smith	Analyst	34000	P2	Analyst	6
E3	A. Lee	Mech. Eng.	27000	P3	Consultant	10
E3	A. Lee	Mech. Eng.	27000	P4	Engineer	48
E4	J. Miller	Programmer	24000	P2	Programmer	18
E5	B. Casey	Syst. Anal.	34000	P2	Manager	24
E6	L. Chu	Elect. Eng.	27000	P4	Manager	48
E7	R. Davis	Mech. Eng.	34000	P3	Engineer	36
E8	J. Jones	Syst. Anal.	34000	P3	Manager	40

PROJ	
------	--

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2 P3	Database Develop. CAD/CAM	135000 250000
P4	Maintenance	310000

Repetition Anomaly

- The NAME,TITLE, SAL attribute values are repeated for each project that the employee is involved in.
 - Waste of space
 - Complicates updates

<u>ENO</u>	ENAME	TITLE	SAL	<u>PNO</u>	RESP	DUR
E1	J. Doe	Elect. Eng.	40000	P1	Manager	12
E2	M. Smith	Analyst	34000	P1	Analyst	24
E2	M. Smith	Analyst	34000	P2	Analyst	6
E3	A. Lee	Mech. Eng.	27000	P3	Consultant	10
E3	A. Lee	Mech. Eng.	27000	P4	Engineer	48
E4	J. Miller	Programmer	24000	P2	Programmer	18
E5	B. Casey	Syst. Anal.	34000	P2	Manager	24
E6	L. Chu	Elect. Eng.	40000	P4	Manager	48
E7	R. Davis	Mech. Eng.	27000	P3	Engineer	36
E8	J. Jones	Syst. Anal.	34000	P3	Manager	40

Update Anomaly

 If any attribute of project (say SAL of an employee) is updated, multiple tuples have to be updated to reflect the change.

_			
_	ΝЛ	1)	
_	IVI		
_			

<u>ENO</u>	ENAME	TITLE	SAL	<u>PNO</u>	RESP	DUR
E1 E2 E2 E3 E3	J. Doe M. Smith M. Smith A. Lee A. Lee	Elect. Eng. Analyst Analyst Mech. Eng. Mech. Eng.	40000 34000 34000 27000 27000	P1 P1 P2 P3 P4	Manager Analyst Analyst Consultant Engineer	12 24 6 10 48
E4	J. Miller	Programmer	24000	P2	Programmer	18
E5	B. Casey	Syst. Anal.	34000	P2	Manager	24
E6	L. Chu	Elect. Eng.	40000	P4	Manager	48
E7	R. Davis	Mech. Eng.	27000	P3	Engineer	36
E8	J. Jones	Syst. Anal.	34000	P3	Manager	40

Insertion Anomaly

 It may not be possible to store information about a new project until an employee is assigned to it.

<u>ENO</u>	ENAME	TITLE	SAL	<u>PNO</u>	RESP	DUR
E1 E2 E3 E3 E4 E5 E6 E7 E8	J. Doe M. Smith M. Smith A. Lee A. Lee J. Miller B. Casey L. Chu R. Davis J. Jones	Elect. Eng. Analyst Analyst Mech. Eng. Mech. Eng. Programmer Syst. Anal. Elect. Eng. Mech. Eng. Syst. Anal.	40000 34000 34000 27000 27000 24000 34000 27000 34000 34000	P1 P1 P2 P3 P4 P2 P2 P4 P3 P3	Manager Analyst Analyst Consultant Engineer Programmer Manager Manager Engineer Manager	12 24 6 10 48 18 24 48 36 40

EMP

Deletion Anomaly

 If an engineer, who is the only employee on a project, leaves the company, his personal information cannot be deleted, or the information about that project is lost.

May have to delete many tuples.

FMD

<u>ENO</u>	ENAME	TITLE	SAL	<u>PNO</u>	RESP	DUR
E1	J. Doe	Elect. Eng.	40000	P1	Manager	12
E2	M. Smith	Analyst	34000	P1	Analyst	24
E2	M. Smith	Analyst	34000	P2	Analyst	6
E3	A. Lee	Mech. Eng.	27000	P3	Consultant	10
E3	A. Lee	Mech. Eng.	27000	P4	Engineer	48
E4	J. Miller	Programmer	24000	P2	Programmer	18
E5	B. Casey	Syst. Anal.	34000	P2	Manager	24
E6	L. Chu	Elect. Eng.	40000	P4	Manager	48
E7	R. Davis	Mech. Eng.	27000	P3	Engineer	36
E8	J. Jones	Syst. Anal.	34000	P3	Manager	40
			1			

Distributed DBMS

What to do?

 Take each relation individually and "improve" it in terms of the desired characteristics

- Normal forms
 - * Atomic values (1NF)
 - * Can be defined according to keys and dependencies.
 - * Functional Dependencies (2NF, 3NF, BCNF)
 - Multivalued dependencies (4NF)
- Normalization
 - * Normalization is a process of concept separation which applies a top-down methodology for producing a schema by subsequent refinements and decompositions.
 - Do not combine unrelated sets of facts in one table; each relation should contain an independent set of facts.
 - Iniversal relation assumption
 - INF to 3NF; 1NF to BCNF

Normalization Issues

- How do we decompose a schema into a desirable normal form?
- What criteria should the decomposed schemas follow in order to preserve the semantics of the original schema?
 - [↑] Reconstructability: recover the original relation \Rightarrow no spurious joins
 - Lossless decomposition: no information loss
 - Dependency preservation: the constraints (i.e., dependencies) that hold on the original relation should be enforceable by means of the constraints (i.e., dependencies) defined on the decomposed relations.

• What happens to queries?

Distributed DBMS © M. T. Özsu & P. Valduriez

Functional Dependence

• Given relation R defined over $U = \{A_1, A_2, ..., A_n\}$ where $X \subseteq U, Y \subseteq U$. If, for all pairs of tuples t_1 and t_2 in any legal instance of relation scheme R,

 $t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y],$

then the functional dependency $X \rightarrow Y$ holds in *R*.

Example

- In relation EMP
 - ‡ (ENO, PNO) → (ENAME, TITLE, SAL, DUR, RESP)
- In relation PROJ
 - ^{\ddagger} PNO → (PNAME, BUDGET)

Normal Forms Based on FDs

Distributed DBMS

Normalized Relations – Example

EMP				ASG			
ENO	ENAME	TITLE		ENO	PNO	RESP	DUR
E1 E2 E3 E4 E5 E6 E7 E8	J. Doe M. Smith A. Lee J. Miller B. Casey L. Chu R. Davis J. Jones	Elect. Eng Syst. Anal. Mech. Eng. Programmer Syst. Anal. Elect. Eng. Mech. Eng. Syst. Anal.		E1 E2 E3 E3 E4 E5 E6	P1 P1 P2 P3 P4 P2 P2 P4	Manager Analyst Analyst Consultant Engineer Programmer Manager Manager	12 24 6 10 48 18 24 48
				E7	P3	Engineer	36
				E7	P3	Engineer	36
	E8 P3 Manager 40						40

PROJ			_	PAY	
PNO	PNAME	BUDGET		TITLE	SAL
P1 P2 P3 P4	Instrumentation Database Develop. CAD/CAM Maintenance	150000 135000 250000 310000		Elect. Eng. Syst. Anal. Mech. Eng. Programmer	40000 34000 27000 24000

Relational Algebra

Specify how to obtain the result using a set of operators Form

 $\begin{array}{l} \langle Operator \rangle_{\langle parameters \rangle} \langle Operands \rangle \rightarrow \langle Result \rangle \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \\ Relation (s) \qquad Relation \end{array}$

Relational Algebra Operators

- Fundamental
 - Selection
 - Projection
 - Union
 - Set difference
 - Cartesian product
- Additional
 - Intersection
 - 🕈 θ-join
 - Natural join
 - Semijoin
 - Division

Union compatibility

- Same degree
- Corresponding attributes defined over the same domain

Selection

Produces a horizontal subset of the operand relation

General form

 $\sigma_F(R) = \{t \mid t \in R \text{ and } F(t) \text{ is true} \}$

where

- *R* is a relation, *t* is a tuple variable
- * F is a formula consisting of
 - operands that are constants or attributes
 - * arithmetic comparison operators

 $<,>,=,\neq,\leq,\geq$

f logical operators

∧, ∨, ¬

Selection Example

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng.
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

$\sigma_{\text{TITLE='Elect. Eng.'}}(EMP)$					
ENO	ENAME	TITLE			
E1	J. Doe	Elect. Eng			
E6	L. Chu	Elect. Eng.			

Projection

Produces a vertical slice of a relation

General form

$$\Pi_{A_1,...,A_n}(R) = \{t[A_1,...,A_n] \mid t \in R\}$$

where

- *R* is a relation, *t* is a tuple variable
- $\{A_1, \dots, A_n\}$ is a subset of the attributes of *R* over which the projection will be performed
- Note: projection can generate duplicate tuples.
 Commercial systems (and SQL) allow this and provide
 - Projection with duplicate elimination
 - Projection without duplicate elimination

Projection Example

PROJ

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2	Database Develop.	135000
P3	CAD/CAM	250000
P4	Maintenance	310000

$\Pi_{\text{PNO,BUDGET}}(\text{PROJ})$

PNO	BUDGET
P1	150000
P2	135000
P3	250000
P4	310000

Union

- Similar to set union
- General form

 $R \cup S = \{t \mid t \in R \text{ or } t \in S\}$

- where R, S are relations, t is a tuple variable
- Result contains tuples that are in R or in S, but not both (duplicates removed)
- *R*, *S* should be union-compatible

Set Difference

General Form

 $R - S = \{t \mid t \in R \text{ and } t \notin S\}$

where R and S are relations, t is a tuple variable

- Result contains all tuples that are in R, but not in S.
- $R S \neq S R$
- *R, S* union-compatible

Cartesian (Cross) Product

Given relations

- **†** R of degree k_1 , cardinality n_1
- * S of degree k_{2} , cardinality n_{2}

Cartesian (cross) product:

 $\begin{aligned} R \times S &= \{ t \, [A_1, \dots, A_{k_1}, A_{k_1+1}, \dots, A_{k_1+k_2}] \mid t[A_1, \dots, A_{k_1}] \in R \\ \text{and} \quad t[A_{k_1+1}, \dots, A_{k_1+k_2}] \in S \end{aligned}$

The result of $R \times S$ is a relation of degree $(k_1 + k_2)$ and consists of all $(n_{1^*} n_2)$ -tuples where each tuple is a concatenation of one tuple of R with one tuple of S.

Cartesian Product Example

EMP				
ENO	ENAME	TITLE		
E1	J. Doe	Elect. Eng		
E2	M. Smith	Syst. Anal.		
E3	A. Lee	Mech. Eng.		
E4	J. Miller	Programmer		
E5	B. Casey	Syst. Anal.		
E6	L. Chu	Elect. Eng.		
E7	R. Davis	Mech. Eng.		
E8	J. Jones	Syst. Anal.		

 $EMP \times PAY$

	ENO	ENO ENAME EMP.TITLE PAY.TITLE		SALARY	
	E1	J. Doe	Elect. Eng.	Elect. Eng.	55000
Č.	E1	J. Doe	Elect. Eng.	Syst. Anal.	70000
	E1	J. Doe	Elect. Eng.	Mech. Eng.	45000
	E1	J. Doe	Elect. Eng.	Programmer	60000
	E2	M. Smith	Syst. Anal.	Elect. Eng.	55000
	E2	M. Smith	Syst. Anal.	Syst. Anal.	70000
	E2	M. Smith	Syst. Anal.	Mech. Eng.	45000
	E2	M. Smith	Syst. Anal.	Programmer	60000
	E3	A. Lee	Mech. Eng.	Elect. Eng.	55000
	E3	A. Lee	Mech. Eng.	Syst. Anal.	70000
	E3	A. Lee	Mech. Eng.	Mech. Eng.	45000
	E3	A. Lee	Mech. Eng.	Programmer	60000
_	_		_		
	E8	J. Jones	 Syst. Anal.	Elect. Eng.	55000
	E8	J. Jones	Syst. Anal.	Syst. Anal.	70000
	E8	J. Jones	Syst. Anal.	Mech. Eng.	45000
	E8	J. Jones	Syst. Anal.	Programmer	60000

PAY

TITLE	SALAR
Elect. Eng.	55000
Syst. Anal.	70000
Mech. Eng.	45000
Programmer	60000

Intersection

Typical set intersection

$$R \cap S = \{t \mid t \in R \text{ and } t \in S\}$$

= R - (R - S)

• *R*, *S* union-compatible

θ–Join

General form

$$R \Join_{F(R,A_{i},S,B_{j})} S = \{t[A_{1},\ldots,A_{n},B_{1},\ldots,B_{m}] \mid t[A_{1},\ldots,A_{n}] \in R \text{ and } t[B_{1},\ldots,B_{m}] \in S$$

and $F(R,A_{i},S,B_{j})$ is true}

where

- *R*, *S* are relations, *t* is a tuple variable
- + $F(R.A_i, S.B_i)$ is a formula defined as that of selection.
- A derivative of Cartesian product

*
$$R \Join_F S = \sigma_F(R \times S)$$

Join Example

F	NЛ	D
	111	

ENO	ENAME	TITLE
E1		Elect Eng
L 1	J. DUE	LIECL LING
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.
E9	A. Hsu	Programmer
E10	T. Wong	Syst. Anal.

EMP 🛏 EMP.ENO=AS	G.ENO ^{ASG}
------------------	----------------------

ENO	ENAME	TITLE	PNO	RESP	DUR
E1	J. Doe	Elect. Eng.	P1	Manager	12
E2	M. Smith	Syst. Anal.	P1	Analyst	12
E2	M. Smith	Syst. Anal.	P2	Analyst	12
E3	A. Lee	Mech. Eng.	P3	Consultant	12
E3	A. Lee	Mech. Eng.	P4	Engineer	12
E4	J. Miller	Programmer	P2	Programmer	12
E5	J. Miller	Syst. Anal.	P2	Manager	12
E6	L. Chu	Elect. Eng.	P4	Manager	12
E7	R. Davis	Mech. Eng.	P3	Engineer	12
E8	J. Jones	Syst. Anal.	P3	Manager	12

(a)

(b)

Types of Join

- Equi-join
 - The formula F only contains equality
 - $\blacksquare R \Join_{R.A=S.B} S$

Natural join

- Equi-join of two relations R and S over an attribute (or attributes) common to both R and S and projecting out one copy of those attributes
- $R \bowtie S = \prod_{R \cup S} \sigma_F(R \times S)$

Natural Join Example

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

PAY

<u> </u>		
TITLE	SALARY	
Elect. Eng.	55000	
Syst. Anal. Mech. Eng.	70000 45000	
Programmer	60000	

EMP 🔀 PAY

ENO	ENAME	TITLE	SALARY
E1	J. Doe	Elect. Eng.	55000
E2	M. Smith	Analyst	70000
E3	A. Lee	Mech. Eng.	45000
E4	J. Miller	Programmer	60000
E5	B. Casey	Syst. Anal.	70000
E6	L. Chu	Elect. Eng.	55000
E7	R. Davis	Mech. Eng.	45000
E8	J. Jones	Syst. Anal.	70000

Join is over the common attribute TITL

Types of Join

- Outer-Join
 - Ensures that tuples from one or both relations that do not satisfy the join condition still appear in the final result with other relation's attribute values set to NULL

 - In the term of ter
 - In Full outer join →

Outer Join Example

• Left outer join

	EMP₩	ENO ASG	G			
	ENO	ENAME	TITLE	PNO	RESP	DUR
	E1 F2	J. Doe M. Smith	Elect. Eng. Syst. Anal	P1 P1	Manager Analyst	12 12
	E2	M. Smith	Syst. Anal.	P2	Analyst	12
62	E3	A. Lee	Mech. Eng.	P3	Consultant	12
	E3	A. Lee	Mech. Eng.	P4	Engineer	12
ł	E4	J. Miller	Programmer	P2	Programmer	12
	E5	J. Miller	Syst. Anal.	P2	Manager	12
	E6	L. Chu	Elect. Eng.	P4	Manager	12
	E7	R. Davis	Mech. Eng.	P3	Engineer	12
	E8	J. Jones	Syst. Anal.	P3	Manager	12
	E9	A. Hsu	Programmer	Null	Null	Null
	E10	T. Wong	Syst. Anal.	Null	Null	Null

Semijoin

Derivation

$$R \ltimes_F S = \prod_A (R \Join_F S) = \prod_A (R) \Join \prod_{A \cap B} (S) = R \Join_F \prod_{A \cap B} (S)$$

where

- * R, S are relations
- A is a set of attributes

Semijoin Example

EMP - EMP.TITLE=PAY.TITLE PAY				
ENO	ENAME	TITLE		
E1	J. Doe	Elect. Eng.		
E2	M. Smith	Analyst		
E3	A. Lee	Mech. Eng.		
E4	J. Miller	Programmer		
E5	B. Casey	Syst. Anal.		
E6	L. Chu	Elect. Eng.		
E7	R. Davis	Mech. Eng.		
E8	J. Jones	Syst. Anal.		

Division (Quotient)

Given relations

- * *R* of degree $k_1 (R = \{A_1, ..., A_{k_1}\})$
- * S of degree k_2 (S = { $B_1, ..., B_{k_2}$ })

Let $A = \{A_1, \dots, A_{k_1}\}$ [i.e., R(A)] and $B = \{B_1, \dots, B_{k_2}\}$ [i.e., S(B)] and $B \subseteq A$.

Then, $T = R \div S$ gives T of degree $k_1 - k_2$ [i.e., T(Y) where Y = A - B] such that for a tuple t to appear in T, the values in t must appear in R in combination with *every tuple* in S.

Derivation

$$R \div S = \prod_{\gamma}(R) - \prod_{\gamma}((\prod_{\gamma}(R) \times S) - R)$$

Division Example

ASG'				PROJ'		
ENO	PNO	PNAME	BUDGET	PNO	PNAME	BUDGET
E1 E2	P1 P1	Instrumentation Instrumentation	150000 150000	P3 P4	CAD/CAM Maintenance	250000 310000
E2 E3	P2 P3	Database Develop. CAD/CAM	135000 250000			
E3 E4	P4 P2	Maintenance Database Develop.	310000 135000			
E5	P2	Database Develop.	135000		(ASG' ÷ PROJ')	
E6 F7	P4 P3	Maintenance CAD/CAM	310000 250000		ENO	
E8	. с Р3	CAD/CAM	250000		E3	

Relational Calculus

- Specify the properties that the result should hold
- Tuple relational calculus
- Domain relational calculus

Tuple Relational Calculus

- Query of the form {*t*|*F*{*t*}} where
 - *t* is a tuple variable
 - **F** is a well-formed formula
- Atomic formula
 - Tuple-variable membership expressions
 - * R.t or R(t) : tuple t belongs to relation R
 - Conditions
 - [↑] s[A] θ t[B]; s and t are tuple variables, A and B are components of s and t, respectively, $θ ∈ \{<,>, =,≠, ≤, ≥\}$; e.g., s[SAL] > t[SAL]
 - * s[A] θ c; s, A, and θ as defined above, c is a constant; e.g., s[ENAME] = 'Smith'
- SQL is an example of tuple relational calculus (at least in its simple form)

Domain Relational Calculus

- Query of the form $x_1, x_2, ..., x_n | F(x_1, x_2, ..., x_n)$ where
 - F is a well-formed formula in which x₁, x₂, ..., x_n are the free variables
- QBE is an example

EMP	ENO	ENAME	TITLE
	<u>E2</u>	P.	

ASG	ENO	PNO	RESP	DUR
	<u>E2</u>	<u>P3</u>		

PROJ	PNO	PNAME	BUDGET
	<u>P3</u>	CAD/CAM	

Computer Network

 An interconnected collection of autonomous computers that are capable of exchanging information among themselves.

- Components
 - Hosts (nodes, end systems)
 - Switches
 - Communication link

Internet

Network of networks

Types of Networks

According to scale (geographic distribution)

- Wide are network (WAN)
 - Distance between any two nodes > 20km and can go as high as thousands of kms
 - Long delays due to distance traveled
 - Heterogeneity of transmission media
 - * Speeds of 150Mbps to 10Gbps (OC192 on the backbone)
- Local area network (LAN)
 - Limited in geographic scope (usually < 2km)</p>
 - Speeds 10-1000 Mbps
 - Short delays and low noise
- Metropolitan area network (MAN)
 - In between LAN and WAN

Types of Networks (cont'd)

- Topology
 - Irregular
 - No regularity in the interconnection e.g., Internet
 - Bus
 - Typical in LANs Ethernet
 - Using Carrier Sense Medium Access with Collision Detection (CSMA/CD)
 - Listen before and while you transmit
 - Star
 - Ring
 - Mesh

Bus network

Communication Schemes

Point-to-point (unicast)

- One or more (direct or indirect) links between each pair of nodes
- Communication always between two nodes
- Receiver and sender are identified by their addresses included in the message header
- Message may follow one of many links between the sender and receiver using switching or routing

Broadcast (multi-point)

- * Messages are transmitted over a shared channel and received by all the nodes
- Each node checks the address and if it not the intended recipient, ignores
- Multi-cast: special case

Message is sent to a subset of the nodes

Communication Alternatives

- Twisted pair
- Coaxial
- Fiber optic cable
- Satellite
- Microwave
- Wireless

Data Communication

- Hosts are connected by links, each of which can carry one or more channels
- Link: physical entity; channel: logical entity
- Digital signal versus analog signal
- Capacity bandwidth
 - The amount of information that can be trnsmitted over the channel in a given time unit
- Alternative messaging schemes
 - Packet switching
 - Messages are divided into fixed size packets, each of which is routed from the source to the destination
 - Circuit switching
 - A dedicated channel is established between the sender and receiver for the duration of the session

Packet Format

Communication Protocols

- Software that ensures error-free, reliable and efficient communication between hosts
- Layered architecture hence protocol stack or protocol suite
- TCP/IP is the best-known one
 - Used in the Internet

Message Transmission using TCP/IP

Distributed DBMS

TCP/IP Protocol

