
Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/1

Outline
• Introduction
• Background
• Distributed Database Design
• Database Integration
• Semantic Data Control
• Distributed Query Processing
• Multidatabase Query Processing
• Distributed Transaction Management
➡ Transaction Concepts and Models
➡ Distributed Concurrency Control
➡ Distributed Reliability

• Data Replication
• Parallel Database Systems
• Distributed Object DBMS
• Peer-to-Peer Data Management
• Web Data Management
• Current Issues

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/2

Transaction

A transaction is a collection of actions that make consistent
transformations of system states while preserving system
consistency.

➡concurrency transparency

➡failure transparency

Database in a
consistent

state

Database may be
temporarily in an
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

Database in a
consistent

state

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/3

Transaction Example –
A Simple SQL Query

Transaction BUDGET_UPDATE

begin
EXEC SQL UPDATE PROJ

SET BUDGET = BUDGET*1.1
WHERE PNAME = “CAD/CAM”

end.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/4

Example Database

Consider an airline reservation example with the
relations:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, DATE, CNAME,SPECIAL)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/5

Example Transaction – SQL
Version

Begin_transaction Reservation
begin
input(flight_no, date, customer_name);
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTOFC(FNO, DATE, CNAME, SPECIAL);
VALUES(flight_no, date, customer_name, null);

output(“reservation completed”)
end . {Reservation}

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/6

Termination of Transactions
Begin_transaction Reservation
begin
input(flight_no, date, customer_name);
EXEC SQL SELECT STSOLD,CAP

INTO temp1,temp2
FROMFLIGHT
WHERE FNO = flight_no AND DATE = date;

if temp1 = temp2 then
output(“no free seats”);
Abort
else
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

Commit
output(“reservation completed”)
endif

end . {Reservation}

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/7

Example Transaction –
Reads & Writes

Begin_transaction Reservation
begin
input(flight_no, date, customer_name);
temp ← Read(flight_no(date).stsold);
if temp = flight(date).cap then
begin
output(“no free seats”);
Abort
end
else begin
Write(flight(date).stsold, temp + 1);
Write(flight(date).cname, customer_name);
Write(flight(date).special, null);
Commit;
output(“reservation completed”)
end

end. {Reservation}

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/8

Characterization

•Read set (RS)

➡The set of data items that are read by a transaction

•Write set (WS)

➡The set of data items whose values are changed by this transaction

•Base set (BS)

➡RS ∪ WS

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/9

Formalization

Let

➡Oij(x) be some operation Oj of transaction Ti operating on entity

x, where Oj {read,write} and Oj is atomic

➡OSi = j Oij

➡Ni {abort,commit}

Transaction Ti is a partial order Ti = {i, ≺i} where

 i = OSi {Ni}

 For any two operations Oij , Oik OSi , if Oij = R(x)|W(x) and Oik =

W(x) for any data item x, then either Oij ≺i Oik or Oik ≺i Oij

 Oij OSi, Oij ≺i Ni

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/10

Example

Consider a transaction T:
Read(x)
Read(y)
x x + y
Write(x)
Commit

Then
= {R(x), R(y), W(x), C}
≺ = {(R(x), W(x)), (R(y), W(x)), (W(x), C), (R(x), C), (R(y), C)}

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/11

Assume
≺ = {(R(x),W(x)), (R(y),W(x)), (W(x), C), (R(x), C), (R(y), C)}

DAG Representation

R(x)

C

R(y)

W(x)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/12

Principles of Transactions

ATOMICITY

➡all or nothing

CONSISTENCY

➡no violation of integrity constraints

ISOLATION

➡concurrent changes invisible serializable

DURABILITY

➡committed updates persist

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/13

Atomicity

•Either all or none of the transaction's operations are performed.

•Atomicity requires that if a transaction is interrupted by a failure,
its partial results must be undone.

•The activity of preserving the transaction's atomicity in presence
of transaction aborts due to input errors, system overloads, or
deadlocks is called transaction recovery.

•The activity of ensuring atomicity in the presence of system
crashes is called crash recovery.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/14

Consistency

• Internal consistency

➡A transaction which executes alone against a consistent database
leaves it in a consistent state.

➡Transactions do not violate database integrity constraints.

•Transactions are correct programs

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/15

Consistency Degrees

•Degree 0

➡Transaction T does not overwrite dirty data of other transactions

➡Dirty data refers to data values that have been updated by a
transaction prior to its commitment

•Degree 1

➡T does not overwrite dirty data of other transactions

➡T does not commit any writes before EOT

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/16

Consistency Degrees (cont’d)

•Degree 2

➡T does not overwrite dirty data of other transactions

➡T does not commit any writes before EOT

➡T does not read dirty data from other transactions

•Degree 3

➡T does not overwrite dirty data of other transactions

➡T does not commit any writes before EOT

➡T does not read dirty data from other transactions

➡Other transactions do not dirty any data read by T before T
completes.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/17

Isolation

•Serializability

➡If several transactions are executed concurrently, the results must
be the same as if they were executed serially in some order.

• Incomplete results

➡An incomplete transaction cannot reveal its results to other
transactions before its commitment.

➡Necessary to avoid cascading aborts.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/18

Isolation Example

•Consider the following two transactions:

T1: Read(x)T2: Read(x)
x x+1 x x+1

Write(x) Write(x)
Commit Commit

T1: Read(x)T1: Read(x)
T1: x x+1 T1: x x+1
T1: Write(x) T2: Read(x)
T1: Commit T1: Write(x)
T2: Read(x) T2: x x+1
T2: x x+1 T2: Write(x)
T2: Write(x) T1: Commit
T2: Commit T2: Commit

•Possible execution sequences:

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/19

SQL-92 Isolation Levels

Phenomena:

•Dirty read

➡T1 modifies x which is then read by T2 before T1 terminates; T1
aborts ⇒ T2 has read value which never exists in the database.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/20

SQL-92 Isolation Levels

Phenomena:

•Non-repeatable (fuzzy) read

➡T1 reads x; T2 then modifies or deletes x and commits. T1 tries to
read x again but reads a different value or can’t find it.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/21

SQL-92 Isolation Levels

Phenomena:

•Phantom

➡T1 searches the database according to a predicate while T2 inserts
new tuples that satisfy the predicate.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/22

SQL-92 Isolation Levels
(cont’d)
•Read Uncommitted

➡For transactions operating at this level, all three phenomena are
possible.

•Read Committed

➡Fuzzy reads and phantoms are possible, but dirty reads are not.

•Repeatable Read

➡Only phantoms possible.

•Anomaly Serializable

➡None of the phenomena are possible.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/23

Durability

•Once a transaction commits, the system must guarantee that the
results of its operations will never be lost, in spite of subsequent
failures.

•Database recovery

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/24

Characterization of
Transactions
•Based on

➡Application areas

✦ Non-distributed vs. distributed

✦ Compensating transactions

✦ Heterogeneous transactions

➡Timing

✦ On-line (short-life) vs batch (long-life)

➡Organization of read and write actions

✦ Two-step

✦ Restricted

✦ Action model

➡Structure

✦ Flat (or simple) transactions

✦ Nested transactions

✦ Workflows

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/25

Transaction Structure

•Flat transaction
➡Consists of a sequence of primitive operations embraced between a

begin and end markers.
Begin_transaction Reservation
…
end.
•Nested transaction
➡The operations of a transaction may themselves be transactions.

Begin_transaction Reservation
…
Begin_transaction Airline
…
end. {Airline}
Begin_transaction Hotel
…
end. {Hotel}
end. {Reservation}

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/26

Nested Transactions

•Have the same properties as their parents may themselves
have other nested transactions.

• Introduces concurrency control and recovery concepts to within
the transaction.

•Types
➡Closed nesting

✦ Subtransactions begin after their parents and finish before them.

✦ Commitment of a subtransaction is conditional upon the commitment
of the parent (commitment through the root).

➡Open nesting
✦ Subtransactions can execute and commit independently.

✦ Compensation may be necessary.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/27

Workflows

•“A collection of tasks organized to accomplish some business process.”

•Types

➡Human-oriented workflows

✦ Involve humans in performing the tasks.

✦ System support for collaboration and coordination; but no system-wide
consistency definition

➡System-oriented workflows

✦ Computation-intensive & specialized tasks that can be executed by a computer

✦ System support for concurrency control and recovery, automatic task
execution, notification, etc.

➡Transactional workflows

✦ In between the previous two; may involve humans, require access to
heterogeneous, autonomous and/or distributed systems, and support selective
use of ACID properties

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/28

Workflow Example

T1 T2

T3

T4

T5

Customer
Database

Customer
Database

Customer
Database

T1: Customer
request obtained

T2: Airline
reservation
performed

T3: Hotel
reservation
performed

T4: Auto reservation
performed

T5: Bill generated

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/29

Transactions Provide…

•Atomic and reliable execution in the presence of failures

•Correct execution in the presence of multiple user accesses

•Correct management of replicas (if they support it)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/30

Transaction Processing Issues

•Transaction structure (usually called transaction model)

➡Flat (simple), nested

• Internal database consistency

➡Semantic data control (integrity enforcement) algorithms

•Reliability protocols

➡Atomicity & Durability

➡Local recovery protocols

➡Global commit protocols

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/31

Transaction Processing Issues

•Concurrency control algorithms

➡How to synchronize concurrent transaction executions (correctness
criterion)

➡Intra-transaction consistency, Isolation

•Replica control protocols

➡How to control the mutual consistency of replicated data

➡One copy equivalence and ROWA

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/32

Architecture Revisited

Scheduling/
Descheduling

Requests

Transaction Manager
(TM)

Distributed
Execution Monitor

With other

SCs

With other

TMs

Begin_transaction,
Read, Write,
Commit, Abort

To data
processor

Results

Scheduler
(SC)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/33

Centralized Transaction
Execution

Begin_Transaction,
Read, Write, Abort,

EOT

Results &
User

Notifications

Scheduled
Operations

Results

Results

…

Read,
Write,

Abort, EOT

User
Application

User
Application

Transaction
Manager

(TM)

Scheduler
(SC)

Recovery
Manager

(RM)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.10/34

Distributed Transaction
Execution

Begin_transaction,
Read, Write, EOT,

Abort

User application

Results &
User notifications

Read,
Write,

EOT, Abort

TM

SC

RM

SC

RM

TM

Local
Recovery
Protocol

Distributed
Concurrency Control

Protocol

Replica Control
Protocol

Distributed
Transaction Execution

Model

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

