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Introduction

• Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database.
– First system to distribute data at global scale and 
– Support externally-consistent distributed transactions.

• A novel time API that exposes clock uncertainty is 
critical to provide:
– External consistency:

• If T1 commits before T2 starts, then ts(T1)<ts(T2), and T2 must see 
T1's writes, globally.

– Non-blocking reads in the past, 
– Lock-free read-only transactions, and 
– Atomic schema changes.



Introduction

• Shards data across many sets of Paxos state 
machines in data-centers spread globally.
– Replication is used for global availability and geographic 

locality; 
• Clients automatically failover between replicas.
• Managing cross-datacenter replication is main focus.

– Spanner automatically:
• Reshards data across machines on the changed amount of data or 

number of servers.
• Migrates data across machines to balance load and in response to 

failures.

– Spanner has evolved from a Bigtable-like versioned key-
value store into a temporal multi-version database.



Implementation

• Spanner deployment is called                               a 
universe (there are only a few universes)

• Spanner is organized as a set of zones.
– Analog of a deployment of Bigtable servers.
– Unit of administrative deployment.
– Locations across which data can be replicated.
– Unit of physical isolation: one or more zones in a DC.
– 1 zonemaster – [100,1000*n] spanservers, n~10

• The former assigns data to spanservers; 
• The latter serve data to clients.

– Universemaster: console displaying status of zones; debugging.
– Placement driver: automated movement of data across zones 

on the timescale of minutes.



Spanserver Software Stack

• How replication and distributed Xacts are layered?
– Onto BigT-based storage manager.

• Each sserver responsible for 100-1000 tablets
• Tablet = A bag of mappings: 

– (key:string, TS:int64) → string
– Similar to BigT tablet
– Multi-version database (not KV) 
– Table is stored 

• B-tree-like files and a WAL (log)

• For replication, each sserver
– Implements single Paxos state                                               

machine on each tablet



Spanserver Software Stack

• Paxos implementation:
– Long-lived leaders with time-based leader leases (10s)
– Logs every Paxos write twice (tablet’s and Paxos log)
– Writes are applied by Paxos in a timestamp order (see later!)

• Paxos implements consistently replicated bag of 
mappings
– KV mapping state of ∀ replica is stored in corresponding tablet.
– Writes must initiate the Paxos protocol at the participant leader.

• Other participants are slaves.
– Reads access state directly from the tablet at any replica.
– Set of replicas is collectively a Paxos group.



Spanserver Software Stack

• A leader spanserver 
– Uses a lock table to implement concurrency control.
– Implem. a transaction manager to support distributed Xacts. 
– If Xact involves only one Paxos group, it can bypass TM.

• Lock tables provide transactionality
– If Xact involves more than one Paxos group

• Groups’ leaders coordinate to perform 2PC
• One of the participant groups is chosen as coordinator leader.
• Slaves in that group are called coordinator slaves.



Directories and                             
Placement
• Bucketing abstraction called                                 a 

directory
– Set of contiguous keys that share common prefix (~50MB).
– A directory is the unit of data placement.
– A Paxos group is a set of directories.
– Movement between Paxos groups in directories

• to shed load from a Paxos group; 
• to put dirs frequently accessed together into the same group; or 
• to move a directory into a group that is closer to its accessors.

– Spanner tablet is different from BigT tablet
• Includes different ranges of KV pairs.
• To colocate multiple directories that are freq accessed together.
• Moves the data in the background; not a single Xact.



Spanner Data Model

• Spanner exposes to applications: 
– Semi-relational tables & syncronous replication

• Lead by the popularity of Megastore (300 apps)

– SQL-like query language 
• Popularity of Dremel (an interactive data-analysis tool)

– General-purpose transactions.
• Lead by lack of cross-row transactions in BigT.
• 2PC too expensive? Performance or availability problems?
• Better that apps programmers deal with performance problems.

• Spanner’s data model is not purely relational
– Every row is named: with ordered set of primary-key columns.

• This requirement is where Spanner still looks like a key-value store



Spanner Data Model

• Example schema:
– Photo metadata on per-user, per-album basis.

• Schema language is similar to Megastore’s.

– Every database must be partitioned by clients into one or 
more hierarchies of tables.

• INTERLEAVE IN
• ON DELETE CASCADE

– This allows clients to                                                               
describe the locality                                                         
relationships that exist                                                       
between multiple tables.

• Necessary for good                                                                          
performance in a sharded,                                                            
distributed database. 



TrueTime

• TrueTime represents time as a TTinterval
– Interval with bounded time uncertainty!

• Endpoints of a TTinterval are of type TTstamp.
– Define the instantaneous error bound as ε.

• Half of the TTinterval width; the average error bound as ε.

– Guaranteed: 
• tt = TT.now()  =>  tt.earliest ≤ tabs (enow ) ≤ tt.latest

– Time references: GPS and atomic clocks.
• Synchronisation among clocks every 30s 
• ε is varies from 1ms to 7ms; ε is about 4ms.
• Current applied drift rate is set at 200 μs/s (micros).

_

_



Concurrency Control

• TrueTime is used to guarantee the correctness 
properties around concurrency control.

• Those properties are used to implement features:
1) externally consistent transactions, 
2) lock-free read-only transactions, and 
3) non-blocking reads in the past.

● We will distinguish writes 
● as seen by Paxos from 
● Spanner client writes.



Timestamp Management

• Read/Write transaction
– Uses Paxos and 2PC

• Read-only Xact has performance benefits of snapshot 
isolation
– It must be predeclared as not having any writes.
– Reads execute without locking, at a system-chosen timestamp, 

so that incoming writes are not blocked.
• A snapshot read is a read in the past 

– Executes without locking.
– A client specifies a timestamp, or provide an upper bound on 

TS’s staleness.
– Read proceeds at any replica that is sufficiently up-to-date.



Paxos Leader Leases

• Paxos uses timed leases to make leadership 
long-lived (10s)
– Potential leader sends requests for timed lease votes.
– When receiving a quorum of votes, leader has a lease.
– Lease is extended on a successful write.
– Leader requests lease extensions if near expiration.
– Disjointness invariant:

• For each Paxos group, each Paxos leader’s lease interval is 
disjoint from every other leader’s.



Assigning TS to RW Transactions

• Transact. reads and writes use two-phase locking.
– TS can be assigned after all locks acquired, but before any 

locks have been released. 
– Spanner assigns TS to Xact that Paxos assigns to the Paxos 

write for the Xact commit.
• Spanner depends on the monotonicity invariant:

– Within each Paxos group, Spanner assigns TS to Paxos writes 
in monotonically increasing order, even across leaders.

– This invariant is enforced across leaders by making use of the 
disjointness invariant: 

• Leader must only assign TS within the interval of its leader lease



Assigning TS to RW Transactions

• External-consistency invariant: 
– If the start of T2 occurs after the commit of T1, then the commit 

TS of T2 must be greater than the commit TS of T1 .
• tabs(e1

commit) < tabs (e2
start)  s⇒ 1 < s2, s1=TS(T1), s2=TS(T2), ei event of Ti

• Commit request at the coordinator leader (abbr. CL)
– Arrival of commit request for a write Ti is the event ei

server.
– start  CL for a write Ti assigns a commit TS si no less than 

the value of TT.now().latest, computed after ei
server

– commit wait  CL ensures that clients cannot see any data 
committed by Ti until TT.after(si) is true. 

• Commit wait ensures si < tabs(ei
commit).



Serving Reads at a Timestamp

• Is replica’s state sufficiently up-to-date to read?
– To determine this Spanner uses monotononicity invariant. 
– Every replica tracks a value at tsafe = max TS up-to-date.
– Replica can satisfy a read at a timestamp t if t <= tsafe.

• Define tsafe = min(tsafe
Paxos

, tsafe
TM)

• Tsafe
Paxos = TS of highest-applied Paxos write

– TS inrease monotonically + writes applied in order => writes will no 
longer occur at or below Tsafe

Paxos.
•  Tsafe

TM = ∞, if no prepared Xacts (Xacts in between 2PC)
•  Tsafe

TM = mini (si,gprepare)-1, if there are any prepared Xacts
– State affected by prepared Xacts is indeterminate.
– Participant leaders (for a group g) for a Xact Ti assigns a prepare 

TS si,gprepare to its prepare record.
– Coordinator leader ensures: Commit TS si >= si,gprepare for all g.



Assigning TS to RO Transactions

• A read-only Xact executes in two phases:
– Assign a timestamp sread to Xact, and 
– Execute the Xact’s reads as snapshot reads at sread.

• Snapshot reads execute at any replicas sufficiently up-to-date.

• Simple assignment of sread = TT.now().latest 
– Assign at any time after a transaction starts. 
– Preserves external consistency by an argument analogous to 

that presented for writes.
– Xact may block at sread, if tsafe has not advanced sufficiently.
– To reduce the chances of blocking, Spanner should assign the 

oldest TS that preserves external consistency.



Overview with examples

• We now overview the problems and solutions 
presented previously
– RW transactions use 2PC gouided by Paxos.

• Every Paxos write is replicated to sservers in Paxos group.
• Sservers in a group are in different data centers.
• Locking guaratees serializability regardless of TS-s. 
• commit wait assures monotonicity of TS despite of time drifts.

– RO transactions use snapshot isolation
• No locks, no 2PC, no Paxos: reads from the local replica.
• Safe time solution uses monotonicity invariant. 

– RO T2 starts after RW T1, assumed. 
– T1 has to wait until TS(T2) < ssafe  (maintained by replica).



RO Xact: Overview

• Spanner eliminates two overheads for RO Xact
– Read from local replicas (avoid Paxos among DC-s).

• But note local replica may not be up to date!
–  No locks, no 2PC, no transaction manager.

• Again to avoid cross-DC msgs (Paxos).
• And to avoid slowing down r/w transactions.

–  Tables 3 and 6 show a 10x latency improvement 
• This is a big deal.

–   How to square this with correctness?
• Let’s see now examples.



RO Xact: Correctness constraints

• Serializable
– Same results as if Xacts executed one-by-one.

• Even though they may actually execute concurrently.

• RO Xact must essentially fit between RW Xacts.
– See writes from prior transactions, not from subsequent.
– Even though concurrent with RW Xacts! And not locking!

• Externally consistent
– T1 completes before T2 starts, T2 must see T1’s writes.
– "Before" refers to real (wall-clock) time.
– Similar to linearizable.
– Rules out reading stale data.



RO Xact: Why not just read?

• Suppose: two bank transfers, and Xact that reads both.
– T1:  Wx  Wy  C
– T2:                          Wx  Wy  C
– T3:                     Rx                    Ry

• The results won't match any serial order!
– Not T1, T2, T3.
– Not T1, T3, T2.

• We want T3 to see all of T2's writes, or none.
• We want T3's reads to all occur at the same point 

relative to T1/T2.



• RO Xact: Snapshot Isolation (SI)

• Synchronize all computers' clocks (to real time).
• Assign every transaction a time-stamp.

– RW: commit time.
– RO: start time.

• We want results as if one-at-a-time in TS order.
– Even if actual reads occur in different order.

• Replica stores multiple TS-ed versions of each record.
– All of a RW Xact's writes get the same time-stamp.

•  An RO Xact’s reads see version as of Xact’s TS.
– The record version with the highest TS less than Xact’s.



RO Xact: Example with SI

                                    x@10=9            x@20=8
                                    y@10=11          y@20=12
 T1 @ 10:  Wx  Wy  C
 T2 @ 20:                            Wx  Wy  C
 T3 @ 15:                    Rx                      Ry

• Now T3's reads will both be served from the @10 versions.
– T3 won't see T2's write even though T3's read of y occurs after T2.

• Now the results are serializable: T1 T3 T2.
• The serial order is the same as TS order!

– Why is it OK for T3 to read the old value of y even though there's a 
newer value?



RO Xact: Local replica up-to-date?

• Problem:
– What if T3 reads x from replica that hasn't seen T1's write?

• Because the replica wasn't in the Paxos majority?

• Solution: 
– Replica "safe time".
– Paxos leaders send writes in TS order.
– Before serving a read at time 20, replica must see Paxos write 

for time > 20.
• So it knows it has seen all writes < 20.

– Must also delay if prepared but uncommitted Xacts.
• RO Xacts can read from local replica, usually fast.



RO Xact: Clocks of of sync? 

• Problem:
– What if clocks are not perfectly synchronized?

• Solution: 
– If RW T1 finishes before RO T2 starts, TS1 < TS2.
– start rule:

• xaction TS = TT.now().latest
• for RO, at start time
• for RW, when commit begins

– commit wait, for RW Xact:
• Before completing commit, delay until TS < TS.now().earliest
• Guarantees that TS has passed.



RO Xact: Example of clock problem

RW T0 @  0:  Wx1 C
RW T1 @ 10:                 Wx2 C
RO T2 @  5:                                   Rx?
(C for commit)

• Problem if RO Xact's TS is too small.
– T2 reads the version of x at time 0, which was 1.

• But T2 started after T1 committed (in real time).
– External consistency requires that T2 see x=2.

• So we need a way to deal with incorrect clocks!



RO Xact: Example of clock problem
  RW T0 @  1: Wx1 C
                                |1-------------10| |11----------------20|
  RW T1 @ 10:                Wx2 P          C
                                                  |10-----------12|
  RO T2 @ 12:                                          Rx?

• Scenario: T1 commits, T2 starts, T2 must see T1's writes.
– We need TS1 < TS2.
– (P for T1's Prepare, C for T1 finishing Commit)
– At P, T1 chooses TS1 = TT.now().latest = 10
– commit wait forces C to occur after TS1.
– T2 starts after C by assumption, and thus after time 10.
– TS2 = TT.now().latest, which is after current time, which is after 10.
– So TS2 > TS1 and T2's Rx sees T1's Wx.
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