
Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/1

Outline

• Introduction

•Background

•Distributed Database Design

•Database Integration

•Semantic Data Control

•Distributed Query Processing

•Distributed Transaction Management

•Data Replication

➡Consistency criteria

➡Replication protocols

➡Replication and failure management

•Parallel Database Systems

•Distributed Object DBMS

•Peer-to-Peer Data Management

•Web Data Management

•Current Issues

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/2

Replication
•Why replicate?

➡System availability

✦ Avoid single points of failure

➡Performance

✦ Localization

➡Scalability

✦ Scalability in numbers and geographic area

➡Application requirements

•Why not replicate?

➡Replication transparency

➡Consistency issues

✦ Updates are costly

✦ Availability may suffer if not careful

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/3

Write(xn)Write(x2)Write(x1)

Execution Model

•There are physical copies of logical objects in the system.

•Operations are specified on logical objects, but translated to
operate on physical objects.

•One-copy equivalence
➡The effect of transactions performed by clients on replicated objects

should be the same as if they had been performed on a single set of
objects.

x

x1 x2 xn…

Physical data item (replicas, copies)

Logical data item

Write(x)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/4

Replication Issues

•Consistency models - how do we reason about the consistency of
the “global execution state”?

➡Mutual consistency

➡Transactional consistency

•Where are updates allowed?

➡Centralized

➡Distributed

•Update propagation techniques – how do we propagate updates
to one copy to the other copies?

➡Eager

➡Lazy

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/5

Consistency

•Mutual Consistency
➡How do we keep the values of physical copies of a logical data item

synchronized?

➡Strong consistency

✦ All copies are updated within the context of the update transaction

✦ When the update transaction completes, all copies have the same
value

✦ Typically achieved through 2PC

➡Weak consistency

✦ Eventual consistency: the copies are not identical when update
transaction completes, but they eventually converge to the same value

✦ Many versions possible:
✓ Time-bounds

✓ Value-bounds

✓ Drifts

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/6

Transactional Consistency

•How can we guarantee that the global execution history over
replicated data is serializable?

•One-copy serializability (1SR)

➡The effect of transactions performed by clients on replicated objects
should be the same as if they had been performed one at-a-time on
a single set of objects.

•Weaker forms are possible

➡Snapshot isolation

➡RC-serializability

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/7

Example 1
(Mutual Consistency versus Transaction Consistency)

Site A Site B Site C

x x, y x, y, z

T1: x ← 20 T2: Read(x)T3: Read(x)
Write(x) y ← x+y Read(y)
Commit Write(y) z ← (x∗y)/100

 Commit Write(z)
 Commit

Consider the three histories:

HA={W1(xA), C1}

HB={W1(xB), C1, R2(xB), W2(yB), C2}

HC={W2(yC), C2, R3(xC), R3(yC),W3(zC), C3, W1(xC),C1}

Global history non-serializable: HB: T1→T2, HC: T2→T3→T1

Mutually consistent: Assume xA=xB=xC=10, yB=yC=15,zC=7 to
begin; in the end xA=xB=xC=20, yB=yC=35,zC=3.5

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/8

Example 2
(Mutually inconsistent, and globally non-serializable)

Site A Site B

x x

T1: Read(x)T2: Read(x)
x ← x+5 x ← x∗10
Write(x) Write(x)
Commit Commit

Consider the two histories:

HA={R1(xA),W1(xA), C1, W2(xA), C2}

HB={R2(xB), W2(xB), C2, W1(xB), C1}

Global history non-serializable: HA: T1→ T2, HB: T2→ T1

Mutually inconsistent: Assume xA=xB=1 to begin; in the end
xA=10, xB=6

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/9

Update Management
Strategies
•Depending on when the updates are propagated

➡Eager

➡Lazy

•Depending on where the updates can take place

➡Centralized

➡Distributed

Eager

Lazy

Centralized Distributed

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/10

Eager Replication

•Changes are propagated within the scope of the transaction
making the changes. The ACID properties apply to all copy
updates.

➡Synchronous

➡Deferred

•ROWA protocol: Read-one/Write-all

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit3

1 2

3

 mutual consistency is enforced using 1SR
 transaction can read a local copy (up-to-date)
 recovery from failures with the protocols
 we have already studied

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/11

Lazy Replication

●Lazy replication first executes the updating transaction on one
copy. After the transaction commits, the changes are propagated
to all other copies (refresh transactions)

●While the propagation takes place, the copies are mutually
inconsistent.

●The time the copies are mutually inconsistent is an adjustable
parameter which is application dependent.

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

1 2

3

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/12

Centralized

●There is only one copy which can be updated (the master), all
others (slave copies) are updated reflecting the changes to the
master.

Site 1 Site 2 Site 3 Site 4

Site 1 Site 2 Site 3 Site 4

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/13

Distributed

●Changes can be initiated at any of the copies. That is, any of the
sites which owns a copy can update the value of the data item.

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/14

Forms of Replication
Eager

+ No inconsistencies (identical
copies)

+ Reading the local copy yields the
most up to date value

+ Changes are atomic
− A transaction has to update all

sites
− Longer execution time
− Lower availability

Lazy
+ A transaction is always local (good

response time)
− Data inconsistencies
− A local read does not always return

the most up-to-date value
− Changes to all copies are not

guaranteed
− Replication is not transparent

Centralized
+ No inter-site synchronization is

necessary (it takes place at the
master)

+ There is always one site which
has all the updates

− The load at the master can be
high

− Reading the local copy may not
yield the most up-to-date value

Distributed
+ Any site can run a transaction
+ Load is evenly distributed
− Copies need to be synchronized

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/15

Replication Protocols

Eager

Lazy

Centralized Distributed

Eager centralized Eager distributed

Lazy distributedLazy centralized

The previous ideas can be combined into 4 different replication protocols:

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/16

Eager Centralized Protocols

•Design parameters:
➡Distribution of master

✦ Single master: one master for all data items
✦ Primary copy: different masters for different (sets of) data items

➡Level of transparency
✦ Limited: applications and users need to know who the master is

✓ Update transactions are submitted directly to the master
✓ Reads can occur on slaves

✦ Full: applications and users can submit anywhere and the operations
will be forwarded to the master
✓ Operation-based forwarding

•Four alternative implementation architectures, only three are
meaningful:
➡Single master, limited transparency
➡Single master, full transparency
➡Primary copy, full transparency

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/17

Eager Single Master/Limited
Transparency
•Applications submit update transactions directly to the master
•Master:
➡Upon read: read locally and return to user
➡Upon write: write locally, multicast write to other replicas (in FFO

timestamps order)
➡Centralized CC algorithm at Master’s replica site

 C2PC used for all reads and writes
 local reads without Master’s CC possible

➡Upon commit request: run 2PC coordinator to ensure that all have
really installed the changes

➡Upon abort: abort and inform other sites about abort
•Slaves

➡Reads through C2PC protocol (lock request)
 One slave reads before write, the other after write; inconsequential from 1SR

➡Writes are always from master

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/18

Eager Single Master/Limited
Transparency

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/19

Eager Single Master/Limited
Transparency (Example)

 x is located at site A
 copy avaliable at sites B, C
 T2 is sent to slave at Site B and T3 to slave at Site C.
 T2 reads x at B [Read(xB)] before T1’s update is applied at B,

while T3 reads x at C [Read(xC)] after T1 ’s update at C.

 Site B: T2 → T1 , Site C: T1 → T3 ==> T2 → T1 → T3 (1SR)
 Differet x read on B and C

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/20

Eager Single Master/Limited
Transparency (cont’d)
•Applications submit read transactions directly to an appropriate

slave
•Slave
➡Upon read: read locally
➡Upon write from master copy: execute conflicting writes in the

proper order (FIFO or timestamp)
➡Upon write from client: refuse (abort transaction; there is error)
➡Upon commit request from read-only: commit locally
➡Participant of 2PC for update transaction running on primary

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/21

Eager Single Master/
Full Transparency

 How to relieve central Master’s site from heavy load?
 Use TM at the application site for the coordination
 Application-site TP handles local reads, updates from master and

coordination
 App-TM could be just a router but this does not solve the problem

 Master’s site
 Runs central TM and LM
 Performs updates, reads and acks work to coordinating TM

 Coordinating site
 Handles local reads and update transactions

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/22

Eager Single Master/
Full Transparency

Coordinating TM

1. Send op(x) to the master site

2. Send Read(x) to any site that
has x

3. Send Write(x) to all the slaves
where a copy of x exists

4. When Commit arrives, act as
coordinator for 2PC

Master Site

1. If op(x) = Read(x): set read
lock on x and send “lock
granted” msg to the
coordinating TM

2. If op(x) = Write(x)

1. Set write lock on x

2. Update local copy of x

3. Inform coordinating TM

Act as participant in 2PC

Applications submit all transactions to the Transaction Manager
at their own sites (Coordinating TM)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/23

Eager Primary Copy/Full
Transparency
•How to distribute the computation (relieve master)?

 Distribute responsibilities for some data units to primary copy
 Distributed Ingres, PC2FC
 Only full transparency makes sense

•Applications submit transactions directly to their local TMs
•Local coordinating TM (application site):
➡Forward each operation to the primary copy of the data item
➡Upon granting of locks, submit Read to any slave, Write to all slaves
➡Coordinate 2PC

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/24

Eager Primary Copy/Full
Transparency (cont’d)
•Primary copy site
➡Read(x): lock and reply to TM
➡Write(x): lock x, perform update, inform TM
➡Participate in 2PC

•Slaves: as before

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/25

Eager Distributed Protocol
•Updates originate at any copy
➡Each sites uses 2 phase locking.
➡Read operations are performed locally.
➡Write operations are performed at all sites (using a distributed

locking protocol).
➡Coordinate 2PC

•Slaves:
➡As before

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/26

Eager Distributed Protocol
(cont’d)
•Critical issue:
➡Concurrent Writes initiated at different master sites are executed in

the same order at each slave site
➡Local histories are serializable (this is easy)

•Advantages
➡Simple and easy to implement

•Disadvantage
➡Very high communication overhead

✦ n replicas; m update operations in each transaction: n*m messages
(assume no multicasting)

✦ For throughput of k tps: k* n*m messages

•Alternative
➡Use group communication + deferred update to slaves to reduce

messages

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/27

Lazy centralized protocols
•Lazy centralized replication algorithms are similar to eager

 updates are first applied to a master replica and then
propagated to the slaves

 propagation does not take place within the update transaction
 after the transaction commits separate refresh Transaction

sent to slaves

•Slave site performs a Read(x) operation on its local copy
 It may read stale (non-fresh) data
 x may have been updated at the master, but the update may

not have yet been propagated to the slaves.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/28

Lazy Single Master/Limited
Transparency
•Update transactions submitted to master•Master:
➡Upon read: read locally and return to user
➡Upon write: write locally and return to user
➡Upon commit/abort: terminate locally
➡Sometime after commit: multicast updates to slaves (in order)•Slaves:
➡Upon read: read locally + return result to the user
➡Write(x) received by a slave is rejected
➡Refresh transactions: install updates

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/29

Lazy Single Master/Limited
Transparency

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/30

Lazy Primary Copy/Limited
Transparency
•There are multiple masters

 Each master execution is similar to lazy single master in the
way it handles transactions

 Write(x) is submitted to the primary copy of x; the rest is
straightforward.

•Slave execution complicated:

 refresh transactions from multiple masters and need to be
ordered properly

 Timestamps
 Replication graph

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/31

Lazy Primary Copy/Limited
Transparency – Slaves
•Assign system-wide unique timestamps to refresh transactions

and execute them in timestamp order

➡May cause too many aborts; because of the refresh transactions

➡Out-of-order transactions (local reads) may be aborted

•Replication graph

➡Similar to serialization graph, but nodes are transactions (T) + sites
(S); edge <Ti,Sj> exists iff Ti performs a Write(x) and x is stored in Sj

➡For each operation (opk), enter the appropriate nodes (Tk) and
edges; if graph has no cycles, no problem

➡If cycle exists and the transactions in the cycle have been
committed at their masters, but their refresh transactions have not
yet committed at slaves, abort Tk; if they have not yet committed at
their masters, Tkwaits.

•Use group communication

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/32

Lazy Single Master/Full
Transparency
•This is very tricky

➡Forwarding operations to a master and then getting refresh
transactions cause difficulties

•Two problems:

➡Violation of 1SR behavior

➡A transaction may not see its own reads

•Problem arises in primary copy/full transparency as well

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/33

Example 3

Site M (Master) holds x, y; SiteB holds slave copies of x, y
T1: Read(x), Write(x), Commit
T2: Write(x), Write(y), Commit Non-1SR !

 T2 → T1, T1 → T2

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/34

Example 4

• Master site M holds x, site C holds slave copy of x

• T3: Write(x), Read(x), Commit

• Sequence of execution

1. W3(x) submitted at C, forwarded to M for execution

2. W3(x) is executed at M, confirmation sent back to C

3. R3(x) submitted at C and executed on the local copy

4. T3 submits Commit at C, forwarded to M for execution

5. M executes Commit, sends notification to C, which also commits
T3

6. M sends refresh transaction for T3 to C (for W3(x) operation)

7. C executes the refresh transaction and commits it

• When C reads x at step 3, it does not see the effects of Write at
step 2

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/35

Lazy Single Master/
Full Transparency - Solution
•Assume T = Write(x)

•At commit time of transaction T, the master generates a
timestamp for it [ts(T)]

•Master sets last_modified(xM) ← ts(T)

•When a refresh transaction arrives at a slave site i, it also sets
last_modified(xi) ← last_modified(xM)

•Timestamp generation rule at the master:

➡ts(T) should be greater than all previously issued timestamps and
should be less than the last_modified timestamps of the data
items it has accessed. If such a timestamp cannot be generated,
then T is aborted.

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/36

Lazy Distributed Replication
•Any site:
➡Upon read:

 Read locally and return to user
➡Upon write:

 Write locally and return to user
➡Upon commit/abort:

 Terminate locally
➡Sometime after commit:

 Send refresh transaction
➡Upon message from other site

✦ Detect conflicts
✦ Install changes
✦ Reconciliation may be necessary

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/37

Lazy Distributed Replication

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/38

Reconciliation

•Such problems can be solved using pre-arranged patterns:
➡Latest update win (newer updates preferred over old ones)

➡Site priority (preference to updates from headquarters)

➡Largest value (the larger transaction is preferred)

•Or using ad-hoc decision making procedures:
➡Identify the changes and try to combine them

➡Analyze the transactions and eliminate the non-important ones

➡Implement your own priority schemas

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/39

Replication Strategies
E
a
g

e
r

La
zy

Centralized Distributed

Updates do not need to be
coordinated

No inconsistencies
- Longest response time
- Only useful with few

updates
- Local copies are can only

be read

No inconsistencies
Elegant (symmetrical

solution)
- Long response times
- Updates need to be

coordinated

No coordination necessary
Short response times
- Local copies are not up to

date
- Inconsistencies

No centralized coordination
Shortest response times
- Inconsistencies
- Updates can be lost

(reconciliation)

Distributed DBMS ©M. T. Özsu & P. Valduriez Ch.13/40

Group Communication

•A node can multicast a message to all nodes of a group with a
delivery guarantee

•Multicast primitives

➡There are a number of them

➡Total ordered multicast: all messages sent by different nodes are
delivered in the same total order at all the nodes

•Used with deferred writes, can reduce communication overhead
➡Remember eager distributed requires k*m messages (with

multicast) for throughput of ktps when there are n replicas and m
update operations in each transaction

➡With group communication and deferred writes: 2k messages

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

