
Database Systems for Big Data

Iztok Savnik, FAMNIT

© 2020, M.T. Özsu & P. Valduriez 1

Course literature

 Textbook
 Tamer Özsu, Patrick Valduriez, Principles of Distributed Database

Systems, 4th Edition, Springer, ISBN 978-1-4419-8833-1, 2020.
 Transparences

 Tamer Özsu, Patrick Valduriez: based on the textbook
 Presentations of NoSQL and NewSQL systems

 Research papers
 In the 2nd part of the course, each topic will include a list of papers.

© 2020, M.T. Özsu & P. Valduriez 2

Grading

 Exam (written) = 50%
 90-120 min, 4 exercises
 >50%!

 Seminar = 40%
 Study of a novel DBMS
 Test application (distributed), report, presentation
 >50%!

 Quizzes = 10%
 2-3 questions about the topics from the previous lecture
 15 min - At the beginning of each lecture
 Grade = The average of the 8 best grades of quizzes

© 2020, M.T. Özsu & P. Valduriez 3

Synopsis

 Introduction
 Distributed and Parallel Database Design
 Distributed Data Control
 Distributed Query Processing
 Distributed Transaction Processing
 Data Replication
 Database Integration – Multidatabase Systems
 Parallel Database Systems
 NoSQL, NewSQL and Polystores
 Big Data Processing

© 2020, M.T. Özsu & P. Valduriez 4

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 DDBMS issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 5

Four Vs

 Volume
 Increasing data size: petabytes (1015) to zettabytes (1021)

 Variety
 Multimodal data: structured, images, text, audio, video
 90% of currently generated data unstructured

 Velocity
 Streaming data at high speed
 Real-time processing

 Veracity
 Data quality

© 2020, M.T. Özsu & P. Valduriez 6

Big Data Software Stack

© 2020, M.T. Özsu & P. Valduriez 7

Big data database systems

 Distributed database systems
 One server can not store everything

 Relational distributed DBMSs
 IBM, Oracle, Sybase
 Oldest lineage in database area
 New members: Google F1, SAP Hana, VoltDB

 NoSQL database systems
 Key/Value store
 Columnar DBMS
 Document store
 Graph DBMS

© 2020, M.T. Özsu & P. Valduriez 8

Big Data Analytics

 Map-Reduce/Spark systems
 Graphs of operators
 Distributed file systems

 Stream query processing
 Data streams
 Stream QLs
 Persistent queries

 Data-flow systems
 Programming environments
 Based on data-flow

© 2020, M.T. Özsu & P. Valduriez 9

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 DDBMS issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 10

Distributed Computing

 A number of autonomous processing elements (not
necessarily homogeneous) that are interconnected by a
computer network and that cooperate in performing their
assigned tasks.

 What is being distributed?
 Processing logic
 Function
 Data
 Control

© 2020, M.T. Özsu & P. Valduriez 11

Current Distribution – Geographically
Distributed Data Centers

© 2020, M.T. Özsu & P. Valduriez 12

What is a Distributed Database System?

A distributed database is a collection of multiple, logically
interrelated databases distributed over a computer network

A distributed database management system (Distributed
DBMS) is the software that manages the DDB and provides
an access mechanism that makes this distribution
transparent to the users

© 2020, M.T. Özsu & P. Valduriez 13

What is not a DDBS?

 A timesharing computer system
 A loosely or tightly coupled multiprocessor system
 A database system which resides at one of the nodes of

a network of computers - this is a centralized database
on a network node

© 2020, M.T. Özsu & P. Valduriez 14

Distributed DBMS Environment

© 2020, M.T. Özsu & P. Valduriez 15

Implicit Assumptions

 Data stored at a number of sites → each site logically
consists of a single processor

 Processors at different sites are interconnected by a
computer network → not a multiprocessor system
 Parallel database systems

 Distributed database is a database, not a collection of
files → data logically related as exhibited in the users’
access patterns
 Relational data model

 Distributed DBMS is a full-fledged DBMS
 Not remote file system, not a TP system

© 2020, M.T. Özsu & P. Valduriez 16

Important Point

Logically integrated
but

Physically distributed

© 2020, M.T. Özsu & P. Valduriez 17

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 DDBMS issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 18

History – File Systems

© 2020, M.T. Özsu & P. Valduriez 19

History – Database Management

© 2020, M.T. Özsu & P. Valduriez 20

History – Early Distribution

© 2020, M.T. Özsu & P. Valduriez 21

Peer-to-Peer (P2P)

History – Client/Server

© 2020, M.T. Özsu & P. Valduriez 22

History – Data Integration

© 2020, M.T. Özsu & P. Valduriez 23

History – Cloud Computing

© 2020, M.T. Özsu & P. Valduriez 24

On-demand, reliable services provided over the Internet in
a cost-efficient manner
 Cost savings: no need to maintain dedicated compute

power
 Elasticity: better adaptivity to changing workload

Data Delivery Alternatives

 Delivery modes
 Pull-only
 Push-only
 Hybrid

 Frequency
 Periodic
 Conditional
 Ad-hoc or irregular

 Communication Methods
 Unicast
 One-to-many

 Note: not all combinations make sense

© 2020, M.T. Özsu & P. Valduriez 25

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 DDBMS issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 26

Distributed DBMS Promises

Transparent management of distributed, fragmented, and
replicated data

Improved reliability/availability through distributed
transactions

Improved performance

Easier and more economical system expansion

© 2020, M.T. Özsu & P. Valduriez

Transparency

 Transparency is the separation of the higher-level
semantics of a system from the lower level
implementation issues.

 Fundamental issue is to provide data independence
 in the distributed environment

 Network (distribution) transparency
 Replication transparency
 Fragmentation transparency

 horizontal fragmentation: selection
 vertical fragmentation: projection
 hybrid

© 2020, M.T. Özsu & P. Valduriez

Example

© 2020, M.T. Özsu & P. Valduriez 29

Transparent Access

SELECT ENAME,SAL
FROM EMP,ASG,PAY
WHERE DUR > 12
AND EMP.ENO = ASG.ENO
AND PAY.TITLE =

EMP.TITLE

Paris projects
Paris employees
Paris assignments
Boston employees

Montreal projects
Paris projects
New York projects
 with budget > 200000
Montreal employees
Montreal assignments

Boston

Communication
Network

Montreal

Paris

New
York

Boston projects
Boston employees
Boston assignments

Boston projects
New York employees
New York projects
New York assignments

Tokyo

© 2020, M.T. Özsu & P. Valduriez 30

Distributed Database - User View

Distributed Database

© 2020, M.T. Özsu & P. Valduriez 31

Distributed DBMS - Reality

Communication
Subsystem

DBMS
Software

User
ApplicationUser

Query

DBMS
Software

DBMS
Software

DBMS
Software

User
Query

DBMS
Software

User
Query

User
Application

© 2020, M.T. Özsu & P. Valduriez 32

Types of Transparency

 Data independence
 Network transparency (or distribution transparency)

 Location transparency
 Fragmentation transparency

 Fragmentation transparency
 Replication transparency

© 2020, M.T. Özsu & P. Valduriez 33

Reliability Through Transactions

 Replicated components and data should make distributed
DBMS more reliable.

 Distributed transactions provide
 Concurrency transparency
 Failure atomicity

• Distributed transaction support requires implementation of
 Distributed concurrency control protocols
 Commit protocols

 Data replication
 Great for read-intensive workloads, problematic for updates
 Replication protocols

© 2020, M.T. Özsu & P. Valduriez 34

Potentially Improved Performance
 Proximity of data to its points of use

 Requires some support for fragmentation and replication

 Parallelism in execution
 Inter-query parallelism

● Enables the parallel execution of multiple queries
 Intra-query parallelism

● Distributed DBMS
● Splitting a query into parts

 (each part exec on one site)
● Parallel DBMS

● Inter-operator parallelism
(Pipelined + Independent)

● Intra-operator parallelism

© 2020, M.T. Özsu & P. Valduriez 35

Scalability

 Issue is database scaling and workload scaling

 Adding processing and storage power

 Scale-out: add more servers

 Scale-up: increase the capacity of one server → has limits

© 2020, M.T. Özsu & P. Valduriez 36

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 DDBMS issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 37

Distributed DBMS Issues

 Distributed database design
 How to distribute the database
 Replicated & non-replicated database distribution
 A related problem in directory management

 Distributed query processing
 Convert user transactions to data manipulation instructions
 Optimization problem

 min{cost = data transmission + local processing}
 General formulation is NP-hard

© 2020, M.T. Özsu & P. Valduriez 38

Distributed DBMS Issues

 Distributed concurrency control
 Synchronization of concurrent accesses
 Consistency and isolation of transactions' effects
 Deadlock management

 Reliability
 How to make the system resilient to failures
 Atomicity and durability

© 2020, M.T. Özsu & P. Valduriez 39

Distributed DBMS Issues

 Replication
 Mutual consistency
 Freshness of copies
 Eager vs lazy
 Centralized vs distributed

 Parallel DBMS
 Objectives: high scalability and performance
 Not geo-distributed
 Cluster computing

© 2020, M.T. Özsu & P. Valduriez 40

Related Issues

 Alternative distribution approaches
 Modern P2P
 World Wide Web (WWW or Web)

 Big data processing
 4V: volume, variety, velocity, veracity
 MapReduce & Spark
 Stream data
 Graph analytics
 NoSQL
 NewSQL
 Polystores

© 2020, M.T. Özsu & P. Valduriez 41

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 Design issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 42

DBMS Implementation Alternatives

© 2020, M.T. Özsu & P. Valduriez 43

Dimensions of the Problem

 Distribution
 Whether the components of the system are located on the same machine or not

 Heterogeneity
 Various levels (hardware, communications, operating system)
 DBMS important one

 data model, query language,transaction management algorithms

 Autonomy
 Not well understood and most troublesome
 Various versions

 Design autonomy: Ability of a component DBMS to decide on issues related to its own
design.

 Communication autonomy: Ability of a component DBMS to decide whether and how to
communicate with other DBMSs.

 Execution autonomy: Ability of a component DBMS to execute local operations in any
manner it wants to.

© 2020, M.T. Özsu & P. Valduriez 44

Client/Server Architecture

© 2020, M.T. Özsu & P. Valduriez 45

Advantages of Client-Server
Architectures

 More efficient division of labor
 Horizontal and vertical scaling of resources
 Better price/performance on client machines
 Ability to use familiar tools on client machines
 Client access to remote data (via standards)
 Full DBMS functionality provided to client workstations
 Overall better system price/performance

© 2020, M.T. Özsu & P. Valduriez 46

Database Server

© 2020, M.T. Özsu & P. Valduriez 47

Distributed Database Servers

© 2020, M.T. Özsu & P. Valduriez 48

Peer-to-Peer Component Architecture

© 2020, M.T. Özsu & P. Valduriez 49

MDBS Components & Execution

© 2020, M.T. Özsu & P. Valduriez 50

Mediator/Wrapper Architecture

© 2020, M.T. Özsu & P. Valduriez 51

Cloud Computing

© 2020, M.T. Özsu & P. Valduriez 52

On-demand, reliable services provided over the Internet in
a cost-efficient manner
 IaaS – Infrastructure-as-a-Service
 PaaS – Platform-as-a-Service
 SaaS – Software-as-a-Service
 DaaS – Database-as-a-Service

Simplified Cloud Architecture

© 2020, M.T. Özsu & P. Valduriez 53

Outline

 Introduction
 Big data
 What is a distributed DBMS
 History
 Distributed DBMS promises
 Design issues
 Distributed DBMS architecture
 New database systems

© 2020, M.T. Özsu & P. Valduriez 54

New DBMSs and Big Data Processing

 Key-Value stores
 Document stores
 Column-oriented DBMS
 Graph database systems
 NewSQL DDBMS
 Map-Reduce systems
 Data-flow systems
 Stream query processing

© 2020, M.T. Özsu & P. Valduriez 55

Design considerations

 Yesterday’s vs. Today’s Needs
 The Current “One size fit’s it all” Databases Thinking Was and Is Wrong
 Movements in Programming Languages and Development Frameworks
 Large Main Memory available
 Multi-Threading and Resource Control
 Grid Computing and Fork-Lift Upgrades
 High Availability needed!
 Horizontal Scalability and Running on Commodity Hardware
 Shared-nothing support at the bottom of the system
 No Knobs

 Current RDBMSs were designed in an era, when computers were expensive and
people were cheap. Today we have the reverse.equirements of Cloud Computing

© 2020, M.T. Özsu & P. Valduriez 56

Design Considerations

 High Throughput and Scalability
 Complexity and Cost of Setting up Database Clusters
 Myth of Effortless Distribution and Partitioning of Centralized Data Models
 Most data can be stored in Main Memory (see new caches)
 Multi-Threading can be used effectively
 Systems need to be Built from Scratch with Scalability in Mind

© 2020, M.T. Özsu & P. Valduriez 57

Design Considerations

 Unneeded Complexity and Performance Bottlenecks
 Avoidance of Expensive Object-Relational Mapping
 Persistent redo-logs have to be avoided when possible
 JDBC/ODBC-like interfaces
 Eliminate an undo-log wherever practical
 Dynamic locking to allow concurrent access
 Multi-threaded datastructures lead to latching of transactions
 Two-phase-commit (2PC) transactions should be avoided

whenever possible

© 2020, M.T. Özsu & P. Valduriez 58

Design Considerations

 Covering simple types of transactions
 Tree Schemes

 1-n relationship with its ancestor require joins
 The schema is a tree of 1-n relationships
 Equality predicates on the primary key(s) of the root node

 Single-Sited Transactions
 One-Shot Transactions
 Two-Phase Transactions

 Strongly Two-Phase Transactions

 Transaction Commutativity
 Sterile Transactions Classes

© 2020, M.T. Özsu & P. Valduriez 59

The End of an Architectural Era

 Michael Stonebraker, UCB
 Current DBMSs: “one size fits all” solution, in fact, excel at nothing”
 H-Store developed at the M.I.T. beats up RDBMSs by nearly two orders of

magnitude in the TPC-C benchmark (see commercialization VaultDB)
 RDBMSs“ are 25 year old legacy code lines that should be retired in favor

of a collection of “from scratch” specialized engines.
 Code lines and architectures designed for yesterday’s needs”

 Popular relational DBMSs all trace their roots to System R from the 1970s
 IBM’s DB2 is a direct descendant of System R,
 Microsoft’s SQL Server has evolved from Sybase System 5 (another direct System R

descendant) and
 Oracle implemented System R’s user interface in its first release.

© 2020, M.T. Özsu & P. Valduriez 60

Consequences

 We are heading toward a world with at least 5
specialized engines

 Death of the “one size fits all” legacy systems
 1970s: DBMS world contained only business data processing applications

 Areas which need specialized DBMSs
 Data warehouses
 Big data
 Internet data
 Text
 Scientific data
 Semi-structured data
 Graphs
 Streams

© 2020, M.T. Özsu & P. Valduriez 61

Key-/Value-Stores

 A simple, common data model:
 a map/dictionary, allowing clients to put and request values per key.

 Modern key-value stores favor high scalability over
consistency

 Most of them also omit rich ad-hoc querying and analytic
features

 Especially joins and aggregate operations are set aside
 Key-/value-stores have existed for a long time

 e.g. Berkeley DB

© 2020, M.T. Özsu & P. Valduriez 62

Key-/Value-Stores

 Examples of systems
 Key-value cache

 Memcached, Coherence (Oracle), Velocity, Repcached, ElastiCache,
 Infinispan, Jboss Cache, Aerospike

 Key-Value Store
 Dynamo, Voldemort, Dynomite, Riak, Redis, RAMCloud, LevelDB

© 2020, M.T. Özsu & P. Valduriez 63

Document stores

 Data model
 Documents

 Self-describing
 Hierarchical tree structures (JSON, XML, …)

 Scalar values, maps, lists, sets, nested documents, …
 Identified by a unique identifier (key, …)

 Documents are organized into collections
 Query patterns

 Create, update or remove a document
 Retrieve documents according to complex query conditions

 Observation
 Extended key-value stores where the value part is examinable!

© 2020, M.T. Özsu & P. Valduriez 64

Document stores

 Suitable use cases
 Event logging, content management systems, blogs, web analytics, e-

commerce applications, …
 i.e. for structured documents with similar schema

 When not to use
 Set operations involving multiple documents
 Design of document structure is constantly changing

 i.e. when the required level of granularity would outbalance the advantages of
aggregates

© 2020, M.T. Özsu & P. Valduriez 65

Document stores

 Representatives
 MongoDB
 Couchbase
 CouchDB
 RavenDB
 Terrastore
 Multi-model:

 MarkLogic
 OrientDB
 OpenLink Virtuoso
 ArangoDB

© 2020, M.T. Özsu & P. Valduriez 66

Column-Oriented Databases
 The approach to store and process data

by column instead of row
 Origin in analytics and business intelligence

 Column-stores operating in a shared-nothing massively parallel processing
architecture can be used to build high-performance applications

 Column-orientation has a number of advantages
 One column is always accessed (not whole table of records)
 An index on a column is a representation of column
 Scalability of the column-oriented database

 Puristic column-oriented stores
 Sybase IQ
 Vertica
 C-store

© 2020, M.T. Özsu & P. Valduriez 67

Column-Oriented Databases

 Column store features
 Index-only plans, heavy compression, late materialization, block iteration,

 Column stores outperform commercial row- oriented DBs
 Daniel Abadi,

© 2020, M.T. Özsu & P. Valduriez 68

Column-Oriented Databases
 Less puristic column stores subsume datastores that

integrate column- and row-orientation
 Bigtable (Google) based on GFS
 Hypertable based on HDFS (Hadoop file system)
 Hstore also based on HDFS
 Cassandra Derived from Bigtable and Dynamo

© 2020, M.T. Özsu & P. Valduriez 69

Graph database systems

 Graph data model
 Data is represented in the form of the graph
 Any representation can be converted to a graph representation

 Graph representations
 Adjacency lists, adjecency matrix, triples and triple tables, special data

structures
 Indexes, bitmaps, signature trees, …

 RDF data model
 Many levels of representation: data, schema, logic

© 2020, M.T. Özsu & P. Valduriez 70

Graph database systems

 Declarative query language
 Initially in-memory systems
 SPARQL query language

 Data and knowledge query language (RDF inference)
 Heavy use of indexing

 Special new index structures
 Query optimization

 Dynamic programming, pipelines, bushy trees
 Distributed databases and query processing

© 2020, M.T. Özsu & P. Valduriez 71

Graph database systems

 Example Graph DBMSs
 RDF-3X
 Neo4j
 Virtuoso
 ArangoDB
 OrientDB
 Dgraph
 GraphDB
 Neptune (Amazon)
 Titan
 IBM Graph
 Oracle Graph
 ...

© 2020, M.T. Özsu & P. Valduriez 72

New relational DDBMS

 Google F1, 2013 (Megastore. 2011)
● F1 is a fault-tolerant globally-distributed DBMS
● Storage of Google’s AdWords system
● Genetics: Filial 1 hybrid
● Combining best aspects of traditional RDBMS and scalable

NoSQL systems
 The key goals of F1’s design

● Scalability, availability (never go down), consistency (ACID),
usability (full SQL+expected)

● These design goals were considered to be mutually exclusive
 F1 is built on top of Spanner

● Scalable data storage, synchronous replication, and strong
consistency and ordering properties.

© 2020, M.T. Özsu & P. Valduriez 73

New relational DDBMS

© 2020, M.T. Özsu & P. Valduriez 74

Big Data Analytics

 Map-Reduce systems
 Stream query processing
 Data-flow systems

© 2020, M.T. Özsu & P. Valduriez 75

Map-Reduce Systems

 Brought up by Google employees in 2004
 Task split into two stages:

 Map:
 a coordinater designates pieces of data to process a number of nodes which execute a

given map function and produce intermediate output.
 Reduce:

 the intermediate output is processed by a number of machines executing a given
reduce function whose purpose it is to create the final output from the intermediate
results, e. g. by some aggregation

 Map and Reduce computation model
 Map-Reduce is a programming technique
 Have to be understood in a real functional manner
 It is used for programming streams

 Restricted to the Map-Reduce model of computation

© 2020, M.T. Özsu & P. Valduriez 76

Map-Reduce Systems

© 2020, M.T. Özsu & P. Valduriez 77

Map-Reduce Systems

 MapReduce paradigm has been adopted by
 Programming languages (e. g. Python)
 Frameworks (e.g. Apache Hadoop)
 NoSQL databases (e. g. CouchDB)
 Even JavaScript toolkits (e. g. Dojo)

© 2020, M.T. Özsu & P. Valduriez 78

Spark

 Addresses MapReduce shortcomings
 Data sharing abstraction:

 Resilient Distributed Dataset (RDD)
 Computation model:

1) Cache working set (i.e. RDDs) so no writing-to/reading-from HDFS

2) Assign partitions to the same machine across iterations

3) Maintain lineage for fault-tolerance

© 2020, M.T. Özsu & P. Valduriez 79

Stream data management

 Stream is an append-only sequence of timestamped
items that arrive in some order

 Unbounded stream
 Typical arrival: <timestamp, payload>

 Records, triples, structured texts, ...

 Processing models
 Continuous = arrival is processed as soon as received in the system

 Apache Storm, Heron

 Windowed = arrivals are batched in windows, executed in batch
 Aurora, STREAM, Spark Streaming

© 2020, M.T. Özsu & P. Valduriez 80

Stream data management

 Stream Query Models
 Persistent queries
 Push-based (data-driven)
 Monotonic: result set always grows, output is continuous
 Non-monotonic: some answers in the result set become invalid with new

arrivals, re-computation of the result set

 Stream Query Languages
 Declarative: SQL-like QLs; CQL, GSQL, ...
 Procedural: an acyclic graph of operators; Aurora
 Windowed: Windowed languages; size, slide, …
 Stateless and Statefull (blocking) operators

© 2020, M.T. Özsu & P. Valduriez 81

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

