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Concurrency Control
•The problem of synchronizing concurrent transactions such that 

the consistency of the database is maintained while, at the same 
time, maximum degree of concurrency is achieved.

•Anomalies:

➡Lost updates

✦ The effects of some transactions are not reflected on the database.

➡Inconsistent retrievals

✦ A transaction, if it reads the same data item more than once, should 
always read the same value.
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Execution History (or 
Schedule)
•An order in which the operations of a set of transactions are 

executed.

•A history (schedule) can be defined as a partial order over the 
operations of a set of transactions.

H1={W2(x),R1(x), R3(x),W1(x),C1,W2(y),R3(y),R2(z),C2,R3(z),C3}

T1: Read(x) T2: Write(x) T3: Read(x)
         Write(x)            Write(y)      Read(y)
        Commit             Read(z)           Read(z)

                                  Commit            Commit
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Formalization of History

A complete history over a set of transactions T={T1, …, Tn} is a partial 

order Hc(T) = {∑T, ≺H} where

∑T = i ∑i   , for  i = 1, 2, …, n

≺H   i ≺Ti 
, for  i = 1, 2, …, n

For any two conflicting operations Oij, Okl  ∑T, either Oij ≺H  Okl or Okl 

≺H  Oij
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Complete Schedule – 
Example1
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Complete Schedule – 
Example1
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Complete Schedule – 
Example2

Given three transactions
T1: Read(x)  T2: Write(x)  T3: Read(x)

      Write(x) Write(y)         Read(y)
      Commit Read(z)         Read(z)

                Commit       Commit

A possible complete 

schedule is given 

as the DAG

C1 

R3(x)R1(x) W2(x)

W1(x) W2(y) R3(y)

R3(z)R2(z)

C2 C3 
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A schedule is a prefix of a complete schedule such that only 
some of the operations and only some of the ordering 
relationships are included.
T1: Read(x)  T2: Write(x)  T3: Read(x)

     Write(x) Write(y)     Read(y)
     Commit Read(z)         Read(z)

                Commit     Commit

Schedule Definition

R1(x)

C1 

R3(x)R1(x) R3(x)W2(x)W2(x)

W1(x) W2(y)W2(y) R3(y)R3(y)

R3(z)R3(z) R2(z)R2(z)

C2 C3 
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Serial History

•All the actions of a transaction occur consecutively.

•No interleaving of transaction operations.

• If each transaction is consistent (obeys integrity rules), then the 
database is guaranteed to be consistent at the end of executing a 
serial history.

T1:    Read(x) T2: Write(x) T3: Read(x)
                    Write(x)       Write(y)     Read(y)
                    Commit         Read(z)         Read(z)

                           Commit       Commit
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Serializable History

•Transactions execute concurrently, but the net effect of the 
resulting history upon the database is equivalent to some serial 
history.

•Equivalent with respect to what?

➡Conflict equivalence: the relative order of execution of the 
conflicting operations belonging to unaborted transactions in two 
histories are the same.

➡Conflicting operations: two incompatible operations (e.g., Read 
and Write) conflict if they both access the same data item.

✦ Incompatible operations of each transaction is assumed to conflict; do 
not change their execution orders.

✦ If two operations from two different transactions conflict, the 
corresponding transactions are also said to conflict.
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Serializable History

The following are not conflict equivalent

Hs={W2(x),W2(y),R2(z),R1(x),W1(x),R3(x),R3(y),R3(z)}

H1={W2(x),R1(x), R3(x),W1(x),W2(y),R3(y),R2(z),R3(z)}

The following are conflict equivalent; therefore H2 is 

serializable.

Hs={W2(x),W2(y),R2(z),R1(x),W1(x),R3(x),R3(y),R3(z)}

H2={W2(x),R1(x),W1(x),R3(x),W2(y),R3(y),R2(z),R3(z)}

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y)     Read(y)
Commit Read(z)         Read(z)

            Commit     Commit
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Serializability in Distributed 
DBMS
•Somewhat more involved. Two histories have to be considered:

➡local histories 

➡global history

•For global transactions (i.e., global history)  to be serializable, two 
conditions are necessary:

➡Each local history should be serializable.

➡Two conflicting operations should be in the same relative order in all 
of the local histories where they appear together.
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Global Non-serializability 

•x stored at Site 1, y stored at Site 2

•LH1, LH2 are individually serializable (in fact serial), but the two 
transactions are not globally serializable.

T1: Read(x)   T2: Read(x)
   x ←x-100        Read(y)
   Write(x)        Commit

    Read(y)
   y ←y+100
   Write(y)
   Commit

LH1={R1(x),W1(x), R2(x)}

LH2={R2(y), R1(y),W1(y)}
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Concurrency Control 
Algorithms
•Pessimistic
➡Two-Phase Locking-based (2PL)

✦ Centralized (primary site) 2PL
✦ Primary copy 2PL
✦ Distributed 2PL

➡Timestamp Ordering (TO)
✦ Basic TO
✦ Multiversion TO
✦ Conservative TO

➡Hybrid
•Optimistic
➡Locking-based
➡Timestamp ordering-based
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Locking-Based Algorithms

•Transactions indicate their intentions by requesting locks from the 
scheduler (called lock manager).

•Locks are either read lock (rl) [also called shared lock] or write 
lock (wl) [also called exclusive lock]

•Read locks and write locks conflict (because Read and Write 
operations are incompatible

   rl  wl

rl  yes no

wl  no no

•Locking works nicely to allow concurrent processing of 
transactions.
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Naive Locking Algorithm
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Naive Locking Algorithm

•The locking algorithm releases the locks that are held by a 
transaction (say, T i ) as soon as the associated database 
command (read or write) is executed. 
 The transaction itself is locking other items (say, y), after it 

releases its lock on x. 

•This may seem to be advantageous from the viewpoint of 
increased concurrency
 It permits transactions to interfere with one another
 Loss of isolation and atomicity
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Two-Phase Locking (2PL)

 A Transaction locks an object before using it.

 When an object is locked by another transaction, the requesting 
transaction must wait.

 When a transaction releases a lock, it may not request another 
lock.

Obtain lock

Release lock

Lock point

Phase 1 Phase 2

BEGIN END

N
o
. 

o
f 

lo
ck

s
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Two-Phase Locking (2PL)

•Two-phase locking rule simply states that no transaction should 
request a lock after it releases one of its locks!

•2PL algorithms execute transactions in two phases. 
 growing phase: it obtains locks and accesses data items, and 
 a shrinking phase, during which it releases locks

•Lock point 
 when the transaction has achieved all its locks 
 End of the growing phase, beginning of the shrinking phase of 

a transaction.

• It has been proven that any history generated by a concurrency 
control algorithm that obeys the 2PL rule is serializable 
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Strict 2PL

Hold locks until the end.

Obtain lock

Release lock

BEGIN END
Transaction

duration
period of
data item

use

N
o
. 

o
f 

lo
ck

s
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Centralized 2PL

•There is only one 2PL scheduler in the distributed system.

•Lock requests are issued to the central scheduler.

Data Processors at 
  participating sites Coordinating TM Central Site LM

Lock Request

Lock Granted

Operation

End of Operation

Release Locks



Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/22

C2PL-TM
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C2PL-LM
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Data Processor
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Distributed 2PL Execution

Coordinating TM Participating LMs Participating DPs

Lock Request
Operation

End of Operation

Release Locks
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Distributed 2PL

•The distributed 2PL TM algorithm is similar to the C2PL-TM

•TM-s and 2PL schedulers are placed at each site. 
 Each scheduler handles lock requests for data at that site.

•Major modifications:
 The messages that are sent to the central site LM in C2PL-TM 

 Sent to LM-s at all participating sites in D2PL-TM
 Operations are not passed to the DP-s by the coordinating TM

 Set to DP-s by the participating lock managers
 Coordinating TM does not wait for a “lock request granted”
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Distributed 2PL

 The participating DP-s send the “end of operation” messages 
to the coordinating TM
 The alternative is for each DP to send it to its own lock 

manager who can then release the locks and inform the 
coordinating TM

• In case of replication:
 A transaction may read any of the replicated copies of item x, 

by obtaining a read lock on one of the copies of x. 
 Writing into x requires obtaining write locks for all copies of x.
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Timestamp Ordering

Transaction (Ti) is assigned a globally unique timestamp ts(Ti).
Transaction manager attaches the timestamp to all operations 

issued by the transaction.
Each data item is assigned a write timestamp (wts) and a read 

timestamp (rts):
➡rts(x) = largest timestamp of any read on x
➡wts(x) = largest timestamp of any read on x

Conflicting operations are resolved by timestamp order.

Basic T/O:
for Ri(x) for Wi(x)

if ts(Ti) < wts(x)                     if ts(Ti) < rts(x) and ts(Ti) < wts(x) 
then reject Ri(x)                    then reject Wi(x)
else accept Ri(x)                 else accept Wi(x)

   rts(x)  ts(Ti)                     wts(x)  ts(Ti) 
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Conservative Timestamp 
Ordering
•Basic timestamp ordering tries to execute an operation as soon 

as it receives it

➡progressive

➡too many restarts since there is no delaying

•Conservative timestamping delays each operation until there is 
an assurance that it will not be restarted

•Assurance?

➡No other operation with a smaller timestamp can arrive at the 
scheduler

➡Note that the delay may result in the formation of deadlocks
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Multiversion Timestamp 
Ordering
•Do not modify the values in the database, create new values.

•A Ri(x) is translated into a read on one version of x. 

➡Find a version of x (say xv) such that ts(xv) is the largest timestamp 
less than ts(Ti).

•A Wi(x) is translated into Wi(xw) and accepted if the scheduler has 
not yet processed any Rj(xr) such that

ts(Ti) < ts(xr) < ts(Tj) 
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Optimistic Concurrency 
Control Algorithms

Pessimistic execution

Optimistic execution

Validate Read Compute Write

ValidateRead Compute Write
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Optimistic Concurrency 
Control Algorithms
•Transaction execution model: divide into subtransactions each of 

which execute at a site

➡Tij: transaction Ti that executes at site j

•Transactions run independently at each site until they reach the 
end of their read phases

•All subtransactions are assigned a timestamp at the end of their 
read phase

•Validation test  performed during validation phase. If one fails, all 
rejected.
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Optimistic CC Validation Test

 If all transactions Tk where ts(Tk) < ts(Tij) have completed their 
write phase before Tij has started its read phase, then validation 
succeeds

➡Transaction executions in serial order

Tk
R V W

R V WTij
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Optimistic CC Validation Test

 If there is any transaction Tk such that ts(Tk)<ts(Tij) and which 
completes its write phase while Tij is in its read phase, then 
validation succeeds if             WS(Tk)  RS(Tij) = Ø

➡Read and write phases overlap, but Tij does not read data items 
written by Tk

R V WTk
R V W

Tij
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Optimistic CC Validation Test

  If there is any transaction Tk such that ts(Tk)< ts(Tij) and which 
completes its read phase before Tij completes its read phase, then 
validation succeeds if WS(Tk)  RS(Tij) = Ø and WS(Tk)  WS(Tij) 
= Ø

➡They overlap, but don't access any common data items.

R V WTk
R V W

Tij
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Deadlock

•A transaction is deadlocked if it is blocked and will remain blocked 
until there is intervention.

•Locking-based CC algorithms may cause deadlocks.

•TO-based algorithms that involve waiting may cause deadlocks.

•Wait-for graph

➡If transaction Ti waits for another transaction Tj to release a lock on 
an entity, then Ti → Tj in WFG.

Ti
Tj
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Local versus Global WFG

Assume T1 and T2 run at site 1, T3 and T4 run at site 2. Also assume 
T3 waits for a lock held by T4 which waits for a lock held by T1 which 
waits for a lock held by T2 which, in turn,  waits for a lock held by T3.

Local WFG

Global WFG

T1

Site 1 Site 2

T2

T4

T3

T1

T2

T4

T3
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Deadlock Management

• Ignore

➡Let the application programmer deal with it, or restart the system

•Prevention

➡Guaranteeing that deadlocks can never occur in the first place. 
Check transaction when it is initiated. Requires no run time support.

•Avoidance

➡Detecting potential deadlocks in advance and taking action to 
insure that deadlock will not occur. Requires run time support.

•Detection and Recovery

➡Allowing deadlocks to form and then finding and breaking them. As 
in the avoidance scheme, this requires run time support.
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Deadlock Prevention

•All resources which may be needed by a transaction must be 
predeclared.

➡The system must guarantee that none of the resources will be 
needed by an ongoing transaction.

➡Resources must only be reserved, but not necessarily allocated a 
priori

➡Unsuitability of the scheme in database environment

➡Suitable for systems that have no provisions for undoing 
processes.

•Evaluation:

– Reduced concurrency due to preallocation

– Evaluating whether an allocation is safe leads to added overhead.

– Difficult to determine (partial order)

+ No transaction rollback or restart is involved.
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Deadlock Avoidance

•Transactions are not required to request resources a priori.

•Transactions are allowed to proceed unless a requested resource 
is unavailable.

• In case of conflict, transactions may be allowed to wait for a fixed 
time interval. 

•Order either the data items or the sites and always request locks 
in that order.

•More attractive than prevention in a database environment.
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Deadlock Avoidance –
Wait-Die Algorithm
If Ti requests a lock on a data item which is already locked by Tj, 
then Ti is permitted to wait iff ts(Ti)<ts(Tj). If ts(Ti)>ts(Tj), then Ti is 
aborted and restarted with the same timestamp.

➡if ts(Ti)<ts(Tj) then Ti waits else Ti dies

➡non-preemptive: Ti never preempts Tj

➡prefers younger transactions
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Deadlock Avoidance –
Wound-Wait Algorithm
If Ti requests a lock on a data item which is already locked by Tj , 
then Ti is permitted to wait iff ts(Ti)>ts(Tj). If ts(Ti)<ts(Tj), then Tj is 
aborted and the lock is granted to Ti.

➡if ts(Ti)<ts(Tj) then Tj is wounded else Ti waits

➡preemptive: Ti preempts Tj if it is younger

➡prefers older transactions
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Deadlock Detection

•Transactions are allowed to wait freely.

•Wait-for graphs and cycles.

•Topologies for deadlock detection algorithms

➡Centralized

➡Distributed

➡Hierarchical
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Centralized Deadlock 
Detection
•One site is designated as the deadlock detector for the system. 

Each scheduler periodically sends its local WFG to the central site 
which merges them to a global WFG to determine cycles.

•How often to transmit?

➡Too often ⇒ higher communication cost but lower delays due to 
undetected deadlocks

➡Too late ⇒ higher delays due to deadlocks, but lower communication 
cost

•Would be a reasonable choice if the concurrency control 
algorithm is also centralized.

•Proposed for Distributed INGRES
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Build a hierarchy of detectors

Hierarchical Deadlock 
Detection

Site 1 Site 2Site 3 Site 4

DD21 DD22 DD23 DD24

DD11 DD14

DD0x
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Distributed Deadlock 
Detection
•Sites cooperate in detection of deadlocks.
•One example:
➡The local WFGs are formed at each site and passed on to other 

sites. Each local WFG is  modified as follows:
 Since each site receives the potential deadlock cycles from other 

sites, these edges are added to the local WFGs
 The edges in the local WFG which show that local transactions are 

waiting for transactions at other sites are joined with edges in the 
local WFGs which show that remote transactions are waiting for 
local ones.

➡Each local deadlock detector:
✦ looks for a cycle that does not involve the external edge. If it exists, 

there is a local deadlock which can be handled locally.
✦ looks for a cycle involving the external edge. If it exists, it indicates 

a potential global deadlock. Pass on the information to the next site.
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“Relaxed” Concurrency 
Control
•Non-serializable histories

➡E.g., ordered shared locks

➡Semantics of transactions can be used

✦ Look at semantic compatibility of operations rather than simply looking 
at reads and writes

•Nested distributed transactions

➡Closed nested transactions

➡Open nested transactions

➡Multilevel transactions
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Multilevel Transactions
Consider two transactions

T1: Withdraw(o,x)  T2: Withdraw(o,y)
Deposit(p,x) Deposit(p,y)
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