
Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/1

Outline

• Introduction
• Background
• Distributed Database Design
• Database Integration
• Semantic Data Control
• Distributed Query Processing
• Multidatabase Query Processing
• Distributed Transaction Management
➡ Transaction Concepts and Models
➡ Distributed Concurrency Control
➡ Distributed Reliability

• Data Replication
• Parallel Database Systems
• Distributed Object DBMS
• Peer-to-Peer Data Management
• Web Data Management
• Current Issues

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/2

Concurrency Control
•The problem of synchronizing concurrent transactions such that

the consistency of the database is maintained while, at the same
time, maximum degree of concurrency is achieved.

•Anomalies:

➡Lost updates

✦ The effects of some transactions are not reflected on the database.

➡Inconsistent retrievals

✦ A transaction, if it reads the same data item more than once, should
always read the same value.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/3

Execution History (or
Schedule)
•An order in which the operations of a set of transactions are

executed.

•A history (schedule) can be defined as a partial order over the
operations of a set of transactions.

H1={W2(x),R1(x), R3(x),W1(x),C1,W2(y),R3(y),R2(z),C2,R3(z),C3}

T1: Read(x) T2: Write(x) T3: Read(x)
 Write(x) Write(y) Read(y)
 Commit Read(z) Read(z)

 Commit Commit

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/4

Formalization of History

A complete history over a set of transactions T={T1, …, Tn} is a partial

order Hc(T) = {∑T, ≺H} where

∑T = i ∑i , for i = 1, 2, …, n

≺H  i ≺Ti
, for i = 1, 2, …, n

For any two conflicting operations Oij, Okl  ∑T, either Oij ≺H Okl or Okl

≺H Oij

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/5

Complete Schedule –
Example1

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/6

Complete Schedule –
Example1

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/7

Complete Schedule –
Example2

Given three transactions
T1: Read(x) T2: Write(x) T3: Read(x)

 Write(x) Write(y) Read(y)
 Commit Read(z) Read(z)

 Commit Commit

A possible complete

schedule is given

as the DAG

C1

R3(x)R1(x) W2(x)

W1(x) W2(y) R3(y)

R3(z)R2(z)

C2 C3

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/8

A schedule is a prefix of a complete schedule such that only
some of the operations and only some of the ordering
relationships are included.
T1: Read(x) T2: Write(x) T3: Read(x)

 Write(x) Write(y) Read(y)
 Commit Read(z) Read(z)

 Commit Commit

Schedule Definition

R1(x)

C1

R3(x)R1(x) R3(x)W2(x)W2(x)

W1(x) W2(y)W2(y) R3(y)R3(y)

R3(z)R3(z) R2(z)R2(z)

C2 C3

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/9

Serial History

•All the actions of a transaction occur consecutively.

•No interleaving of transaction operations.

• If each transaction is consistent (obeys integrity rules), then the
database is guaranteed to be consistent at the end of executing a
serial history.

T1: Read(x) T2: Write(x) T3: Read(x)
 Write(x) Write(y) Read(y)
 Commit Read(z) Read(z)

 Commit Commit

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/10

Serializable History

•Transactions execute concurrently, but the net effect of the
resulting history upon the database is equivalent to some serial
history.

•Equivalent with respect to what?

➡Conflict equivalence: the relative order of execution of the
conflicting operations belonging to unaborted transactions in two
histories are the same.

➡Conflicting operations: two incompatible operations (e.g., Read
and Write) conflict if they both access the same data item.

✦ Incompatible operations of each transaction is assumed to conflict; do
not change their execution orders.

✦ If two operations from two different transactions conflict, the
corresponding transactions are also said to conflict.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/11

Serializable History

The following are not conflict equivalent

Hs={W2(x),W2(y),R2(z),R1(x),W1(x),R3(x),R3(y),R3(z)}

H1={W2(x),R1(x), R3(x),W1(x),W2(y),R3(y),R2(z),R3(z)}

The following are conflict equivalent; therefore H2 is

serializable.

Hs={W2(x),W2(y),R2(z),R1(x),W1(x),R3(x),R3(y),R3(z)}

H2={W2(x),R1(x),W1(x),R3(x),W2(y),R3(y),R2(z),R3(z)}

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

 Commit Commit

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/12

Serializability in Distributed
DBMS
•Somewhat more involved. Two histories have to be considered:

➡local histories

➡global history

•For global transactions (i.e., global history) to be serializable, two
conditions are necessary:

➡Each local history should be serializable.

➡Two conflicting operations should be in the same relative order in all
of the local histories where they appear together.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/13

Global Non-serializability

•x stored at Site 1, y stored at Site 2

•LH1, LH2 are individually serializable (in fact serial), but the two
transactions are not globally serializable.

T1: Read(x) T2: Read(x)
 x ←x-100 Read(y)
 Write(x) Commit

 Read(y)
 y ←y+100
 Write(y)
 Commit

LH1={R1(x),W1(x), R2(x)}

LH2={R2(y), R1(y),W1(y)}

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/14

Concurrency Control
Algorithms
•Pessimistic
➡Two-Phase Locking-based (2PL)

✦ Centralized (primary site) 2PL
✦ Primary copy 2PL
✦ Distributed 2PL

➡Timestamp Ordering (TO)
✦ Basic TO
✦ Multiversion TO
✦ Conservative TO

➡Hybrid
•Optimistic
➡Locking-based
➡Timestamp ordering-based

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/15

Locking-Based Algorithms

•Transactions indicate their intentions by requesting locks from the
scheduler (called lock manager).

•Locks are either read lock (rl) [also called shared lock] or write
lock (wl) [also called exclusive lock]

•Read locks and write locks conflict (because Read and Write
operations are incompatible

 rl wl

rl yes no

wl no no

•Locking works nicely to allow concurrent processing of
transactions.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/16

Naive Locking Algorithm

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/17

Naive Locking Algorithm

•The locking algorithm releases the locks that are held by a
transaction (say, T i) as soon as the associated database
command (read or write) is executed.
 The transaction itself is locking other items (say, y), after it

releases its lock on x.

•This may seem to be advantageous from the viewpoint of
increased concurrency
 It permits transactions to interfere with one another
 Loss of isolation and atomicity

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/18

Two-Phase Locking (2PL)

 A Transaction locks an object before using it.

 When an object is locked by another transaction, the requesting
transaction must wait.

 When a transaction releases a lock, it may not request another
lock.

Obtain lock

Release lock

Lock point

Phase 1 Phase 2

BEGIN END

N
o
.

o
f

lo
ck

s

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/19

Two-Phase Locking (2PL)

•Two-phase locking rule simply states that no transaction should
request a lock after it releases one of its locks!

•2PL algorithms execute transactions in two phases.
 growing phase: it obtains locks and accesses data items, and
 a shrinking phase, during which it releases locks

•Lock point
 when the transaction has achieved all its locks
 End of the growing phase, beginning of the shrinking phase of

a transaction.

• It has been proven that any history generated by a concurrency
control algorithm that obeys the 2PL rule is serializable

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/20

Strict 2PL

Hold locks until the end.

Obtain lock

Release lock

BEGIN END
Transaction

duration
period of
data item

use

N
o
.

o
f

lo
ck

s

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/21

Centralized 2PL

•There is only one 2PL scheduler in the distributed system.

•Lock requests are issued to the central scheduler.

Data Processors at
 participating sites Coordinating TM Central Site LM

Lock Request

Lock Granted

Operation

End of Operation

Release Locks

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/22

C2PL-TM

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/23

C2PL-LM

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/24

Data Processor

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/25

Distributed 2PL Execution

Coordinating TM Participating LMs Participating DPs

Lock Request
Operation

End of Operation

Release Locks

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/26

Distributed 2PL

•The distributed 2PL TM algorithm is similar to the C2PL-TM

•TM-s and 2PL schedulers are placed at each site.
 Each scheduler handles lock requests for data at that site.

•Major modifications:
 The messages that are sent to the central site LM in C2PL-TM

 Sent to LM-s at all participating sites in D2PL-TM
 Operations are not passed to the DP-s by the coordinating TM

 Set to DP-s by the participating lock managers
 Coordinating TM does not wait for a “lock request granted”

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/27

Distributed 2PL

 The participating DP-s send the “end of operation” messages
to the coordinating TM
 The alternative is for each DP to send it to its own lock

manager who can then release the locks and inform the
coordinating TM

• In case of replication:
 A transaction may read any of the replicated copies of item x,

by obtaining a read lock on one of the copies of x.
 Writing into x requires obtaining write locks for all copies of x.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/28

Timestamp Ordering

Transaction (Ti) is assigned a globally unique timestamp ts(Ti).
Transaction manager attaches the timestamp to all operations

issued by the transaction.
Each data item is assigned a write timestamp (wts) and a read

timestamp (rts):
➡rts(x) = largest timestamp of any read on x
➡wts(x) = largest timestamp of any read on x

Conflicting operations are resolved by timestamp order.

Basic T/O:
for Ri(x) for Wi(x)

if ts(Ti) < wts(x) if ts(Ti) < rts(x) and ts(Ti) < wts(x)
then reject Ri(x) then reject Wi(x)
else accept Ri(x) else accept Wi(x)

 rts(x)  ts(Ti) wts(x)  ts(Ti)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/29

Conservative Timestamp
Ordering
•Basic timestamp ordering tries to execute an operation as soon

as it receives it

➡progressive

➡too many restarts since there is no delaying

•Conservative timestamping delays each operation until there is
an assurance that it will not be restarted

•Assurance?

➡No other operation with a smaller timestamp can arrive at the
scheduler

➡Note that the delay may result in the formation of deadlocks

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/30

Multiversion Timestamp
Ordering
•Do not modify the values in the database, create new values.

•A Ri(x) is translated into a read on one version of x.

➡Find a version of x (say xv) such that ts(xv) is the largest timestamp
less than ts(Ti).

•A Wi(x) is translated into Wi(xw) and accepted if the scheduler has
not yet processed any Rj(xr) such that

ts(Ti) < ts(xr) < ts(Tj)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/31

Optimistic Concurrency
Control Algorithms

Pessimistic execution

Optimistic execution

Validate Read Compute Write

ValidateRead Compute Write

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/32

Optimistic Concurrency
Control Algorithms
•Transaction execution model: divide into subtransactions each of

which execute at a site

➡Tij: transaction Ti that executes at site j

•Transactions run independently at each site until they reach the
end of their read phases

•All subtransactions are assigned a timestamp at the end of their
read phase

•Validation test performed during validation phase. If one fails, all
rejected.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/33

Optimistic CC Validation Test

 If all transactions Tk where ts(Tk) < ts(Tij) have completed their
write phase before Tij has started its read phase, then validation
succeeds

➡Transaction executions in serial order

Tk
R V W

R V WTij

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/34

Optimistic CC Validation Test

 If there is any transaction Tk such that ts(Tk)<ts(Tij) and which
completes its write phase while Tij is in its read phase, then
validation succeeds if WS(Tk)  RS(Tij) = Ø

➡Read and write phases overlap, but Tij does not read data items
written by Tk

R V WTk
R V W

Tij

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/35

Optimistic CC Validation Test

 If there is any transaction Tk such that ts(Tk)< ts(Tij) and which
completes its read phase before Tij completes its read phase, then
validation succeeds if WS(Tk)  RS(Tij) = Ø and WS(Tk)  WS(Tij)
= Ø

➡They overlap, but don't access any common data items.

R V WTk
R V W

Tij

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/36

Deadlock

•A transaction is deadlocked if it is blocked and will remain blocked
until there is intervention.

•Locking-based CC algorithms may cause deadlocks.

•TO-based algorithms that involve waiting may cause deadlocks.

•Wait-for graph

➡If transaction Ti waits for another transaction Tj to release a lock on
an entity, then Ti → Tj in WFG.

Ti
Tj

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/37

Local versus Global WFG

Assume T1 and T2 run at site 1, T3 and T4 run at site 2. Also assume
T3 waits for a lock held by T4 which waits for a lock held by T1 which
waits for a lock held by T2 which, in turn, waits for a lock held by T3.

Local WFG

Global WFG

T1

Site 1 Site 2

T2

T4

T3

T1

T2

T4

T3

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/38

Deadlock Management

• Ignore

➡Let the application programmer deal with it, or restart the system

•Prevention

➡Guaranteeing that deadlocks can never occur in the first place.
Check transaction when it is initiated. Requires no run time support.

•Avoidance

➡Detecting potential deadlocks in advance and taking action to
insure that deadlock will not occur. Requires run time support.

•Detection and Recovery

➡Allowing deadlocks to form and then finding and breaking them. As
in the avoidance scheme, this requires run time support.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/39

Deadlock Prevention

•All resources which may be needed by a transaction must be
predeclared.

➡The system must guarantee that none of the resources will be
needed by an ongoing transaction.

➡Resources must only be reserved, but not necessarily allocated a
priori

➡Unsuitability of the scheme in database environment

➡Suitable for systems that have no provisions for undoing
processes.

•Evaluation:

– Reduced concurrency due to preallocation

– Evaluating whether an allocation is safe leads to added overhead.

– Difficult to determine (partial order)

+ No transaction rollback or restart is involved.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/40

Deadlock Avoidance

•Transactions are not required to request resources a priori.

•Transactions are allowed to proceed unless a requested resource
is unavailable.

• In case of conflict, transactions may be allowed to wait for a fixed
time interval.

•Order either the data items or the sites and always request locks
in that order.

•More attractive than prevention in a database environment.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/41

Deadlock Avoidance –
Wait-Die Algorithm
If Ti requests a lock on a data item which is already locked by Tj,
then Ti is permitted to wait iff ts(Ti)<ts(Tj). If ts(Ti)>ts(Tj), then Ti is
aborted and restarted with the same timestamp.

➡if ts(Ti)<ts(Tj) then Ti waits else Ti dies

➡non-preemptive: Ti never preempts Tj

➡prefers younger transactions

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/42

Deadlock Avoidance –
Wound-Wait Algorithm
If Ti requests a lock on a data item which is already locked by Tj ,
then Ti is permitted to wait iff ts(Ti)>ts(Tj). If ts(Ti)<ts(Tj), then Tj is
aborted and the lock is granted to Ti.

➡if ts(Ti)<ts(Tj) then Tj is wounded else Ti waits

➡preemptive: Ti preempts Tj if it is younger

➡prefers older transactions

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/43

Deadlock Detection

•Transactions are allowed to wait freely.

•Wait-for graphs and cycles.

•Topologies for deadlock detection algorithms

➡Centralized

➡Distributed

➡Hierarchical

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/44

Centralized Deadlock
Detection
•One site is designated as the deadlock detector for the system.

Each scheduler periodically sends its local WFG to the central site
which merges them to a global WFG to determine cycles.

•How often to transmit?

➡Too often ⇒ higher communication cost but lower delays due to
undetected deadlocks

➡Too late ⇒ higher delays due to deadlocks, but lower communication
cost

•Would be a reasonable choice if the concurrency control
algorithm is also centralized.

•Proposed for Distributed INGRES

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/45

Build a hierarchy of detectors

Hierarchical Deadlock
Detection

Site 1 Site 2Site 3 Site 4

DD21 DD22 DD23 DD24

DD11 DD14

DD0x

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/46

Distributed Deadlock
Detection
•Sites cooperate in detection of deadlocks.
•One example:
➡The local WFGs are formed at each site and passed on to other

sites. Each local WFG is modified as follows:
 Since each site receives the potential deadlock cycles from other

sites, these edges are added to the local WFGs
 The edges in the local WFG which show that local transactions are

waiting for transactions at other sites are joined with edges in the
local WFGs which show that remote transactions are waiting for
local ones.

➡Each local deadlock detector:
✦ looks for a cycle that does not involve the external edge. If it exists,

there is a local deadlock which can be handled locally.
✦ looks for a cycle involving the external edge. If it exists, it indicates

a potential global deadlock. Pass on the information to the next site.

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/47

“Relaxed” Concurrency
Control
•Non-serializable histories

➡E.g., ordered shared locks

➡Semantics of transactions can be used

✦ Look at semantic compatibility of operations rather than simply looking
at reads and writes

•Nested distributed transactions

➡Closed nested transactions

➡Open nested transactions

➡Multilevel transactions

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.11/48

Multilevel Transactions
Consider two transactions

T1: Withdraw(o,x) T2: Withdraw(o,y)
Deposit(p,x) Deposit(p,y)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

