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Abstract: The paper presents the implementation of query execution system Qsesvés as a lightweight system for
the manipulation of XML data. Qios employs the relational technology forygpecessing. The main aim
in the implementation is to provide a querying system that is easy to use asdaloequire any additional
knowledge about the internal representation of data. The system esoratbust and simple solutions for
many design problems. We aimed to simplify the internal structures ofyqurecessors rooted in the de-
sign of relational and object-relational query processors. We peogffisient internal data structures for the
representation of queries during all phases of query execution. Udwy gptimization is based on dynamic
programming and uses beam search to reduce the time complexity. fBhatm&ture for storing queries pro-
vides efficient representation of queries during the optimization pra@ebsthe simple means to explore plan
caching. Finally, main memory indices can be created on-the-fly to sughygoevaluation of queries.

1 Introduction the manipulation of complex objects. Further, the al-
gebra includes a set of operations for querying con-
The Internet contains large amount of different _ceptual schemata. These oper_ations allow for brows-
data sources accessible through ftp files, XML or N9 the conceptual representation of data sources and
HTML documents, and the wrappers around rela- USing the glements of conceptual schemata for query-
tional and object-relational database systems. ThelNd extensional data (I. Savnik, 1999).
data available via such data sources may vary from  We investigated the efficient and robust design of
simple lists of records, catalogs containing large the internal structures of the query execution engine.
amounts of flat tables, to complex data reposito- In order to simplify the internal structure of system a
ries including large conceptual schemata and tablessingle data structure is used for the representation of
composed of complex objects (S. Abiteboul, 1993; queries during all phases of query execution. The al-
M.A. Roth, 1988). Querying Web data sources poses gorithm used for the optimization is based on graph
several new problems such as uniform access to therepresentation of query trees and query transforma-
data sources, integration of information provided by tion rules. Query transformation is seen as matching

the data sources, and efficient manipulation of large rule input tree against a query tree and than duplicat-
data sets. ing the rule output tree. Similarly, query evaluation

Our work focuses on the design of robust and Module uses the same structure for the implementa-
flexible query execution System for querying and in- tion of scans. Fina”y, to prOVide efficient implemen-
tegration of data from Web data sources. The de- tation of query optimization and evaluation queries
sign of query execution syste@ios (Savnik, 2007)is  are stored in a data structure called Mesh (G. Graefe,
based on the existing work on relational and object- 1987). The data structure is refined to provide effi-
relational query execution systems (Graefe, 1993; cientaccess to the stored queries.

M. Jarke, 1984; D. Daniels, 1982). The kernel of The query optimization algorithm is based on a
algebra comprises relational operations extended forversion of dynamic programming callademoisa-



tion. The most promising results were obtained with The operations for inquiring about the basic prop-
optimization algorithm which uses beam search for erties of objects which relate to the representation of
the exploration of the hypothesis space of equivalent objects are callednodel operationsBesides the stan-
queries. Further, we explore plan caching (Graefe, dard comparison operatiors >, >=, <, <=, the set
2005; Marathe, 2006) which speeds up significantly operationse andC, and the component selector op-
the subsequent execution of queries issued on theerator ".”, which are defined in relational algebra, the
same domain. algebra includes the following model operations. The
The query evaluation is based on dynamic selec- operationsxt andexts map class objects to the sets
tion of the query evaluation plans. We use a sim- of theirs members, or the set of their instances, respec-
ple strategy that exploits the large quantity of main tively. Next, the operatiorlass_of allows for the
memory which is lately provided by almost any per- mapping of the ground objects to their parent classes
sonal computer. The main memory indices can be Further, the poset comparison operatiefs <o, >o
constructed on-the-fly to support query evaluation. and >, are used to relate objects with respect to the
The construction of indices is based on standard in- partial ordering relationship defined among objects.
dex selection rules available from any database text- The operationsubcl andsupcl map class objects to
book. For instance, hash-based index is used when-a set of their subclasses or super-classes, respectively.
ever a larger tables has to be joined. In this way we Finally, the operatiors™ is defined for searching the
achieve fast performance of query processor for rela- text using regular expressions. The operatidnis
tively large quantities of data. Furthermore, the user defined as in th@erl programming language. The
does not need to concern about the details of querydeclarative operationsf the algebra are used for the
evaluation process. manipulation of the sets of objects. The detailed pre-
The paper is organized as follows. The following sentation of the model and declarative operations can
section presents the data model used for the represenbe found in (I. Savnik, 1999). The following groups
tation of data from Web data sources. Section 3 in- of declarative operations are defined in the algebra.

tLoduces thle ba?c opgratlor_:%of algebra and prfesenuhelational operationsThese operations include stan-
the examples of queries. e main portion of pa- 4, relational operatiorslect , project , union ,

per pregents the implementation of algebra. Section differ andjoin which are extended for the manip-
4 describes storage manager, parser, query represen;ation of objects

tation, query optimization and evaluation. Section 5 _ ) )
overviews the empirical results of query execution in Nested-relational operations. ~ The operation

Qios . Finally, concluding remarks are stated in Sec- 9roup(s,a,b) is defined similarly to the SQL
tion 6. group-byconstruct. It groups objects fromby the

values of attributes from the set The values of the
attributes which are not ia are stored as the relation
which is the value of the attribute. The operation
unnest(s,a)  is used to unnest a set valued attribute
a of objects from the argument set

2 Algebra

The data model used for the representation of Obi _ . Th .
data stored at different types of data sources mustOPJECt-restructuring operations. The operation
meet the following requirements. First, the data collapse(s,a) collapses the tuple structured at-

sources provide various types of data including semi- tribute_a nested in the_ objects from the_set The
structured data, XML data, (flat) relational tables, CPerationflatten(s) s used for collapsing the set
and objects represented by object-relational databaseOf setss.

models. Third, we expect that besides the extensionalOperationapply (P. Buneman, 1979). The functional

data, the data sources will include large amounts of operationapply(s, ) is used for the application of a

intensional data describing the structure and the con-query expressioh to a set of objects. This opera-

tents of the extensional databases. tion is useful for the application of a query to the sets
The F-Logic data model was used as the formal of objects that can be located at different sites.

basis of the system (M. Kifer, 1995): it was shown

(I. Savnik, 1999) that it can serve as the basis for the

representation of the semi-structured data, it provideS3 Query Execution System

a convenient representation of the relational and the

object-relational database models, it can be used for

the representation of complex objects, and, it can be

used very naturally to represent intensional data. 1A ground object can have a single parent class.

Qios (v0.9) is a system for the manipulation of
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_ Object manager. The object manager serves as a
Figure 1. Storage manager cache of objects loaded from Web as well as for
storing intermediate results during query processing.
Qios persistent objects are objects that are tied to the
data from internet data sources. The system is in- database via object manager. Each object has an iden-
tended to serve as the lightweight kernel of a data tifier which is implemented by means of record iden-
manipulation server. The main aims in the design of tifier from the subordinate level. External identifiers
Qios are to provide: capabilities to manipulate col- which are unique within the datafile can be assigned
lections of data in a fast manner, various data ma- to objects when they are created. Object cache is real-
nipulation functions from classical querying to data ized using LRU (least recently used) strategy for the
restructuring, and, the capabilities to organize, store selection of objects to be removed from cache. The
and browse the data collections obtained from the In- size of object cache can be set as the system parame
ternet data sources on the local host. The system cur-ter via the configuration record of a datafile as well as
rently provides the interface for XML. The treatment at run-time.

of ;)ther data forfmatr']s requires the ?(édnm_n of the m-l Parser. This module includes the implementation of
terface routines for the conversion of data into internal ;<o for the algebra expressions. The algebra ex-

database format. o pressions are checked for syntactical errors and then
The query execution syste@ios is composed of  5nslated into query trees.

the following components: the storage manager, the  The pasic skeleton of the query tree is constructed
parser, the subsystem for query optimization, t_he SUb'during the parsing process. The variables and the
system for Web access, and the query evaluation subyames of the data sources and spans are stored in sym-
;ystem. In th|s section we overview the |mplgmenta— bol tablesymtab . The query nodes represent the oper-
tion of theQios components. Not all operations of = 4tions, spans linking rules, and access methods. The
the present_ed object algebra _(I. Savnik, 1999) are im- 4ata for the different phases of query processing is
plemented in the current version of system. The oper- siored in the same tree nodes. Each particular module
ations tha; are included are: mode!—based operations,e g. query optimization) manipulates its own view of
the operationselect , project , andjoin . query nodes.

Type-checking is implemented by procedure com-
puting the types of query nodes bottom-up, that is,
from access methods toward the root of query tree.
The class objects related to the access methods are

Record manageilhe record storage manager is based
on the Berkeley DB storage system providing access
to different storage structures such as for instance
hash-based index or B+ tree. Record m"‘.mager.'mple'retrieved during the parsing process. The type of a
ments a data'store for records representing individual uery node is stored by constructing a new class ob-
and class objects. Records are treated as arrays Oﬂact

bytes, the structure of which is known at the object '

level. Each record has a record identifier (abbr. rid) Query optimizer.The query optimization subsystem
implemented as system generated identifier which isis composed of the following main modules. The
used as the key for the hash-based index in Berkeleyquery tree manipulation module includes routines for
DB. Therefore, records are stored as oid/value pairs manipulation of query trees, application of rules on
where the values are packed in the sequences of bytesthe nodes of query trees, and property functions by
Record manager includes the methods for the work which the physical and logical properties of the query
with object identifiers, routines for reading and writ- tree nodes are determined.

ing records, methods for the realization of the hier- The cost function is realized by a separate module.
archical database model, and access to main memoryThe extensions of the cost functions used for the rela-
indices that are associated to the class object. tional query optimizer are defined. The optimization



@SH \ mization rules are in Qios specified in a language that

Ids EquClass  follows strictly the syntax and the semantics of the
X o— Qios query expressions.
Finally, the cost function module is used to esti-
\ ) mate the number of bytes processed by the physical
query tree including the cost of materialization of the
Norm. query exp intermediate query_eval_uation results. Th_e computa-
tion of the cost estimation for the operations select,

project and join is realized using standard relational

Figure 3: Mash with access paths formulas based on the selectivity of attributes and pre-

supposing the normal distribution of attributes values.
The computation of statistics for classes is gener-

ated dynamically, triggered by query compilation pro-
cedure when classes are loaded into the main memory.

dThe following data is gathered for a given class: the
number of class objects, the size of objects and the

cardinality of all attributes.

module comprises the algorithms for the optimization
of query expressions. The algorithms which are stud-
ied are the exhaustive search and an algorithm base
on dynamic programming.

The core of the module is the data structomesh
for the representation of sets of queries. Common Query evaluation systerithe query evaluation mod-
sub-expressions of queries are shared ie. each queryile is based on the iterator-tree representation of the
is represented imesh only once. Queries are orga- query evaluation plans. The physical query execution
nized into equivalence classes. Let us first present theplan is computed from the optimized query trees by
data structure Mesh. adding to the existing query nodes information about

mesh stores query expressions as query trees or- physical operation that will implement given logical
ganized as a directed acyclic graph (dag). The queryoperation (query node). The query nodes already con-
trees share common parts hence there is only one reptain information about the statistics, index selection,
resentation of a query expressionmesh. Further, and cost estimation.
the query trees are organized into equivalence classes The main strategy which was used in the imple-
including logically equivalent queriemiesh has three  mentation of query execution is to select reasonably
entry points. fast access methods on-the-fly without considering al-

The algorithm for query optimization is based on ternatives. Simple rules are used for index selection.
dynamic programming. We use the variant of dy- Firstly, if selection or join is based on equality of at-
namic programming algorithm callethemoisation  tributes than hash-based index is generated. Secondly,
which stores the optimal results of the sub-queries if selection or join involves range predicate we use B-
and uses them in the computation of the composedtree index. The selection of query execution plan is
queries. A simple brute force enumeration of all implemented by the procedure which computes phys-
reasonable compositions of operations from a given ical operations for all logical operations (query nodes)
guery to provide the basis for classical dynamic pro- forming the physical query tree in a bottom-up man-
gramming would be computationally too inefficient. ner.

The enumeration of equivalent queries of a given
guery have to be guided by some form - in our case,
the compositional structure of query.

Memoisation is realized in a very simple manner.
Every time a query is to be optimized we first check
Mesh if the optimal query already exists for a given
equivalence class of input query. At this point we can
see the use of Mesh fglan caching If we do not
clean Mesh after the execution of a given query that
the optimization of the subsequent queries can make
use of the existing optimized queries in Mesh. The

XML loader. XML loader provides the interface to the
Web. It can read XML data from local files as well

as the internet data sources. Tl files are parsed

and translated into the internal representation using a
parser SAX. Module includes the procedures for load-
ing XML data, conversion of the DTD schemata into
internal database schemata, and discovery of database
schemata from XML data.

optimization time is reduced significantly. 4 Empirical results
The query transformation rulesrre used for the
transformation of query trees into logically equiva- This section presents the initial experimental re-

lent query trees that have different structure and po- sults. A simple artificially generated database is used
tentially a faster evaluation method. The logical opti- for the experiments. We constructed eight tables that



include three attributes: the first two attributes are of | > | R | Comp | S| Opt | Eval | Inx | Mem
type integer, and the last one is a string. Each table 111)12ve8] 2| 31 | 7440 1 1 | 25M
include_s 10000 randomly generated records: th_e first % f 1914139 g 5’259 gggg g gim
two attributes are set tq random integer numberinthe| , | » 17 ol 149 | 6397 | 0 | 34Mm
range of 0 to 5000. String includes 300 characters. 311126650 4| 441 | 1682 | 3 | 42Mm
The queries used in the experiments form a chain| 3 | 2 23 | 0| 491 | 6991 | 0 | 42™M
of joins of lengthN. Each query is restricted byase- | 4 | 1 | 37857 | 5| 739 | 13121 | 4 | 52M
lection to force small number of query output records. g ? 4237080 g ;g% 173;”01757 g ggm
The fc_)llowmg example presents test query that forms = |2 33 ol 925 | 7205 | o | 6oMm
a chain of 5 classes. 6 | 1|51541| 7 | 1277 | 14296| 6 | 72M
Example 4.1 The query in this example joins classes | 6 | 2 40 | 0| 1194| 7631 | 0 | 72M
using the attributes pand . Note that the expres- 7] 1]64389| 8 | 1830 | 16539 | 7 | 87M
sions of the formr: p represents the name of attribute 712 46 | 0] 1982] 7473 | O | 8/M
p defined for a relation r. The conditionrd :: p1 <5 Figure 4: Query execution
restricts the output to small number of records.
select( join(rl.ext,
join(r2.ext, exceeds 87M which is acceptable for practically all
join(r3.ext, recent personal computers.
join(rd.extrsext, The optimization phase is relatively fast compar-
Xy X.:%'::;'ZM':'EZ y.'r;r::]brf“)?l ) ing t(_) com_putatioq of _statisticg and index creation.
sd: sr2:p2 == dr3:pl ), Th|s is achleveq primarily by using bea_m searc_h algo-
ZW: zrlip2 == wr2:pl ), rithm that restricts the number of choices during the
u: urlpl < 5) search td\ queries for each equivalence class. In the

The empirical results are presented in Figure 4. case of exhaustive sear_ch the exponential time curve
We observe two separate executions of the samelUrns very steep after 5]0|n_s. In the presented exper-
query. The first is executed after the system is started;!memS we have used the window (beam) of 7 queries
in this case the statistics and the indices are not cre-"N €ach equivalence class.
ated initially. The second execution is performed af-
ter the first one is completed so most indices are al-
ready created. We observe the following parameters:5 Réelated work
number of joins), the execution of query after sys-
tem startup (R=1) or later (R=2), time needed for the All recent database algebras have evolved from
compilation of query including computation of statis- the relational database algebra proposed by Codd in
tics (Comp), number of classes for which the statis- (Codd, 1970). Although some algebras do not include
tics was computed (S), optimization (Opt), evaluation the operations of relational algebra directly, each of
of query including the creation of indices and con- them is relationally complete i.e. it includes the abil-
sole output (Eval), number of created indices (Inx), ity to compute selection, standard set operations, pro-
and, finally, the amount of memory used by the sys- jection and Cartesian product.
tem (Mem). Time is specified in milliseconds. The Our work on object algebra has been influenced
experiments were done on Pentium 4 computer with by the early functional query language FQL proposed
500MB RAM running FreeBSD. by Buneman and Frankel (P. Buneman, 1979) and by
Let us now give some comments on empirical re- some of its descendants, for instance, the functional
sults presented in Figure 4. Firstly, it is obvious that database programming language FAD (S. Danforth,
the creation of indices for larger tables can signifi- 1992). The algebra is by its nature a functional lan-
cantly slow down the overall performance. This pays guage, where the operations can be combined by the
off through the efficient evaluation of queries. Indices use of functional composition and higher-order func-
are usually constructed gradually: the overall compu- tions to form the language expressions. The presented
tation is performed for sequence of queries where the object algebra can be treated as a generalization of
previous queries may trigger the construction of in- FQL for the manipulation of objects. It subsumes the
dices used by the subsequent queries. Least recentlyperations of FQL, i.e. operations extension, restric-
used indices are dropped if there is no more room in tion, selection and composition.
the main memory for a new index. This did not hap- Let us now present the work related to the imple-
pen during the experiments presented in Figure 4. Thementation of the presented query execution system.
amount of memory used during query execution never Firstly, the implementation is closely related to the



implementation of Query Algebra originally proposed from the relational and nested-relational algebras and
by Shaw and Zdonik in (G.M. Shaw, 1990) and im- the operations for querying the conceptual schemata.
plemented by Mitchell (Mitchell, 1993). In particular, Object algebra is implemented in the query execution
we have used a similar representation of query expres-systenQios which is rooted in the architecture of the
sions by means of query trees. Furthermore, the rep-relational and object-relational query processors.
resentation of query expressions in Qios is optimized
by using single operation nodes and query trees dur-
ing all phases of query processing. REFERENCES
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