
On formalization of object model by

unifying intensional and extensional

representations

Iztok SAVNIK

Faculty of Mathematics, Natural Sciences and Information Technologies,
University of Primorska, Glagoljaška 8, 5000 Koper, Slovenia

Abstract. In this paper we present the consequences of unifying the rep-

resentation of the schema and the instance levels of an object program-
ming language to the formal representation of object model. The uni-
form representation of schema and instance levels of object languages
is achieved, as in the frame-based knowledge representation languages

[9], by representing them using a uniform set of modeling constructs.
We show that, using such an approach, the structural part of the object
language model can be described in a clear manner providing the simple
means for the description of the main constructs of the structural model

and the relationships among them. Further, we study the consequences
of releasing the boundary between the schema and the instance levels
of an object programming language by allowing the definition of ob-

jects which include data from both levels. We show that few changes are
needed in order to augment the previously presented formal definition of
the structural part of object language to represent the extended object
model.

Keywords. programming languages, object model, conceptual models,
language semantics.

1. Introduction

In spite of considerable research effort directed to the problems of the formaliza-
tion of object model in the areas of programming languages [8,14,13], databases
[15,2,12,1,4] and conceptual modeling [3,5,6] in the last few decades, there is still
a lack of a precise theoretical framework for object model. The main reason for
this lies in the rich set of sophisticated data modeling constructs provided by the
numerous variants of object models.

In this paper we focus on one aspect of object model: a structural model.
Formal semantics of object model is presented in the denotational style [23]. The
presented formalization unifies the schema and the instance levels of a language
by treating classes as objects in a similar way as frames [9] are used to represent
abstract concepts.

The idea of treating classes as objects is present in various object-oriented
programming languages. For instance, Smalltalk [10] treats every construct of the



language as object. Programming language C++ [20] includes some introspec-
tive language constructs that provide the access to some properties of classes.
Finally, in Java [11] classes are indeed treated as objects but have different access
mechanisms comparing to the access to ground objects.

We show that the uniform treatment of extensional and intensional parts of
object model allows clear and robust definition of the formal representation of
object model. The same modeling constructs are used for the representation of
extensional and intensional parts of an object model. In the beginning we retain a
strict separation between the conceptual schema and the instance parts of object
repository. In the sequel, we observe the consequences of releasing the boundary
between these two parts of a object repository. Merging the intensional and ex-
tensional levels of an object programming environment is achieved by allowing
objects to include individual objects and classes as their components.

Uniform treatment of structural model simplifies the representation of com-
plex environments that have rich conceptual schemata. Examples include Internet
databases and repositories, and distributed database environments. Such envi-
ronments usually contain rich metadata repository where the distinction between
extensional and intensional representation is often blurred. Apart from serving
as formal framework for structural model, uniform treatment of extensional and
intensional parts of object model can serve as a basis for the definition of uniform
operations for the manipulation of intensional and extensional parts of object
repositories. They are presented in [16].

The first part of formalization, presenting the formal treatment of identifiers
and values, is given in Sections 2 and 3. We start the formal presentation by de-
scribing identifiers and their structural properties. We define values, relate them
to the previously presented identifiers and describe their properties. Section 4
presents formal definition of objects and their properties. The properties of ob-
jects are derived from the properties of values and identifiers. In Section 5 we
remove the boundary between the schema and the instance levels of object model
and study the consequences of this in the framework of the previously presented
formalisation. Related work is presented in Section 6. Finally, concluding remarks
and some aspects of implementation of the presented model are given in Section 7.

2. Identifiers

Let us first define some basic terminology used in the paper. We assume the exis-
tence of a predefined infinite set of identifiers O. An identifier is a unique symbol
which represents an abstract or concrete entity from the real world. Identifiers will
be denoted by terms written in the lower-case letters. For example, the identifier
tom serves as a unique identification of a person whose name is “Tom”, or, the
identifier student stands for the unique identification of the abstract representa-
tion of a student.

The set O is further divided into the set of individual identifiers OD repre-
senting concrete entities such as persons, and the set of class identifiers OC rep-
resenting abstract concepts, which usually stand for a group of individual enti-
ties. In some cases we will refer to the individual and class identifiers simply as
individuals and classes.



The most significant difference between class identifiers and individual iden-
tifiers is in their interpretations. While the interpretation of an individual iden-
tifier is the individual itself, the interpretation of a class identifier is the set of
individuals.

Definition 1. Let c ∈ OC . The interpretation of c, denoted ΠJcK, has the following
properties: (i) ΠJcK ⊂ OD, and (ii) ∀p(p ∈ OC ∧ p 6= c ⇒ ΠJc) ∩ ΠJpK = ∅).

The class interpretation specifies the membership relationship among indi-
vidual and class identifiers. Let id1 ∈ OD and id2 ∈ OC . The identifier id1 is a
member of the identifier id2 if id1 ∈ ΠJid2K. The membership relationship should
not be exchanged with the instantiation relationship, which is defined shortly.

A binary relation among class identifiers, denoted as (id1 subclass id2) where
id1, id2 ∈ OC , is used to represent the inheritance hierarchy of classes. We assume
that this relation is given by the definition of the conceptual schema of an object-
oriented database. Using the subclass relationship, we define a relationship �i.

Definition 2. Let id1, id2 ∈ O then id1 �i id2 if one of the following holds: (i)
id1 = id2, (ii) id1, id2 ∈ OC ⇒ ∃id3(id3 ∈ OC ∧ (id1 subclass id3) ∧ id3 �i id2),
or (iii) id1 ∈ OD ∧ id2 ∈ OC ⇒ ∃id3(id3 ∈ OC ∧ id1 ∈ ΠJid3K ∧ id3 �i id2).

The relationship �i is called more specific or, the opposite, more general re-
lationship. It can be easily seen that the relationship �i organises identifiers into
the partially ordered set (abbr. poset). It is reflective, that is, id �i id for all
id ∈ O. It is antisymmetric since id1, id2 ∈ O ∧ id1 �i id2 ∧ id2 �i id1 implies
id1 = id2. It is also transitive since id1 �i id2 ∧ id2 �i id3 implies id1 �i id3 for
id1, id2, id3 ∈ O.

Lemma 1. The set O is partially ordered by the relationship �i.

The ordinary class interpretation maps a class identifier to a set of individual
identifiers called the members of the class. By taking into account the previously
defined partial ordering among the class and individual identifiers, another inter-
pretation is introduced. The inherited interpretation [2] of the class identifier c

includes the members of the class c and the members of class c’s subclasses.

Definition 3. Let c ∈ OC . The inherited interpretation of c, denoted Π∗JcK, is
defined as: Π∗JcK =

⋃
p∈OC∧p�ic

ΠJpK

Using the above definition of the inherited interpretation, we define the in-
stantiation relationship commonly used to represent the associations between in-
dividual and class concepts. Let id1 ∈ OD and id2 ∈ OC . The identifier id1 is an
instance of id2 if id1 ∈ Π∗Jid2K.

3. Values

The concept of identifier is extended to the notion of value. The set of all values
is denoted as V. We distinguish between two basic types of value: identifiers and
structured values. The set and tuple constructors are used to build the structured



values from identifiers. Structured values are divided into the set of ground values
VD, and the set of values VT that represent types. Further, we assume the exis-
tence of a set of attribute names A. The following definition states the syntactical
structure of the values.

Definition 4. The value is one of the following: (i) id ∈ O, (ii) {o1, . . . , on}, where
oi ∈ V, or (iii) 〈A1 : oi, . . . , An : on〉, where oi ∈ V and Ai ∈ A.

Values which include only the individual identifiers are called ground values.
When the values are composed solely of class identifiers, we refer to them as types.
Analogously to our perception of class identifiers, types stand for the abstract
representation of a set of values. Formal definition of a type is given in [19].

Close integration of the concepts of class identifier and type provides a clear
method for the definition of type interpretation which can be now defined as a
straightforward extension of the class interpretation. The type interpretation is
defined as follows. Note that in the following definition Π∗

c denotes the inherited
interpretation of class identifiers.

Definition 5. Let t ∈ VT . With respect to type t structure, its interpretation,
denoted ΠJtK, is: (i) t ∈ OC ⇒ ΠJtK = Π∗

cJtK, (ii) t = {s} ⇒ ΠJtK = {o; o ⊂
ΠJsK}, or, (iii) t = 〈A1 : t1, . . . , An : tn〉 ⇒ ΠJtK = {〈A1 : v1, . . . , An : vn〉; vi ∈
ΠJtiK}.

This definition of the type interpretation specifies the membership relationship
between ground values and types.

The values that are more specific, or ”below” in the ordering defined by the
relationship �v, refine the more general values that are ”higher” in the set of
values V with regard to the relationship �v. The following definition states the
syntactical definition of �v.

Definition 6. Let v1, v2 ∈ V be values. The value v1 is more specific then the value
v2, denoted by v1 �v v2, if one of the following holds: (i) v1, v2 ∈ O ⇒ v1 �i v2,
(ii) v1, v2 ∈ VT ∧ v1 = {s} ∧ v2 = {t} ⇒ s �v t, (iii) v1, v2 ∈ VT ∧ v1 = 〈A1 :
a1, . . . , An : an〉 ∧ v2 = 〈B1 : b1, . . . , Bk : bk〉 ⇒ n ≥ k ∧ ∀bi(bi A v2 ⇒ (Ai =
Bi ∧ ai �v bi)), or (iv) v1 ∈ VD ∧ v2 ∈ VT ⇒ v1 ∈ ΠJv2K.

The relationship �v forms a partial ordering of values. It can be easily seen
that it is reflective, antisymmetric and transitive.

Lemma 2. The set V is partially ordered by the relationship �v.

The previous definition of the value poset captures the notion of partial or-
dering of types as defined by Cardelli in [8], or Vandenberg in [22]. It can be
obtained by restricting the set of all values V to types VT .

The type interpretation defined in the previous sub-section maps a type T

to a set of its members whose structure is strictly the same as the structure of a
given type. We remove this constraint by defining the inherited interpretation of a
type to be the union of the interpretation of a given type and the interpretations
of all types which are more specific than a given type.



Definition 7. Let t ∈ VT . The inherited interpretation of t, denoted Π∗JtK, is
defined as: Π∗JtK =

⋃
s∈VT ∧s�vt ΠJsK.

The above definition captures the notion of the instantiation relationship
between ground values and types. Formally, the instantiation relationship can be
defined as follows. Let v ∈ VD and t ∈ VT . The value v is an instance of type t if
v ∈ Π∗JtK.

Definition 6 gives a syntactical means for checking the relationship �v be-
tween values. The following theorem shows the correspondence between the syn-
tactical definition of �v and the inherited interpretation function Π∗.

Theorem 1. Let t1, t2 ∈ VT . The following relation between the relationship �v

and the interpretation Π∗ holds: t1 �v t2 ⇐⇒ Π∗Jt1K ⊆ Π∗Jt2K.

Proof. The first part of the proof is to show that the syntactical definition im-
plies the subsumption of the corresponding inherited interpretations. Definition
7, which presents the inherited interpretation of types, uses the relationship �v

to identify more specific values. If t1 is more specific than t2 then, according to
Definition 7, the set Π∗Jt1K has to be included in the set Π∗Jt2K.

The reverse direction can be proved in a similar manner. Suppose the relation-
ship Π∗Jt1K ⊆ Π∗Jt2K holds. Definition 7 states that Π∗Jt2K includes all inherited
interpretations of more specific types from VT . Therefore, if Π∗Jt1K is included in
Π∗Jt2K, than t1 has to be in the set of types which are more specific than t2, or
t1 �v t2.

4. Object Model

The proposed data model distinguishes between two aspects of objects. First, ev-
ery object has an identity, also called object identity (oid) which is realised by
an identifier that distinguishes it from all other objects in the language reposi-
tory. Second, every object has a value which describes its state. The two basic
object aspects are connected by means of a value assignment function that maps
identifiers to corresponding values.

We distinguish between primitive and defined objects. The identity of the
primitive object is the same as its value. The value of the defined object can be
any of the previously defined values.

Definition 8. An object is a pair o = (id, v), where id ∈ O and v ∈ V. The object
can be in the following two forms: (i) primitive object (id, id), where id ∈ OD, or
(ii) defined object: (id, v), where id ∈ (O −OD) ∧ v ∈ V.

The individual object represents a single concrete entity from a modelling
environment. Its value includes solely the individual identifiers. Secondly, class
object represents an abstract entity which stands for: the representation of an
abstract concept, or, from the other point of view, an abstract representation of
the set of individual objects. The value of a class object includes solely the class
identifiers. Examples of individual and class objects are given in [19].



4.1. Relations between ids, values and objects

In this sub-section, we present in more detail some relationships among the basic
elements of formal presentation: identifiers, values and objects. First, we present
the value assignment functions. Next, the inheritance of properties in the context
of presented formal view is discussed. Finally, we present the relations between
partially ordered sets defined in previous sections and the partially ordered set of
objects.

An object is described by a set of properties which are represented by at-
tributes. We assume that the attributes are defined for a particular object at the
time of their creation. The individual objects inherit attributes from their parent
class objects. The attributes of class objects are defined by the definition of classes
in a programming language environment.

The attributes that correspond to an object consist of: the attributes that
are directly associated to the class, and the inherited attributes. For this purpose,
two assignment functions are defined. The value assignment function ν is formally
defined as follows.

Definition 9. Let id ∈ O and ν:O → V a value assignment function such that
ν(id) = v where v ∈ V and (id, v) is an object.

The inherited value assignment function ν∗ returns all properties of an ob-
ject o. It is defined by the following definition. The relationship A denotes the
component-of relationship.

Definition 10. Let id ∈ O. The inherited value assignment function ν∗ : O → V
is defined as: ν∗(id) = 〈A1:v1, . . . , Ak:vk〉, where ∀Ai(Ai ∈ Atr ∧ ∃p(id �i p ∧
Ai:vi A ν(p))).

4.2. Structural inheritance

The inherited value assignment function ν∗ (Definition 10) can return a value
which includes more than one attribute with the same name. A problem arises
when we would like to access the value of such an attribute. There are two types
of conflicts. In the first case, inherited attributes with the same name are defined
for objects related by the relationship �i. In the second case, the cause of conflict
is multiple inheritance. In this situation, an object inherits two or more attributes
with the same name from more general objects which are not related by the
relationship �i.

The first type of conflict is resolved using the overriding principle; the at-
tribute which is the closest with respect to the poset of identifiers is chosen. Still,
according to Definition 10, both attributes are defined for the particular object.
The value of overridden attribute can be accessed by explicitly stating the object
of its definition. This approach is used in C++ as well as in Java.

An additional property of overriding principle is required in proposed data
model to establish conditions for partial ordering of objects. The value of attribute
A defined for a class c must be more specific than the value of attribute A defined
by a superclass of c. The attribute of subclass overrides the attribute of superclass.



Invariant 1. (Component refinement) Let id1, id2 ∈ O, A:v1 A ν(id1) and A:v2 A
ν(id2). The following implication must hold: id1 �i id2 ⇒ ν∗(id1).A �o ν∗(id2).A
(or v1 �i v2).

The symbol A stands for the relationship component-of. The value assignment
functions ν and ν∗ are used to obtain the values of identifiers. The dot operator
is then used to select the value of attribute A.

The property expressed by the above definition is necessary for the definition
of partial ordering relationship �o and for the definition of static type checking
algorithm [16].

Let us now show the second type of conflict that can appear with inheritance.
If a class inherits from two super-classes which are not related by the inheritance
hierarchy, two attributes and/or methods with the same name can appear in
the description of this class. This feature is usually called multiple inheritance
[21,8,14].

In the presented work we do not deal with this problem. The user has to
state the class where the attribute or the method is defined by means of explicit
quantification. Similar approach has been taken in the implementation of C++
[21]. Quite differently, in Java implementations multiple inheritance of classes is
forbiden [11].

4.3. The structures of objects

The partially ordered set of values can be seen as the following two posets. First,
the relationship �i organizes the identifiers into a partially ordered set. Second,
values that correspond to each of the identifiers are partially ordered by the rela-
tionship �v. In other words, if the relationship �i holds between identifiers, then
the relationship �v holds among the corresponding values. This is expressed by
the following Lemma. Note that id1 and id2 can be individual or class identifiers.

Lemma 3. Let id1, id2 ∈ O such that id1 �i id2, then ν∗(id1) �v ν∗(id2).

Proof. When the inherited value assignment ν∗ is applied to an identifier id, it
returns the union of the attributes that are defined for the object referenced
by id and all its more general objects. Since id1 �i id2 and since Invariant 1
requires that the attribute is always overridden by a more specific attribute, we
can conclude that ν∗(id1) �v ν∗(id2).

As a consequence of the above Lemma, we can define a relationship among
objects which integrates the relationships �i and �v. Analogously to the rela-
tionships �i and �v, we denote the relationship �o and we call it the relationship
more specific defined on objects.

Lemma 4. (relationship �o) Let o1 = (id1, v1) and o2 = (id2, v2) be objects. The
object o1 is more specific than o2, or o1 �o o2, iff id1 �i id2.

Proof. By Lemma 3.



Since the object identifiers uniquely identify objects and since, by the above
Lemma, the partial ordering relationship �v among object values is determined
by the relationship �i among object identifiers, the complete set of objects is also
partially ordered by the relationship �o.

Lemma 5. The set of objects {(id, v); id ∈ O ∧ v = ν(id)} is partially ordered by
the relationship �o.

In a similar way to the above definition of the relationship �o and partial
ordering of objects, the ordinary interpretation and the inherited interpretation
of class identifiers can be extended to class objects. They are denoted by Π and
Π∗.

Definition 11. Let oc = (idc, vc), where idc ∈ OC and vc ∈ VT , be a class object.
The interpretation of oc, denoted Π(oc), is: Π(oc) = {(id, v); id ∈ ΠJidcK ∧ v =
ν∗(id)}.

The inherited interpretation of class objects can then be defined in the same
manner. It is based on poset (O,�i).

Definition 12. Let oc = (idc, vc), where idc ∈ OC and vc ∈ VT , be a class object.
The interpretation of oc, denoted Π∗(oc), is: Π∗(oc) = {(id, v); id ∈ Π∗JidcK∧ v =
ν∗(id)}.

Again, as a consequence of the unique identification of objects by means of
object identifiers, the membership and the instantiation relationships between
the class objects and the individual objects are defined in the same manner as
the membership and instantiation relationships among the class and individual
identifiers.

5. Releasing the boundary

In the previous sections we have retained strict boundary between schema and
instance levels of object repository; this was achieved by making a strict distinc-
tion between values which represent types and ground values. The components of
the former are solely the class individuals, while the components of the later are
solely the individual identifiers. In this section we study consequences of allow-
ing values to include individual and class identifiers. We refer to such values as
abstract values.

The structure and the properties of identifiers is not affected by the change in
the definition of values. Therefore, we study the consequences of mixing schema
and instance levels of object repository by revising the properties of values, and,
further, the properties of objects.

5.1. Values

We start with the definition of values given by Definition 4. The definition does
not restrict the structure and the contents of values in any way. The set and tuple
structured values can include individual and class identifiers as leaf components.



Example 1. As an example, the value 〈name:string, age: int, works at:cs〉 is an
abstract value describing the structure of values representing the employees of
Computer Science Department represented by an identifier cs. Note that string

and int are class identifiers while cs is an individual identifier.

The partial ordering relationship �v defined in Section 3 has to be redefined
to relate values which are composed of individual and class identifiers. Intuitively,
the structured value v1 is more specific than value v2 if every component of v2

is replaced by a more specific or equal component. Formally, the relationship
more specific �v on abstract values is defined as follows.

Definition 13. Let v1, v2 ∈ V. The value v1 is more specific then the value v2, de-
noted as v1 �v v2, if one of the following holds: (i) v1 ∈ O∧v2 ∈ O: v1 �i v2, (ii)
v1 = {s1, . . . , sn}∧v2 = {t1, . . . , tk}: ∀ti(ti ∈ v2∧∃sj(sj ∈ v1 ⇒ sj �i ti)), or (iii)
v1 = 〈A1:a1, . . . , An:an〉 ∧ v2 = 〈B1:b1, . . . , Bk:bk〉: ∀bi(Bi:bi A v2∧!∀aj(Aj:aj A
v2 ∧ Aj = Bi ⇒ aj �o bi)).
The symbol A stands for the relationship component-of and the augumented quan-
tifier !∀ means ∀ but at least one.

Definition 6 poses more constraints on the structure defined by relationship
�v than Definition 13 since it is tied to the object model of programming sys-
tems. The only time it refers to the ground values is when describing relationship
between the instances and their types: v1 ∈ VD ∧ v2 ∈ VT ⇒ v1 ∈ ΠJv2K. The re-
lationship �v is more complex in the case of abstract values ordered by Definiton
13. Let us present some examples of pairs of values for which the relationship �v

holds.

Example 2. Suppose object repository includes: a set of class identifiers student,

phd student, etc.; a set of individual identifiers s1, s2, s3, etc. which are the mem-
bers of class student; a set of identifiers e1, e2, etc. representing employees; etc.
The following relationships are valid: s1 �v student, {s1, s2, s3} �v {student},
{phd student, e1, e2} �v {student, employee}, and 〈name:str, age:int, lives:
addr〉 �v 〈name:str, age:int〉.

Similarly to the values presented in Section 3, the set of values which can
include individual and class identifiers is partially ordered.

Lemma 6. The set of values V is partially ordered by the relationship �v.

Proof. We have to show that reflexivity, antisymmetry and transitivity proper-
ties hold for the relationship �v. We consider here only transitivity. Firstly, the
identifies are partially ordered by Lemma 1. Let v1, v2 and v3 be sets such that
v1 �v v2 and v2 �v v3. If for each element of v3 there exists a set of more specific
elements from v2 for which, in turn, there exists a set of elements of v1, then it is
also true that for each element of v3 there exists a set of more specific elements
of v1. Hence, v1 �v v3 holds. The case when v1, v2 an v3 are tuples can be proved
in a similar manner.

The interpretation of values Π given by Definition 5 and the interpretation Π∗

presented by Definition 7 do not need to be changed to express the interpretations



for the newly defined values. However, these two interpretations do not express the
complete semantics of mixed values. Using the previously defined partial ordering
relationship �v, we define another type of interpretation. For a given value v

the newly defined interpretation, referred to as natural interpretation, includes all
more specific values of v. Such interpretation allows the variables to range over
individual values and types.

Definition 14. Let v ∈ V. Natural interpretation Π⋄(v) is defined as follows:
Π⋄JvK = {v′; v′ ∈ V ∧ v′ �v v}.

5.2. Objects

In this sub-section, we revise the relationships among objects presented in Sec-
tion 4, and point out some differences which are the consequences of different
definitions of values.

The definition of objects given by Definition 8 can withstand the change
in the definition of values. To reconcile, each object has a unique identifier and
a value which can now include individual and class identifiers. We differentiate
between ground objects whose values are composed solely of individual identifiers,
and abstract objects whose values include at least one class identifier.

The inheritance principle defined for ordinary objects is used for objects with
mixed data and schema as well. As for ordinary objects presented in Section 4, the
value of object can be obtained as presented by the definition of inherited value
assignment function ν∗ (Definition 10). The properties which values are ground
are in the context of abstract objects inherited to all subclasses and instances,
but can not be refined within more specific objects. Different semantics is used
in Java where such attributes are called static data members (properties) [11].
In this case, the properties that have ground values are not inherited. Similar
design was chosen in Semantic Data Model [12] where such properties are called
class attributes and they are used to describe a property of classes, solely. To
subsume both semantics, Kifer in [14] proposes the use of two kinds of properties:
inheritable and non-inheritable.

The interpretations Π and Π∗ of ordinary class objects presented in Defini-
tions 11 and 15 can be adopted for mixed objects without any changes. These
interpretations remain to include only ground objects. Finally, the natural inter-
pretation of types (Definition 16) can be used also for mixed objects.

Definition 15. Let o = (id, v), where id ∈ O and v ∈ V, be a class object. The
natural interpretation of o, denoted Π⋄(o), is: Π∗(o) = {(id′, v′); id′ �i id ∧ v′ =
ν∗(id′)}.

The natural interpretation of an object includes besides the ground objects
also abstract objects including pure ”type objects” as well.

Definition 16. Let o ∈ O and (o, ν∗(o)) is an object. The natural interpretation
Π⋄(w) is defined as follows. Π⋄JtK = {v; v �o w}.



6. Related work

In this section, we overview the existing formalisations of object models and the
representation languages that are related to, or have influenced on the design of
the presented formalization of object model. A more complete overview of related
work can be found in [19].

First of all, the presented formal treatment of objects bears close resemblance
to the Frame-based languages [9]. The formal view of object model is based on
ideas introduced by Frame Logic (abbr. F-Logic) [14]. In comparison to F-Logic,
the presented formalization proposes a view of object which is closer to recent
implementations of object programming systems. We define the semantics of ob-
ject model that is close to the view presented in [2,15], show the consequences of
treating classes in the same manner as individual objects, and, afterwards, release
the barrier between schema and individual objects by allowing values to include
individual and class identifiers.

The proposed formalisation uses many ideas presented by some existing for-
mal representations of the object-oriented database model. Firstly, the formali-
sation is closely related to the formalisation of the O2 database model proposed
by Lecluse at al. in [15], and to the formal presentation of the database model of
IQL [2]. Secondly, our work is related to the formalisation of the database model
EXTRA presented by Vandenberg in [22]. Among the important features of the
formalisation of EXTRA are: the interpretation which, similarly to the inherited
interpretation of types [2], takes into account type hierarchy; and the interpreta-
tion of so-called reference types, which correspond to classes in the terminology
of IQL and ours.

By the presented formalization we define a data model which is related to the
family of languages popularly called description logic (abbr. DL) [5]. Description
logics evolved from KL-ONE [3]—a frame-based language that uses concepts and
roles for describing the modeled domain. Besides the similarities in the structural
properties of DL concepts and objects in our formalisation, they also share some
common operations: for instance, the subsumption test [5] is related to testing the
validity of the relationship �v between values, and, computing Least Common
Subsumer [7] corresponds to the model-based operations lub-set and glb-set [17].

7. Concluding Remarks

In this paper, we studied structural aspects of object model through the formal-
ization which unifies the instance and schema levels of object model. It is shown
that the structural part of object language can be seen as three partially ordered
sets: partially ordered sets of identifiers, values and objects. The relationships
between the elements of these sets are presented by defining the semantics of the
main features of object model, such as classes, types, inheritance, and instanti-
ation. The consequences of removing the boundary between the intensional and
the extensional levels of object model are studied. It is shown that only a few
changes and additional constructs need to be introduced in order to represent the
formal view of the extended object model.



The presented object model has been implemented in the framework of the ob-
ject algebra [16]. In brief, object algebra includes, in addition to the relational and
nested-relational operations also operations for the manipulation of extensional
and intensional parts of object repositories and the operations for the efficient
manipulation of complex composite objects. Object algebra is implemented as a
query language of the system for querying and integration of Internet data [18].

References

[1] S. Abiteboul, R. Hull, IFO: A Formal Semantic Database Model, ACM Trans. Database
Systems, Vol.12, No.4, 1987

[2] S. Abiteboul, P.C. Kanellakis, Object Identity as Query Language Primitive, ACM SIG-
MOD 1988

[3] R.J. Brachman, J.G. Schmolze, An Overview of the KL-ONE Knowledge Representation
System, Cognitive Science, Vol.9, No.2, 1985

[4] C. Beeri, A Formal Approach to Object-Oriented Databases, Data & Knowledge Engineer-

ing, No.5, 1990
[5] A. Borgida, Description Logics in Data Management, IEEE TKDE, Vol.7, No.5, October

1995
[6] A. Borgida, R.J. Brachman, D.L. McGuiness, L.A. Resnick, CLASSICS: A Structural

Data Model for Objects, SIGMOD 1989
[7] W.W. Choen, A. Borgida, H. Hrish, Computing Least Common Subsumers in Description

Logics, Proc. AAAI Conference, 1992

[8] L. Cardelli, A Semantic of Multiple Inheritance, Information and Computation, 76, 138-
164, 1988

[9] R. Fikes, T. Kehler, The Role of Frame-Based Representation in Reasoning, Comm. of
ACM, Vol.28, No.9, Sept. 1985

[10] A. Goldeberg, D. Robson, Smalltalk-80: The Language and Its Implementation, Addison-
Wesley Publishing Company, 1983.

[11] James Gosling, Bill Joy, Guy Steele and Gilad Bracha, The Java Language Specification
Third Edition, Addison Weseley.

[12] M. Hammer, D. McLeod, Database Description with SDM: A Semantic Database Model,
ACM Trans. Database Syst. 6, 3 (1981), 351-386

[13] R. Harper, Theoretical Foundations of Programming Languages (Draft), CMU, 2007.

[14] M. Kifer, G. Lausen, F-Logic: A Higher-Order Language for Reasoning about Objects,
Inheritance, and Scheme, ACM SIGMOD 1989

[15] C. Lecluse, P. Richard, F. Velez, O2, an Object-Oriented Data Model, ACM SIGMOD
1988

[16] I. Savnik, Z. Tari, T. Mohorič, ‘QAL: A Query Algebra of Complex Objects’, Data &
Knowledge Eng. Journal, North-Holland, Vol.30, No.1, 1999, pp.57-94.

[17] I.Savnik and Z.Tari, Querying Objects with Complex Static Structure, Proc. of Int. Conf.
on Flexible Query Answering Systems (FQAS’98), To appear, May 1998.

[18] I. Savnik, Z. Tari, ‘QIOS: Querying and Integration of Internet Data’,
http://www.famnit.upr.si/˜savnik/qios/, FAMNIT, April 2007.

[19] I. Savnik: On formalization of object model by unifying intensional and extensional rep-

resentations, Technical Report, FAMNIT, April 2009.
[20] B. Stroustrup, The C++ Programming Language, Addison-Wesley, 3rd edition, 1995.
[21] B. Stroustrup, Multiple inheritance for C++, AT&T Bell Laboratories, The C/C++ Users

Journal, May 1999.

[22] S.L. Vandenberg, Algebras for Object-Oriented Query Languages, Ph.D. thesis, Technical
Report #1161, University of Wisconsin-Madison, July 1993 ”

[23] G. Winskel, The Formal Semantics of Programming Languages: An Introduction, MIT

Press, 1993 (1-8).


