
QAL: A Query Algebra of Complex Objects

Iztok Savnik

University of Ljubljana

Faculty of Computer and Information Sciences

Tr�za�ska 25, 1000 Ljubljana, Slovenia

savnik@fri.uni-lj.si

Zahir Tari

Royal Melbourne Institute of Technology

Department of Computer Science

GPO Box 2476V, Melbourne 3001, Australia

zahirt@cs.rmit.edu.au

Toma�z Mohori�c

University of Ljubljana

Faculty of Computer and Information Sciences

Tr�za�ska 25, 1000 Ljubljana, Slovenia

Tomaz.Mohoric@fri.uni-lj.si

Abstract

The main motivation for the development of a query algebra of complex objects QAL is the study of

the operations needed to query the structural aspects of object-oriented databases which are due to the

advantages of the object-oriented database model over conventional relational and functional database

models. The basic operations of the QAL query algebra evolved from relational algebras and the FQL

family of functional query languages by re�ning their operations for the manipulation of objects. In order

to support the features speci�c to object-oriented data models, QAL o�ers: (i) a set of operations which

provide the means for querying conceptual schemata, and (ii) an operation which provides a simple and

e�cient way of querying nested components of complex objects. We show through a case-study consisting

of a comprehensive set of examples how these operations can be employed to express a class of queries

speci�c to object-oriented databases.

Index terms: Database algebras, object algebra, query languages, complex objects, conceptual

schema.

1

1 Introduction

The characteristics of a database algebra have to re
ect the properties of the algebraic structures for

which algebraic operations are intended. From this perspective, the di�erences between an object algebra

[55, 2, 47, 53, 32, 29, 33, 51] and an algebraic language de�ned for the manipulation of relations [16, 41, 1],

for instance, can be regarded as the consequences of di�erences in the underlying data models. The features

that have to be included in the object algebra are operations for handling the modelling constructs which

are speci�c to object-oriented data models, namely: the structural constructs including object identity,

types/classes, complex objects, and inheritance; and the behavioral constructs including methods, encapsu-

lation, overriding, overloading and late binding [6, 10].

In this paper, we study the operations of object algebras needed for querying the structural aspects of

objects which are due to the speci�c features of object-oriented data models compared to the
at relational

[16], nested relational [41, 1] and functional [48, 11] data models. In particular, we examine the operations

needed to express the following types of queries, which emerge from the need to deal with the modelling

constructs speci�c to the object-oriented database models: (i) queries by which the conceptual schema of a

database can be explored, (ii) queries which use the conceptual schema to retrieve portions of the extensional

database, and �nally (iii) queries that e�ciently manipulate complex objects.

The results of our work are presented in the form of a query algebra of complex objects referred to

as QAL. The QAL query algebra bears close resemblance to relational algebras, and the FQL family of

functional query languages [11, 9, 34]. Most QAL operations are generalisations of the operations of the

relational algebras for the manipulation of objects. Further, due to its close relation to the FQL family of

query languages, QAL embodies the advantages of functional query languages: it has a simple functional

semantics and it allows the construction of complex queries incrementally from simpler queries [11].

Let us now present the background and motivation for our work in more detail. First, the reasons for the

use of the conceptual schema to query object-oriented databases, and the basic ideas behind the proposed

operations for querying conceptual schemata, are given in the next sub-section. Second, the problems with

existing operations for querying complex objects, and a brief overview of our approach to querying complex

objects, are given in Section 1.2.

1.1 Using Conceptual Schema to Query Databases

In an object-oriented database, some aspects of the modelled environment can be represented and stored as

part of the database's conceptual schema. One example of such information is the adherence of an object to

its parent class, from which one can reason about its relationships with other classes forming the database

schema, its static and behavioural properties, and its relationships with other database instances [43]. As a

result, an object-oriented database system should provide facilities which allow inquiries and reasoning about

the properties of the individual objects which derive from their relationships to the conceptual schema.

Furthermore, due to the rich semantic relationships between the modelled concepts, or because of the

2

large number of di�erent concepts appearing in the modelled environment, the conceptual schema may be

complex. Consequently, users often need facilities which allow inquiring about the relationships among

the elements of the schema, in short, conceptual-schema querying facilities [38]. For example, a user may

be interested in the relationships between the classes course and assistant, the properties of the class

student, and so on. Using such facilities, the user can obtain the information needed to plan conventional

queries, or simply obtain answers to inquiries about the conceptual aspects of a database.

The QAL query algebra includes a set of operations for inquiring about the relationships between indi-

vidual objects and a conceptual schema, and the relationships among the elements of the conceptual schema.

These operations are based on the constructs of the QAL data model which, like the data model of F-Logic

[26], uni�es the representation of the intensional and extensional portions of an object-oriented database.

Hence, the operations are referred to as model-based operations. When used with other operations of the

QAL query algebra, model-based operations can serve as a basis for: (i) querying the conceptual schema

of an object-oriented database, and (ii) employing the relationships between the individual objects and the

conceptual schema in conventional queries.

1.2 Querying Nested Components of Complex Objects

There are two main approaches to the manipulation of complex objects used by recent object algebras

[54, 2, 47, 32, 33, 51]. The �rst approach evolved from the nested relational algebras [41, 1]. The operations

used in this approach include variants of the NF

2

operations nest and unnest [41], together with operations

for creating and
attening a set of sets [47]. This approach is used in some recent object algebras, including

Query Algebra [47], Object Algebra [33] and Aqua [32].

The second approach to the manipulation of complex objects evolved from functional programming

languages [39]. The operations for the manipulation of complex objects used in this approach are most often

variants of the operations apply to all and the operation (tuple) construction [7]. The database algebras

that have been in
uenced by the functional languages include: Complex Object Algebra [2], Object-Oriented

Query Algebra [53] and Query Algebra [47].

The above two types of operations together are commonly referred to as restructuring operations [2]. A

given object algebra either uses one of the approaches, or combines both of them. In general, the restructuring

operations are appropriate for expressing queries that: extract selected components of complex objects;

change the structure of complex objects at the upper level of the composition hierarchy; or, build entirely

new complex objects from existing complex objects. We argue in the paper that restructuring operations are

not suitable for expressing a class of queries that manipulate the nested components of complex objects and

retain the original structure of the argument complex object, at least, up to the manipulated component.

An example of such type of a query is �ltering a set of objects which is nested in an argument complex

object.

The major drawbacks of using the restructuring operations to query nested components of complex objects

are as follows. The use of the restructuring operations which evolved from nested relational algebras requires

3

either additional properties to be satis�ed by the manipulated complex objects, or additional indexing

techniques to be used in order to prevent the loss of information during restructuring. Further, the queries

which manipulate nested components are complex, and their evaluation is computationally expensive if

they are expressed by restructuring operations. A more detailed description of the disadvantages of using

restructuring operations to query nested components of complex objects is given in Section 6.2.

An operation called apply at is proposed for the evaluation of queries on the nested components of com-

plex objects [44]. The proposed operation is a generalisation of the well-known operation apply to all [7].

The operation apply at overcomes problems that arise when using restructuring operations to query nested

components of complex objects. We show that the proposed operation provides a simple and e�cient way

to query arbitrarily nested components of complex objects. In addition to the operation apply at, which

serves primarily for querying nested components of complex objects, the QAL query algebra includes a set

of restructuring operations that are primarily intended for restructuring complex objects.

1.3 Paper Organisation

The paper is organised as follows. Section 2 presents the formalisation of the data model of QAL. Next,

the operations of the QAL query algebra are presented in Section 3. Each of the operations is de�ned

formally. Their functionality is illustrated by example. In Section 4, we present the use of QAL operations

for expressing queries speci�c to object-oriented databases. In particular, we study their use for querying

the intensional portion of a database, and for querying complex objects. Later, the experiences obtained

with two prototype implementations of QAL are presented in Section 5. In Section 6 we present the algebras

and query languages which are related to the QAL query algebra. Finally, in Section 7 we give concluding

remarks and some directions for further work.

2 QAL Data Model

In this section, we present the formalisation of the QAL data model [42] which serves as a basis for the

de�nition of the QAL query algebra. The data model of QAL is an object-oriented data model which

provides, in addition to the basic constructs of object-oriented database models [6], a uniform view of the

database by treating classes as abstract objects. In this respect, the data model is based on ideas introduced

by the logic-based declarative language F-Logic [26].

The formalisation of the QAL data model serves as a framework for the de�nition of simple operations

intended for the manipulation of the properties of individual and class objects. Each of these operations

{ which are introduced in the next section { is de�ned using constructs introduced by the formalisation of

QAL data model. Further, we observe that the uniform treatment of the schema and data portions of the

database provides a simple means of de�ning semantic relationships among the basic concepts of the data

model, such as class and type interpretations, and the partial ordering of values.

In the following sub-section, we de�ne identi�ers and present some of their properties. Section 2.2 gives

4

the de�nitions of o-values and types and presents the basic structures they form. Finally, the structural

aspects of objects are presented in Section 2.3. Only the basic constructs of QAL data model, which are

essential for the development of the algebra, are presented in this paper. The complete formalisation of QAL

data model, along with a formal description of the object behaviour, can be found in [42].

2.1 Identi�ers

Let us �rst de�ne some of the basic terms used in the paper. We assume the existence of a prede�ned in�nite

set of identi�ers O. An identi�er

1

is a unique symbol which represents an abstract or concrete entity from

the real world. Let us present some examples of identi�ers.

The string \Tom", for instance, is an identi�er which represents the name of a person. Next, the symbol \4"

is an identi�er which represents the integer four. Such identi�ers are usually called constants. Furthermore,

the identi�er tom, for example, serves as a unique identi�cation of a person whose name is \Tom". Next,

the identi�er student is a unique identi�cation of the abstract representation of a student, which actually

stands for a class of individual students. Finally, the term string will denote an identi�er which represents

the concept of a string as used in programming languages. The identi�er string can also be seen as an

abstract constant which stands for a class of constants.

As suggested by the above examples, the set O is further divided into the set of individual identi�ers

O

D

, representing concrete entities such as person tom or number 4, and the set of class identi�ers O

C

,

representing abstract concepts such as identi�ers person or string which stand for a group of individual

entities. In some cases, we will refer to the individual and class identi�ers simply as individuals and classes.

The most signi�cant di�erence between class identi�ers and individual identi�ers lies in their interpreta-

tions. While the interpretation of an individual identi�er is the individual itself, the interpretation of a class

identi�er is the set of individuals. The interpretation of class identi�ers is de�ned as follows. Let id 2 O

C

.

The interpretation of id, denoted I

c

(id), has the following properties [3]:

1. I

c

(id) � O

D

, and

2. 8id

1

(id

1

2 O

C

^ id

1

6= id =) I

c

(id) \ I

c

(id

1

) = ;).

As can be seen from the above de�nition, we use the \common engineering intuition", as stated in [3], by

treating individuals as members of the interpretations of single class identi�ers. This design decision leads to

disjunctive sets of individuals that represent the interpretations of class identi�ers. Therefore, an individual

identi�er is an element of the interpretation of exactly one class identi�er.

The class interpretation speci�es the membership relationship among individual and class identi�ers. Let

id

1

2 O

D

and id

2

2 O

C

. The identi�er id

1

is a member of the identi�er id

2

if id

1

2 I

c

(id

2

). The

membership relationship should not be confused with the instantiation relationship which is de�ned shortly.

A binary relation among class identi�ers, denoted as (id

1

subclass id

2

) where id

1

,id

2

2 O

C

, is used

to represent the inheritance hierarchy of classes. We assume that this relation is given by the de�nition of

1

The identi�ers in QAL correspond to the so-called logical id-s, as introduced by Kifer et al. in [26].

5

the conceptual schema of an object-oriented database. Also, we assume the existence of a class called object

which is the root of the hierarchy de�ned by the relationship subclass. Using the subclass relationship,

we de�ne a relationship �

i

. Let id

1

,id

2

2 O then id

1

�

i

id

2

if one of the following holds:

1. id

1

= id

2

,

2. id

1

,id

2

2 O

C

=) 9id

3

(id

3

2 O

C

^ (id

1

subclass id

3

) ^ id

3

�

i

id

2

), or

3. id

1

2 O

D

^ id

2

2 O

C

=) 9id

3

(id

3

2 O

C

^ id

1

2 I

c

(id

3

) ^ id

3

�

i

id

2

).

The relationship �

i

is called more speci�c or, the opposite, more general relationship. An example of a set of

identi�ers ordered by the relationship �

i

is de�ned by the following terms: student �

i

person, employee

�

i

person, instructor �

i

employee, ta �

i

student, ta �

i

instructor, jim �

i

instructor, tom �

i

student, and john �

i

ta. The relationship �

i

forms a partial ordering of identi�ers [42, 45].

The ordinary class interpretation maps class identi�ers onto sets of individual identi�ers called the mem-

bers of the class. By taking into account the previously de�ned partial ordering of identi�ers, another

interpretation is introduced. The inherited interpretation [3, 55] of the class identi�er c includes the mem-

bers of the class c and the members of the subclasses of class c. Let c 2 O

C

. The inherited interpretation

of c, denoted I

�

c

(c), is de�ned as: I

�

c

(c) =

S

p2O

C

^p�

i

c

I

c

(p).

Using the above de�nition of the inherited interpretation, we de�ne the instantiation relationship com-

monly used to represent the associations between individual objects and classes. Let id

1

2 O

D

and id

2

2 O

C

.

The identi�er id

1

is an instance of id

2

if id

1

2 I

�

c

(id

2

).

2.2 O-Values

So far we have presented identi�ers and their structural properties. In this section, we extend the concept of

identi�er to the notion of o-value [3]. Let us �rst present the basic terms used in this section. We assume the

existence of an in�nite set of o-values V . As shown by the following de�nition, the set of o-values V subsumes

the previously de�ned set of identi�ers O. Just as the set of identi�ers O is partitioned into individual and

class identi�ers, we divide the set of o-values into the set of ground o-values V

D

, and the set of o-values V

T

that represent types. Further, we assume the existence of a set of attribute names A. The o-value is one of

the following:

1. id 2 O,

2. fo

1

,...,o

n

g, where o

i

2 V, or

3. [A

1

:o

i

,...,A

n

:o

n

], where o

i

2 V and A

i

2 A.

An example of an o-value is [name: \Jim",age:50,kids:fana,tomg,works at:cs], representing the proper-

ties of a person. The string \Jim" and the integer number 50 are the individual identi�ers which denote the

name and the age of a person. The component fana,tomg is the set of individual identi�ers which represent

kids, that is, the instances of the class identi�er person. Finally, the component cs denotes an individual

identi�er which stands for an object representing the Computer Science Department.

The o-values which include only the individual identi�ers are called ground o-values. When the o-values

are composed solely of class identi�ers, we refer to them as structural types, or simply types. The o-values

6

which include both individual identi�ers and class identi�ers are not permitted in the QAL data model. The

properties of such \mixed" o-values as well as their integration in an object-oriented database model are

presented in [45].

By analogy with our perception of class identi�ers, types stand for the abstract representation of a set

of o-values. Formally, a type is de�ned as follows. The o-value t is a type, that is, t 2 V

T

, if one of the

following holds:

1. t 2 O

C

,

2. t = fsg, where s 2 V

T

,

3. t = [A

1

:t

1

,...,A

n

:t

n

], where t

i

2 V

T

and A

i

2 A.

Let us present an example of a type. The tuple [name:string,age:int,kids:fpersong,works at:organ-

isation] represents the properties of person. The values of the attributes name and age are the class

identi�ers string and int which have the role of primitive types. Next, the value of the attribute works at

is a class identi�er organisation which has the role of a reference type [55]; the instances of organisation

are individual identi�ers representing di�erent organisations. Finally, the value of the attribute kids is

fpersong the instances of which are sets of individual identi�ers representing persons.

2.2.1 Properties of o-values

Close integration of the concepts of the class identi�er and the structural type provides a clear method for

the de�nition of type interpretation, which can now be de�ned as a straightforward extension of the class

interpretation. The interpretation of a type t 2 V

T

, denoted by I(t), is [3, 30]:

1. t 2 O

C

=) I(t) = I

�

c

(t),

2. t = fsg =) I(t) = fo; o � I(s)g,

3. t = [A

1

:t

1

,...,A

n

:t

n

] =) I(t) = f[A

1

:v

1

,...,A

n

:v

n

]; v

i

2 I(t

i

)g.

This de�nition of the type interpretation speci�es the membership relationship between ground o-values and

types. Let v 2 V

D

and t 2 V

T

. O-value v is a member of t if v 2 I(t). Therefore, the members of the

particular type t are the elements of the interpretation of type t.

The relationship �

i

de�ned on identi�ers is extended to relate o-values. The new relationship is denoted

�

o

. As with the relationship �

i

, we call the relationship �

o

the more speci�c relationship. Intuitively,

o-values that are more speci�c, or \below" in the ordering de�ned by the relationship �

o

, re�ne more

general o-values that are \higher" in the set of o-values V with regard to the relationship �

o

. Just as the

relationship �

i

organises identi�ers into a partially ordered set, the relationship �

o

forms a partial ordering

of o-values [45]. Formally, the relationship �

o

is de�ned as follows. Let v

1

,v

2

2 V be o-values. The o-value

v

1

is more speci�c then the o-value v

2

, denoted by v

1

�

o

v

2

, if one of the following holds:

1. v

1

,v

2

2 O

C

=) v

1

�

i

v

2

,

2. v

1

,v

2

2 V

T

^ v

1

= fsg ^ v

2

= ftg =) s �

o

t,

3. v

1

,v

2

2 V

T

^ v

1

= [A

1

:a

1

,...,A

n

:a

n

] ^ v

2

= [B

1

:b

1

,...,B

k

:b

k

] =) n � k ^ 8i(i 2 [1::k])

9j(j 2 [1::n] ^ A

j

= B

i

^ a

j

�

o

b

i

)), or

4. v

1

2 V

D

^ v

2

2 V

T

=) 9v

3

(v

3

2 V

T

^ v

1

2 I(v

3

) ^ v

3

�

o

v

2

).

7

The above de�nition of the o-value poset subsumes the notion of partial ordering of types as de�ned by

Cardelli in [13], or Vandenberg in [55]. It can be obtained by restricting the set of all o-values V to types V

T

.

The type interpretation introduced by the above de�nition maps a type T onto a set of its members whose

structure is strictly the same as the structure of a given type. We remove this constraint by de�ning the

inherited interpretation of a type to be the union of the interpretation of a given type and the interpretations

of all types which are more speci�c than a given type. Let t 2 V

T

. The inherited interpretation of t, denoted

I

�

(t), is de�ned as: I

�

(t) =

S

s2V

T

^s�

o

t

I(s).

Further, the above de�nition of the inherited interpretation of types speci�es the instantiation relationship

between ground o-values and types. Formally, the instantiation relationship can be de�ned as follows. Let

v 2 V

D

and t 2 V

T

. The o-value v is an instance of type t if v 2 I

�

(t).

The de�nition of the relationship �

o

gives a syntactical means for checking the relationship �

o

between

o-values. The correspondence between the syntactical de�nition of �

o

and the inherited interpretation

function I

�

can be shown by the following equivalence. Let t

1

,t

2

2 V

T

. It follows from the de�nitions of

the relationship �

o

and the inherited interpretation function I

�

that:

t

1

�

o

t

2

() I

�

(t

1

) � I

�

(t

2

).

Finally, we de�ne the extended interpretation of structural types which will be used for the de�nition

of the semantics of QAL variables when a variable is required to store a ground o-value or a type. The

extended interpretation of a type T, denoted by I

�

(T), includes all o-values that are more speci�c than type

T with respect to the relationship �

o

; hence, the extended interpretation of a type includes ground o-values

and types. Let T 2 V

T

. The extended interpretation of T, denoted as I

�

(T), is de�ned as:

I

�

(T) = fo; o 2 V ^ o �

o

Tg.

2.3 Objects

The data model of QAL distinguishes between two aspects of objects. First, every object has an identi�er,

also called object identi�er (abbr. oid), which distinguishes it from all other objects in a database. Second,

every object has an o-value which describes its state. The two basic object aspects are linked by means of

a value assignment function which is de�ned shortly. Formally, an object is de�ned as a pair (id,v), where

id 2 O and v 2 V .

We distinguish between primitive and structured objects. The identity of the primitive object is the

same as its value. An example of a primitive object is (1,1) which is a formal representation of the integer

number one. The identity of \1" is the same as its value. Similarly, the object (int,int) stands for the

formal representation of the integer type. As presented in Section 2.1, the term int represents an identi�er.

The value of a structured object can be any of the previously de�ned structured o-values. An example

of a tuple-structured object is (jim,[name:\Jim",age:50,kids:fana,tomg,works at:cs]), where the term

jim is an object identi�er which uniquely identi�es the object. This example presents an individual object; in

8

the following example, we give a description of an abstract entity represented by a class object. The object

(person,[name:string,age:int,kids:fpersong,works at:address]) stands for an abstract representation

of the person.

In the above examples, we made a distinction between individual and class objects. The individual object

represents a single concrete entity from a modelling environment. Its value includes solely the individual

identi�ers. The class object represents an abstract entity which stands for the representation of an abstract

concept. The value of a class object includes only class identi�ers.

Let us now introduce the value assignment function, which realises the mapping between identi�ers and

o-values. Let id 2 O. The value assignment function � : O ! V maps each identi�er id to the corresponding

value: �(id) = v, where v 2 V and (id,v) is an object.

3 Operations of the QAL Query Algebra

The QAL query algebra includes two types of operations: model-based operations and declarative operations.

The model-based operations are used to access and manipulate the properties of individual and class objects

which are represented by the constructs of the data model. All model-based operations are derived from

the concepts used in the QAL data model formalisation. The declarative operations of QAL are used to

express declarative queries on databases. The model-based operations are in this context used to assist the

declarative operations in expressing database queries.

One of the initial aims of our work was to de�ne a query algebra which can serve as the basis for a

declarative language to be included in a C++-based database programming language (abbr. DBPL). Ex-

amples of such DBPLs include E DBPL [21], ODE [4] and ObjectStore [36]. C++-based DBPLs include the

programming constructs for working with object identi�ers and structures rather than for the manipulation

of the abstract notion of object. For this reason, we de�ne operations of the query algebra to deal with

o-values.

The rest of this section is organised as follows. Firstly, the database environment that serves as the

working example for illustrating the use of QAL operations is presented in the following sub-section. The

model-based operations are de�ned in Section 3.2. Next, the declarative operations of QAL are presented in

Section 3.3. Each of the QAL operations is de�ned in a formal manner. The functionality of the presented

operations is illustrated by a set of examples.

3.1 Working Example

The examples in the following sub-sections are based on a conceptual schema which describes a simpli�ed

University environment. We use a simple language for the de�nition of classes, types and variables. Each

class is de�ned by its name, a set of superclasses and a type. The name of the class is speci�ed after the

keyword class. After specifying the class name, a list of superclasses can follow the keyword isa. The type

of the class can be stated after the keyword type. The static type of a class is speci�ed by an o-value as

9

introduced in the previous section.

class department

type [dept name: string,

head: employee,

staff: femployeeg];

class course

type [title: string,

instructor: lecturer];

class project

type [proj name: string,

descr: string,

attend: femployeeg,

budget: integer];

class person

type [name: string,

age: int,

address: string,

family: fpersong];

class student isa person

type [courses: fcourseg];

class employee isa person

type [salary: int,

manager: employee,

projects: fprojectg,

dept: department];

class lecturer isa employee;

class assistant isa lecturer;

class professor isa lecturer;

class student-assistant isa assistant,

student;

3.2 Model-Based Operations

The model-based operations are closely related to the concepts introduced by the data model formalisation

presented in the previous section. They are intended for inquiring about: the associations among the

individual objects, the relationships between the individual objects and class objects, and the relationships

among class objects themselves.

The following model-based operations are de�ned: valuation operations, extension operations, comparison

operations based on the o-value poset, closure operations based on the partial ordering relationship �

i

,

operations for �nding the nearest common more general or more speci�c objects of a set of objects, and

equality operations. The use of operations is presented by examples of queries which are written as predicate

calculus expressions.

3.2.1 Valuation Operator

Given an object identi�er, the value of the object can be obtained using the value assignment function �

introduced in Section 2.3. The value assignment function is realised in the query algebra by the operation

val. Let us look at an example to illustrate the use of the valuation function to obtain the properties of

individual and class objects.

Example 3.1 The �rst expression in this example calculates the value of the object identi�er s

1

, which is a

member of the class identi�er student. The result of the second expression is the type of the class student.

Note that the terms p

1

, c

1

, etc. represent object identi�ers.

10

s

1

.val = [name:\Jim",age:23,address:\Ljubljana",family:fp

1

,p

2

g,courses:fc

1

,c

2

g]

student.val = [name:string,age:int,address:string,family:fpersong,courses:fcourseg]

If the valuation function in a dot expression is followed by the attribute name, then the dot expression

can be abbreviated using the operator \�>", as is common in procedural programming languages. For

instance, the expression s

1

�>age is the abbreviation for the expression s

1

.val.age.

3.2.2 Extension Operations

In Section 2 we presented two types of class interpretations. Firstly, the ordinary interpretation I

c

of a class

identi�er maps it onto the set of its members. This operation is denoted by ext. Secondly, the inherited

interpretation I

�

c

of a class identi�er maps the class identi�er onto the set of its instances. This interpretation

is denoted by exts.

Example 3.2 This example illustrates the use of extension operations. The query given below is based on

the class hierarchy presented in Section 3.1. The result of the query is the set of identi�ers referring to the

objects representing persons who are younger than 22 years and who are not student assistants.

fo; o 2 person.exts ^ o�>age < 22 ^ o 62 student assistant.extg

3.2.3 Comparison Operations Based on O-value Poset

The simplest and most natural way to express object properties which relate to the partial ordering of o-

values is to use the partial ordering relationship �

o

introduced in Section 2.2. The comparison operations

related to the relationship �

o

are �

o

;�

o

;�

o

. Their semantics is de�ned in the usual manner, for example,

a �

o

b () a �

o

b ^ a 6= b. We call these operations poset comparison operations.

The poset comparison operations can be used to de�ne a subset of the partially ordered set of o-

values, such that the elements of the subset possess some properties that relate to the partial ordering

of o-values. The expression x �

o

lecturer, for example, de�nes a set identi�ers composed of the class

identi�ers lecturer, assistant, professor, student assistant, and including instances of these class

identi�ers as well.

Before illustrating the use of the poset comparison operations through a more complex example, the

operation that maps an individual identi�er onto its parent class identi�er is introduced. This operation

is denoted by the keyword class of [10]. It is de�ned as x.class of = c () x 2 I

c

(c), where x is

an individual identi�er and I

c

(c) denotes the ordinary interpretation of class identi�er c. Note that any

individual identi�er belongs exclusively to the interpretation of one class identi�er.

Example 3.3 The query in this example selects instances of the class identi�er person which are more

speci�c than the class identi�er lecturer and which are at the same time elements of either the class

identi�er student assistant or some more general class identi�er.

fo; o 2 person.exts ^ o �

o

lecturer ^ student assistant �

o

o.class ofg

11

In Example 3.3 the poset comparison operations are used to relate object identi�ers. The following

example shows the use of poset comparison operations to relate structured o-values.

Example 3.4 The query presented in this example selects the values of instances of the class person, which

have de�ned attributes family and manager. The value of the attribute family must be more speci�c than

the type femployeeg. Similarly, the value of the attribute manager is required to be more speci�c than the

class identi�er lecturer. The query is formulated as follows.

fv; o 2 person.exts ^ v = o.val ^ v �

o

[family:femployeeg,manager:lecturer]g

3.2.4 Closure Operations

We introduce two transitive closure operations subcl and supcl which are intended for computing the set

of all subclass or superclass identi�ers of a given class identi�er, respectively. Let c be a class identi�er. The

operations subcl and supcl are de�ned as follows.

c.subcl = fs; s 2 O

C

^ s �

o

cg

c.supcl = fs; s 2 O

C

^ c �

o

sg

Example 3.5 The query presented in Example 3.3 can now be stated as follows.

fo; o 2 person.exts ^ o.class of 2 lecturer.subcl ^ o.class of 2 student assistant.supclg

The transitive closure operations can express exactly the same relationships among class and individual

identi�ers as the previously presented poset comparison operations. The expression x �

o

y, where x and

y are class identi�ers, can be translated to x 2 y.subcl. In a similar way, the expression x �

o

y can

be translated to x 2 y.subcl ^ x 6= y. While the comparison operations can serve merely for expressing

relationships among object identi�ers, the result of the closure operation is actually a set of identi�ers, which

can then be used later in the query.

3.2.5 The Nearest Common More General and More Speci�c Objects

Two operations are de�ned for computing the nearest common more general and more speci�c identi�ers

of a given set of identi�ers with respect to the relationship �

i

. The operation which computes the nearest

common more general identi�ers of a set of identi�ers with respect to the relationship �

i

is called lub-set.

Next, the operation called glb-set computes the set of nearest common more speci�c identi�ers for a given

set of identi�ers.

Finding the nearest common more general (more speci�c) identi�ers of a set of identi�ers is related to the

least upper bound (greatest lower bound) operation as de�ned on lattices. Since the object identi�ers are

ordered into the partially ordered set, there may be more than one least upper bound identi�er for a given

set of object identi�ers. For instance, assume that the isa poset de�ned by the working example is extended

by the class object phd student for which the following relationships hold: phd student �

i

student and

12

phd student �

i

employee. In this case, the nearest common more general identi�ers of the class identi�ers

phd student and student assistant are the class identi�ers student and employee.

The operation lub-set is formally de�ned as follows. Given a poset (O;�

i

) and a set S such that S � O,

then the lub-set of S, denoted by S.lub-set, is the set L with the following properties:

1. 8o

1

;8o

2

(o

1

2 S ^ o

2

2 L =) o

1

�

i

o

2

) and

2. 8o

1

(o

1

2 O ^ S �

i

o

1

=) 9o

2

(o

2

2 L ^ o

2

�

i

o

1

)), where S �

i

o , 8a(a 2 S) a �

i

o).

The de�nition can be read as follows. Firstly, the object identi�ers from the resulting set must be related

to all identi�ers from the argument set S by the relationship �

i

. Secondly, there does not exist an identi�er

which satis�es the �rst condition and which is more speci�c than an object identi�er from the set of nearest

common more general identi�ers. Note also that the objects referenced by identi�ers from the result L include

all properties which are common to the objects referenced by identi�ers from the set S.

The operation glb-set is similarly de�ned. Given the set of identi�ers, the following two conditions must

be true. First, the identi�ers which are elements of the result set are more speci�c than every identi�er

from the argument set. Second, the result set includes only the most general identi�ers which meet the �rst

condition. The formal de�nition of glb-set is not presented here; it can be found in [45].

Example 3.6 In this example, we present the use of the operation lub-set. The following query selects

all members of the class identi�ers which are the nearest common more general identi�ers of the set fstu-

dent assistant,professorg.

fo; c 2 fstudent assistant,professorg.lub-set ^ o 2 c.extg

The query �rst �nds the set of class identi�ers referring to the nearest more general class objects which

include all properties which are common to the class objects referred by the identi�ers from the set fstu-

dent assistant, professorg. The members of these class identi�ers are the result of the query.

3.2.6 Equality

Two types of equality operation are de�ned. The �rst operation is the identity equality [10] denoted by the

symbol \==". Two objects referenced by identi�ers o

1

and o

2

are identical if the identi�ers o

1

and o

2

denote

the same value. The same equality operation is also used for comparing structured o-values. The o-values

v

1

and v

2

are identical if they have identical components. The formal de�nition of identity equality is as

follows. Let o

1

and o

2

denote two o-values. O-values o

1

and o

2

are identical, written o

1

== o

2

, if: (i) they

have the same type T; and, (ii) one of the following holds.

1. T 2 O

C

and, o

1

and o

2

denote the same value,

2. T = [A

1

:T

1

,...,A

n

:T

n

] and o

1

�>A

i

== o

2

�>A

i

, where i 2 [1::n], or

3. T = fSg and there exists one-to-one mapping F from o

1

.val onto o

2

.val, such that for each pair

(x,y) 2 F , where x 2 o

1

.val and y 2 o

2

.val, the identity equality x == y holds.

13

The second equality operation is the value equality. It compares objects on the basis of their values. We

distinguish between two types of value equality: deep equality [47] and local equality. Deep equality, denoted

by \=", is de�ned as follows. The objects referenced by object identi�ers o

1

and o

2

are deep equal, written

o

1

= o

2

, if their values are identical, that is, o

1

.val == o

2

.val.

The local equality operation, denoted \=/c", compares objects on the basis of the properties that pertain

to the particular class identi�ed by c. To be able to compare two objects using local equality \=/c", their

identi�ers have to be related to the class identi�er c by the relationships �

i

. This, of course, does not imply

that they have the same parent class. A formal de�nition of local equality is as follows. Let Atr(c) be the

function that returns the set of attributes de�ned for a class c. The objects referenced by identi�ers o

1

and

o

2

are locally equal for a class c, written o

1

=/c o

2

, if the following holds:

1. o

1

�

i

c and o

2

�

i

c, and

2. for each A 2 Atr(c) the identity equality o

1

�>A == o

2

�>A holds.

Example 3.7 Let us consider the following two objects: (i

1

,[name:\Tone",age:40,address:\Titova 1",

family:fp

1

,p

4

g,salary:50000,manager:m

1

,projects:fg,dept:e

2

]) and (i

2

,[name:\Vanja",age:24,add-

ress:\Jamova 5",family:fp

6

,p

9

g,salary:50000,manager:m

1

,projects:fg,dept:e

2

]). Both objects are in-

stances of the class employee. The objects are not value equal if all their properties are considered, yet they

are value equal considering the local properties of employee represented by the attributes salary, manager,

projects and dept.

3.3 Declarative Operations

The QAL query algebra is a functional language. Every declarative operation is a function which is used to

manipulate a set of o-values called the argument of the operation. Operations can be combined using the

functional composition operator and/or by use of the higher-order functional operations to form function

expressions [2] which are themselves functions. A function expression is a query when the argument and the

free variables which appear in the expression are bound to o-values

2

.

Formally, a QAL query is a function expression o:f

1

: : : :f

n

, where o is an argument o-value which can

be represented as a constant or a variable, the dot operator \." represents the functional composition, and

f

i

(i 2 [1::n]) are QAL operations. The operations can have a set of parameters which are, depending on the

operation, either o-values (queries), or function expressions. The result of a query is an o-value.

The set of declarative operations comprises three groups of operations. The �rst group includes the

generalisation of the basic operations of the (
at) relational algebra for the manipulation of o-values. This

group contains the operations select, union, di�er and intsc. The second group of operations extends the

functionality of the restructuring operations of NF

2

algebra [41, 17]. These are the QAL operations unnest

and group. The last group of QAL operations is a set of higher-order functions that evolved from functional

2

Abiteboul and Beeri [2] provide an extended discussion on the functions and the queries in algebras of complex values. The

de�nitions of terms function and query are taken from their work.

14

query languages [11, 18]. This set includes the QAL operations apply, tuple, close and apply at.

The rest of this section presents the examples illustrating the use of declarative operations for expressing

queries. All examples are based on the conceptual schema presented in Section 3.1. The variables used

in queries are de�ned in a similar manner to the de�nition of variables in the C (and C++) programming

language. The following expression, for example, speci�es the variable pset, the static type of which is

f[name: string,age: int]g.

struct f[name:string,age:int]g pset;

3.3.1 Apply

The operation apply(f) is used to evaluate a parameter function expression f on the elements of the

argument set. The operation is formally de�ned as follows.

s.apply(f) = fv; o 2 s ^ v = f(o)g

Example 3.8 An example of the use of the operation apply is given below. The presented query maps a

set of object identi�ers referring to instances of the class student onto a set of student names. The identity

function id is used to identify the elements of the set students, which is an argument of the operation.

struct fstudentg students;

struct fstringg names;

names = students.apply(id�>name);

As stated above, the parameter f of the operation apply can be any function expression. The following

example illustrates the case where the parameter of the operation apply is another apply operation. This

provides a tool for accessing nested sets (e.g., set of sets).

Example 3.9 The query below �rst maps a set of identi�ers, which are the elements of the interpretation

of the class identi�er student, to the set of sets which include identi�ers that refer to courses studied by

students. In the second step, the query replaces each identi�er from the nested sets with the identi�er which

refers to the instructor of the particular course. Therefore, the result of the query is a set of sets, where each

nested set includes references to the instructors of courses studied by a student.

struct ffinstructorgg insts sets;

insts sets = student.ext.

apply(id�>courses).

apply(id.apply(id�>instructor));

3.3.2 Selection

The operation select(p) is used to �lter an argument set of o-values by using a parameter predicate p.

The parameter predicate speci�es the properties of selected o-values. The selection operation is de�ned as

follows:

15

s.select(p) = fo; o 2 s ^ p(o)g

The type of the result is the same as the type of the input set of objects. The parameter predicate p

is a boolean function. The predicate can consist of constants, typed variables and/or nested queries. The

elements of the predicate can be related using the standard arithmetic relationships, the previously presented

model-based operations, the set membership operation in and the boolean operations and, or and not. Let

us illustrate the use of the operation select with an example.

Example 3.10 The following query uses the operation select to compute the names of students who attend

the course in graph theory.

struct fstringg stud names;

stud names = student.ext.

select(\GraphTheory" in id�>courses.

apply(id->title)).

apply(id�>name);

3.3.3 Set Operations

The algebra includes the set operations: union, intersection and di�erence, which are denoted union, intsc

and di�er, respectively. The formal de�nition of the set operations is given below.

s.union(u) = fo; o 2 u _ o 2 sg

s.intsc(u) = fo; o 2 s ^ o 2 ug

s.di�er(u) = fo; o 2 s ^ o 62 ug

If the types of the sets u and s are fT

1

g and fT

2

g respectively, then the type of the resulting set is

flub(T

1

,T

2

)g, where lub is the least upper bound operation.

Example 3.11 This example illustrates the use of the operation union. The query given below computes

the union of: the set of instructors who work in the department named E4, and the set of students who have

at least one instructor from this department.

struct fpersong e4 people;

e4 people = instructor.ext.

select(id�>dept�>dept name == \E4").

union(student.ext.

select(\E4" in id�>courses.

apply(id�>instructor�>dept�>dept name));

3.3.4 Close

The operation close(f) is de�ned in order to provide the end-user with a simple tool for the manipulation

of recursive data structures [52]. Its semantics is de�ned as follows. Given an argument set s that contains

16

instances of type T, the closure of this set is computed using the parameter function expression f. The result

of the evaluation of the function f must be instances of type T. The operation is formally de�ned as follows.

s.close(f) =

�

s if s

1

= fg; or

(s [s

1

):close(f) otherwise;

where s

1

= fo; 9p(p 2 s ^ p.class of = c ^ o 2 c.exts ^ o op p.f ^ o =2 s)g.

Depending on the cardinality of the result of the function expression f, op is either = or 2 operation. The

type of the result is the same as the type of the input argument.

Example 3.12 The following query selects from the interpretation of the class employee the set of employees

who earn less than 10000. The resulting set is extended by computing all managers of the previously selected

employees.

struct femployeeg empls;

empls = employee.ext.

select(id�>salary < 10000).

close(id�>manager);

3.3.5 Tuple

The operation tuple(A

1

:f

1

,...,A

n

:f

n

) is a generalisation of the relational operation project. Given a

set of o-values as an argument of the operation, a tuple is generated for each o-value from the set. Each

component of the newly created tuple is speci�ed by the corresponding tuple parameter consisting of the

attribute name A

i

and the function expression f

i

(1 � i � n). The function expression f

i

is evaluated for

each element of the argument set producing an o-value, which serves as the value of the attribute A

i

in the

resulting tuples. The operation tuple is formally presented below.

s.tuple(A

1

:f

1

,...,A

n

:f

n

) = f[A

1

:f

1

(o),...,A

n

:f

n

(o)]; o 2 sg

The type of the resulting o-value is f[A

1

:T(f

1

),...,A

n

:T(f

n

)]g, where T(f) denotes the type of the result

of a function expression f.

Example 3.13 The following query constructs a tuple for each member of the class student. The tuple

consists of the student name and the set of tuples that describe the courses studied by the student. Nested

tuples include titles of courses and names of instructors.

struct f[sname: string;

courses: f[title: string,

iname: string]g]g students;

students = student.ext.

tuple(sname: id�>name,

courses: id�>courses.

tuple(title: id�>title,

iname: id�>instructor�>name));

17

3.3.6 Group

The operation group(A:f,B:g) is used to group the elements of the argument set. The function expressions

f and g are evaluated on every element of the input set. The results of the evaluation of g are grouped in

accordance with the result of the evaluation of f.

The result of the operation group is an o-value whose structure is a two column table. The values of

the �rst attribute, denoted by the label A, are all distinct values of the function f applied to the input set of

o-values. The values of the second attribute, labelled B, are the groups of results of function g application

for o-values which share the common value of the function f. The operation group is formally de�ned as

follows.

s.group(A:f,B:g) = f[A:v

A

,B:v

B

]; 9r(r 2 s ^ v

A

=r.f ^ 8o((o 2 s ^ v

A

=o.f)) o.g 2 v

B

) ^

6 9p(p 2 s ^ p.g 2 v

B

^ p.f6=v

A

))g

The type of the resulting object is in the form of [A:T(f),B:fT(g)g], where T(f) denotes the type of the

result of the function expression f.

Example 3.14 This example presents the use of the operation group to group the members of the class

employee by their departments.

struct f[dept: department,

emps: femployeeg]g depts groups;

depts groups = employee.ext.

group(dept: id�>dept, emps: id);

3.3.7 Unnest

There are three di�erent types of restructuring operations that can be used to unnest structured objects in

an argument object. These operations are: (i) producing a
at structure from a set of sets, (ii) unnesting a

tuple component which is a set of o-values, and (iii) unnesting a tuple component which is a tuple. These

three operations are de�ned in many algebras, where they are usually denoted
atten, unnest [47] and

tup collapse [2], respectively.

In the QAL algebra, the above operations are de�ned in the frame of a single operation unnest. This

operation has di�erent behaviour depending on the type of object to which the operation is applied. The

advantage of such a de�nition is that it provides a uniform view of the previously presented operations.

Let us present the formal de�nition of the QAL operation unnest. The term s in the following de�nition

denotes a set of o-values, and the function T(o) returns the type of the o-value o.

(1) T(s) = ffSgg =) s.unnest= fo; 9s

i

(s

i

2 s ^ o 2 s

i

)g

(2) T(s) = f[A

1

:T

1

,...,A

i

:fT

i

g,...,A

n

:T

n

]g =)

s.unnest(A

i

) = ft; 9p(p 2 s ^ t.A

i

2 p.A

i

^ 8j(j 6= i) p.A

j

= t.A

j

))g

(3) T(s) = f[A

1

:T

1

,...,A

i

:[B

1

:S

1

,...,B

k

:S

k

],...,A

n

:T

n

]g =)

s.unnest(A

i

) = ft; 9p(p 2 s ^ 8l(l 2 [1::k]) t.B

l

= p.A

i

.B

l

) ^

8j(j 6= i) t.A

j

= p.A

j

))g,

18

Example 3.15 In this example, we illustrate the use of the operation unnest. The �rst query computes all

courses studied by the students. The second query computes the set of all pairs composed of object identi�ers

referring to the employees and their departments.

struct fcourseg courses;

struct f[dept: department,

emp: employee]g depts empls;

courses = student.ext.

apply(id�>courses).

unnest;

depts empls = department.ext.

tuple(dept: id, emp: id�>staff).

unnest(emp);

3.3.8 Apply at

To be able to apply a QAL function expression to any nested component of an o-value, the functionality of

the operation apply is extended by a new parameter which serves as a component selector. The operation

apply at(p,f) identi�es the desired components by applying the aggregation path p to the o-values which

are the elements of the argument set. The function f is evaluated on the identi�ed components.

The aggregation path is speci�ed by a sequence of attributes separated by dot operators. The evaluation

of the aggregation path serves solely for the identi�cation of the component, and does not restructure the

argument o-value. The only manipulation activity that results from the evaluation of the operation apply at

is the result of the argument function expression f evaluation. Let us present an example to illustrate the

use of the operation apply at.

Example 3.16 The following query �lters the nested components of o-values which describe departments.

The nested components are identi�ed by the attribute staff. The �ltered sets of object identi�ers include

references to employees older than 45.

struct f[dept name: string,

head: employee,

staff: femployeeg]g depts;

depts = department.ext.

apply(id.val).

apply at(staff,

select(id�>age > 45));

The operation apply at can be formally described by a set of rules. Let s be a set of o-values of type

fT

1

g, o be an o-value of type T

2

, p be an aggregation path, f be a function expression, and Atr be a function

which maps a tuple structured type T to the set of attributes de�ned by T. The operation apply at is de�ned

as follows.

19

(1) s.apply at(A.p,f) = fo'; 9o(o 2 s ^ o'.A = o.A.apply at(p,f) ^

8B((B 2 Atr(T

1

) ^ A 6= B)) o'.B = o.B))g

(2) o.apply at(A.p,f) = o', such that o'.A = o.A.apply at(p,f) ^

8B((B 2 Atr(T

2

) ^ A 6= B)) o'.B = o.B)

(3) s.apply at(null,f) = s.apply(f)

(4) o.apply at(null,f) = o.f

The above de�nition should be read as follows. If the input argument of the operation is a set s and the

path p is not empty, then the �rst rule is applied. Next, if the argument of the operation is a set s and the

path p is empty, then the ordinary operation apply is used to evaluate function expression f on the elements

of s by rule 3. If the argument is a single o-value, rule 2 is used to evaluate the function expression f on the

selected component. Finally, rule 4 is used to evaluate f on the single argument o-value in cases where the

path p is empty. Let us now illustrate the use of operation apply at by another example.

Example 3.17 In this example we present a more complex query which, given a data structure describing

departments, �lters the component identi�ed by the path expression staff.family by selecting only those

object identi�ers more speci�c than the class employee, that is, only those who are the members of the class

employee or some more speci�c class. Note that the type of the argument o-value depts is not changed.

struct f[dept name: string,

head: employee,

staff: f[emp name: string,

address: string,

projects: fprojectg,

family: fpersong]g]g depts;

depts = depts.apply at(staff.family,

select(id �

o

employee));

The prototype implementations of apply at show that it can be realised as an iterator [23] which recur-

sively accesses the target nested components of complex objects, passes them to the query tree which realises

the parameter function expression of apply at, and, �nally, assembles the results of the parameter function

expression. In other words, each complex objects passed to the iterator of apply at is individually decom-

posed and later assembled after the parameter function expression is evaluated on its nested components. It

is important to note that the operation apply at does not require restructuring of the argument complex

objects in the way they are restructured when using the restructuring operations (presented in Section 1.2)

for accessing the nested components of complex objects

3

.

By the previous de�nition of the aggregation path, the operation apply at can access any component

of complex values constructed by the set and the tuple constructors, with the exception of the elements of

multilevel nested sets, for example the elements nested in ff1,2g,f3gg. To be able to access the elements of

such components using the operation apply at, an operation \in" is de�ned. The operation can be included

in the aggregation path as any other ordinary attribute. Formally, its semantics can be de�ned by adding

the following rule to the previous de�nition of operation apply at.

3

The use of restructuring operations for querying nested components of complex objects is presented by Example 4.12.

20

(5) s.apply at(in.p,f) = fo'; 9o(o 2 s ^ o' = o.apply at(p,f))g

As can be seen from the above rule, the function of attribute in is analogous to the function of operation

apply. The argument of the operation in is a set of objects. The attribute that follows the operation in

(or, the argument query, where in is the last component of the aggregation path) is applied to each element

of the in's argument set. The use of the attribute in is demonstrated by the following example.

Example 3.18 Suppose that the following variable, named depts groups, represents the result of some

grouping of employees from each department; the value of the attribute groups is a set of sets containing

tuples describing employees. The query presented below �lters nested sets which are the values of the attribute

projects by selecting only those projects with a budget higher than 6000.

struct f[dept name: string,

groups: ff [emp name: string,

projects: fprojectg] gg]g depts groups;

depts groups = dept groups.apply at(groups.in.projects,

id.select(id�>budget > 6000));

4 Queries Speci�c to Object-Oriented Data Models

So far, we have presented the operations of the QAL query algebra. In this section, we focus on the

use of operations to express queries which are speci�c to object-oriented databases. Two types of queries

are presented: (i) queries that manipulate conceptual schemata, and (ii) queries that manipulate complex

objects. Queries that manipulate conceptual schemata are presented in Section 4.1. The queries are classi�ed

according to the kind of objects which they manipulate, and on the type of the operation they perform. We

show through a comprehensive set of examples that the model-based operations of QAL can serve as a tool

for expressing queries with which one can inquire about the properties of the conceptual schemata, and

about the relations between the individual objects and the conceptual schemata. Next, in Section 4.2 the

queries used for the manipulation of complex objects are classi�ed depending on the type of the operation

they perform. The presented classi�cation is based on the classi�cation of the operations on complex objects

presented by Kim et al. in [27]. We demonstrate that QAL operations can express the main types of queries

on complex objects.

4.1 Using Conceptual Schemata for Querying Databases

Let us �rst de�ne two general types of queries which will later serve for the classi�cation of queries which

use the conceptual schemata. Firstly, queries in which the structure and the meaning of data stored in a

database is explored, and the answers to which consist of the elements of the conceptual schema, are called

the intensional queries [38]. Secondly, the conventional queries by which the elements of the extensional

portion of a database are manipulated, and answers to which consist solely of the extensional portion of the

database are referred to as extensional queries.

21

In this sub-section we study two types of queries that use the conceptual schemata. Firstly, intensional

queries which use the model-based operations for inquiring and reasoning about the properties of the con-

ceptual schemata are presented. The second type of queries presented in this sub-section are the extensional

queries, where the model-based operations are used for querying the relationships between the individual

objects and the elements of the database conceptual schemata.

4.1.1 Intensional Queries

Intensional queries allow for browsing the schema using the navigational facilities of the query language,

posing questions about the properties of the schema elements, and inquiring about the associations among

the elements of the conceptual schema. The �rst two examples in this section present the use of intensional

queries for querying the inheritance hierarchy of classes. The third example presents an inquiry about the

structural properties of classes. The last example presents a query that searches for the common properties

of a set of objects.

The semantics of variables used in the examples and the semantics of the intermediate results of the QAL

queries is de�ned using the extended interpretation of types I

�

which is presented in Section 2.2.1. Given

a type T the interpretation I

�

(T) includes all o-values which are more speci�c than T with respect to the

relationship �

o

. Therefore, the interpretation of a type T can include ground o-values as well as types.

Example 4.1 The following query selects a set of class identi�ers which have the following properties.

Firstly, the selected class identi�ers are the subclasses of the class identi�er person. Secondly, the selected

identi�ers are more speci�c or equal to the class employee and more general than or equal to the class

student-assistant. In general, such queries use the poset comparison operations and/or the operations

subcl and supcl to select the subset of class identi�ers representing the conceptual schema.

struct fpersong classes;

classes = person.subcl.

select(id �

o

employee and id �

o

student-assistant);

Let us at this point give a detailed explanation of the type of the result which is fpersong. Firstly, the

operation subcl takes an argument class identi�er person and returns a set of class identi�ers which are more

speci�c than (or subclasses of) person. The type of this set is fpersong. Namely, the natural interpretation

I

�

(fpersong), which is used for the de�nition of the semantics of types, includes all subsets of the set

of identi�ers which are more speci�c than the class identi�er person. Secondly, in accordance with the

de�nition of the operation select, the type of result of the operation select is the same as the type of its

argument.

Example 4.2 The query presented below retrieves all classes at the top level of the class hierarchy

4

, that is,

the only superclass they have is object. Note that the role of the operator supcl in such queries is similar

to the role of the extension operator.

4

This query was originally presented in [22].

22

struct fobjectg top classes;

top classes = object.subcl.

select(id.supcl == fobjectg);

Example 4.3 The following query constructs a tuple for every superclass of the class student-assistant.

Each of the resulting tuples comprises the class object identi�er and the value of the class object. Therefore,

the static structure of the superclasses of the class student-assistant is returned by the query.

struct f[pclass: person,

ptype: [name: string,

age: int,

address: string,

family: fpersong]]g stat struct;

stat struct = student-assistant.supcl.

tuple(pclass: id,

ptype: id.val);

Note that because of the use of the extended interpretation I

�

for the de�nition of the semantics of types, the

result of the above query can be any o-value which is more speci�c than the type of the variable stat struct.

For instance, the resulting set includes the tuple [pclass:student,ptype:[name:string,age:int,address:

string,family:fpersong,courses:fcourseg]] which is constructed for the class student.

Example 4.4 The query presented below �nds all common superclasses of the classes from the set fstudent-

assistant,professorg. Firstly, the operation lub-set computes the set of the closest common superclasses

of the argument set of class identi�ers. Let us denote this set by s. Secondly, the set s is extended by the

class identi�ers which are more general than the class identi�ers from s. This is achieved by applying the

operation supcl to each class identi�er from the set s and then collapsing the set of sets using the operation

unnest. Note that the operation lub-set has to be used in order to assure that the resulting set includes

only the class identi�ers which are more general than or equal to both student-assistant and professor.

struct fpersong common supclasses;

common supclasses = fstudent-assistant,professorg.lub-set.

apply(id.supcl).

unnest;

4.1.2 Relating Extensional and Intensional Portions of a Database

The main characteristic of the extensional queries presented by the following examples is that they relate

individual objects to the information represented by the conceptual schema. The �rst example presents a

query that relates individual objects to the inheritance hierarchy of classes by using the poset comparison

operations and the operation class of. The query in the second example presents the use of poset comparison

operations to relate ground o-values with structural types. Next, the query in Example 4.7 presents the use

23

of model-based operations to generalise the results of extensional queries. Finally, the last example in this

section demonstrates the use of local equality to compare individual objects on the basis of the properties

that pertain to their relationships with particular classes.

The following two queries are equivalent to the queries from Examples 3.3 and 3.4, which are now restated

to illustrate the use of poset comparison operations in the context of QAL declarative operations.

Example 4.5 The query given below uses poset comparison operations to relate object identi�ers. It retrieves

the members of the class identi�ers which are more speci�c than or equal to the class identi�er lecturer

and, at the same time, more general than or equal to the class identi�er student assistant.

struct fpersong lecturers;

lecturers = person.exts.

select(id �

o

lecturer and

id.class of �

o

student assistant);

The parent class identi�er of each instance of the class identi�er person has to be computed (using the

operation class of) in order to select the members of class identi�ers that are more general than or equal to

student-assistant. However, the parent class identi�er does not need to be computed in order to determine

if an instance of person is an element of a class identi�er which is more speci�c than or equal to lecturer.

Namely, in accordance with the de�nition of the relationship �

o

in Section 2.2.1, the relationship id �

o

lecturer implies the relationship id.class of �

o

lecturer and vice versa.

Example 4.6 The following query demonstrates the use of the poset comparison operations for relating tuple

structured o-values. It returns instances of the type of the class person which are more speci�c than the

o-value [family:femployeeg,manager:instructor].

struct f[name: string,

age: int,

address: string,

family: fpersong]g people;

people = person.exts.

apply(id.val).

select(id �

o

[family: femployeeg,

manager: instructor]);

The result of the above query is the set of o-values of type f[name:string,age:int,address:string,family:

fpersong]g. The use of the extended interpretation of types I

�

allows the instance of a given type T to be

any o-value more speci�c than T . Therefore, the instances can include { in addition to the attributes de�ned

by T { some further attributes.

Example 4.7 The query given below answers the following question: Which are the parent classes of em-

ployees who work in CSD and who are younger than 25? The query �rst �lters the set of individual identi�ers

24

denoting employees and, then applies the operation class of to each identi�er from the �ltered set. The re-

sulting set of class identi�ers acts as the generalisation of the �ltered set of individual identi�ers. The result

could be further generalised using the operation lub-set, which computes the closest common more general

class identi�ers of a set of identi�ers.

struct femployeeg empls classes;

empls classes = employee.exts.

select(id�>dept == csd and

id�>age < 25).

apply(id.class of);

Example 4.8 The comparison of individual objects based on properties inherited from particular classes is

illustrated by the following query. The query uses local equality as de�ned in Section 3.2 to select student

assistants who have the properties which relate to their role of being employees equal to the properties of an

employee referenced by the variable peter.

struct fstudent assistantg assistants;

struct employee peter;

assistants = student assistant.exts.

select(id.val =/employee peter.val);

4.2 Querying Complex Objects

In this section, we present the use of QAL operations for the manipulation of complex objects. The pre-

sentation is based on the classi�cation of operations on complex objects de�ned by Kim et al. in [27]. The

following types of queries which manipulate complex objects are presented in Sections 4.2.1 { 4.2.4. Firstly,

the set of complex objects can be �ltered by specifying a selection condition on the values of simple and

complex attributes of argument complex objects. The values of complex attributes are accessed using path

expressions and/or nested queries. The queries of second type retrieve the selected attributes from the
at

and/or nested levels of complex objects from the argument set. Next, we present queries which manipu-

late nested components of complex objects. Finally, the use of QAL operations for restructuring complex

objects is demonstrated. All examples presented in this section use the complex object depts representing

departments and their employees introduced by Example 3.17.

4.2.1 Retrieving Complete Complex Objects

The operation which �lters a set of complex objects and retrieves the entire complex object is sometimes

called object selection [33]. In the simple case { when the selection condition is based on the values of the

single-valued attributes of complex objects { retrieving the entire complex objects can be expressed using

the operation select and ordinary path expressions [10]. Let us give an example of such a query.

25

Example 4.9 As in other examples presented in this section, we use the variable depts representing de-

partments and their employees from Example 3.17. The following query selects all departments whose head

is a member of the class professor or some more speci�c class.

depts = depts.select(id.head.class of �

o

professor);

A more complex case is retrieving complex objects by expressing the predicates on the nested components of

complex objects. The predicates are speci�ed by the use of nested queries. A query of this type is presented

by the following example.

Example 4.10 The query given below retrieves departments which are involved in the project identi�ed by

object identi�er pr4.

depts = depts.select(pr4 in id.staff.

apply(id.projects).

unnest);

4.2.2 Projecting Components of Complex Objects

The second type of queries which retrieve complex objects is similar to the nested-relational operation

project as de�ned in [1, 17, 33]. Queries of this type project the selected attributes from the
at level and/or

from the nested levels of the argument complex objects. They can be realised using the QAL operations

tuple and apply. The operation tuple is used for projecting the selected attributes. However, it can realise

much more complex operations by using arbitrary functional expressions to specify the components of the

constructed tuples. The operation apply is in this context used to access the elements of the arbitrarily

nested sets. An example of a query that projects the selected components of the complex object is given

below.

Example 4.11 Given a set of o-values describing departments, the presented query projects the values of

the attribute head and the values of attributes that describe personal information about employees.

struct f[head: employee,

staff: f[emp name: string,

address: string,

family: f person g]g]g depts personal;

depts personal = depts.tuple(head: id.head,

staff: id.staff.

tuple(emp name: id.emp name,

address: id.address,

family: id.family));

4.2.3 Querying Nested Components of Complex Objects

In this section, we present queries that manipulate nested components of the argument complex objects

and retrieve the complete complex objects that have changed target components. Such queries can be

26

manipulated using the operations of the two approaches presented in Section 1.2. The �rst approach, which

is most commonly employed in object algebras, is the use of restructuring operations which evolved from

NF

2

algebras [41, 1]. The second approach to querying complex objects is the use of higher-order functional

operations which evolved from functional languages [7, 11].

The queries which manipulate nested components of complex objects can be in the QAL query algebra

expressed using the operation apply at. Let us present an example of a query which manipulates the nested

components of the complex object and express it by the operations of di�erent approaches.

Example 4.12 The �rst query demonstrates the use of the operation apply at for querying nested com-

ponents of complex objects. The complex objects from the set, which is the value of the variable depts, are

manipulated by �ltering the nested sets identi�ed by the attribute family. The original set is replaced by the

set of family members who are younger than 30.

depts = depts.apply at(staff.family,

id.select(id�>age < 30));

The simplest way to express the above query using the previously stated �rst type of restructuring operations

is to use the ordinary NF

2

restructuring operations nest and unnest as they are de�ned, for instance, in

[41]. Suppose that the relation r is de�ned by the set of attributes fA

1

,...,A

n

g. In brief, the operation

r.nest(S,B

1

,...,B

k

), where B

i

2 fA

1

,...,A

n

g, creates a nested relation named S which includes the

values of the attributes B

1

,...,B

k

. Next, the operation r.unnest(A) unnests the nested relation represented

by the attribute A 2 fA

1

,...,A

n

g. The above query can now be expressed as follows.

depts = depts.unnest(staff).

unnest(family).

select(id�>age < 30).

nest(family, family).

nest(staff,emp name,address,projects,family);

In order to express this query with the operations used by the previously stated second approach to querying

complex objects, we can use the QAL higher-order functional operations tuple and apply. The query that

is equivalent to the above query can be expressed as follows.

depts = depts.tuple(dept name: id.dept name,

head: id.head,

staff: id.staff.

tuple(emp name: id.emp name,

address: id.address,

projects: id.projects,

family: id.family.

select(id�>age < 30)));

4.2.4 Restructuring Complex Objects

In this section, we present the use of QAL operations for restructuring complex objects. The �rst example

demonstrates the use of QAL restructuring operations to realise the typical restructuring operations on NF

2

27

relations. Next, we present a type of query which uses restructuring operations together with the operation

apply at to realise restructuring of the nested components of complex objects.

Example 4.13 As in other examples in this section, we use the variable depts de�ned in Example 3.17.

The query �rst unnests the attributes staff and projects. The operation unnest has to be used twice in

order to
atten the nested sets of tuples which are the values of the attribute staff (see the de�nition of the

operation unnest in Section 3.3.7). The �rst operation unnest
attens the nested sets of tuples, and the

second unnest collapses the nested tuples. Next, the query groups the names of employees and departments

by the projects in which they participate.

struct f[project: project,

group: f[emp name: string,

dept name: string]g]g proj groups;

proj groups = depts.unnest(staff).

unnest(staff).

unnest(projects).

group(project: id.projects,

group: id.tuple(emp name: id.emp name,

dept name: id.dept name));

If the parameter function expression of the operation apply at includes a restructuring operation, then

the complex object is restructured at the component determined by the aggregation path. In this way,

a restructuring operation can be applied to any nested component of a complex object. The use of the

restructuring operation tuple as the parameter of the operation apply at is illustrated by the following

example.

Example 4.14 Given a set of complex objects describing departments, the following query �rst identi�es

the components that include a set of identi�ers referring to projects and then replaces every occurrence of an

oid with a tuple that contains the name and the budget of each project.

struct f[dept name: string,

head: employee,

staff: f[emp name: string,

address: string,

projects: f[proj name: string,

budget: int]g,

family: fpersong]g]g depts projects;

depts projects = depts.apply at(staff.projects,

id�>tuple(proj name: id�>proj name,

budget: id�>budget));

5 Prototype Implementations

Two prototypes of the QAL query algebra were developed. The �rst prototype was implemented using

Sicstus Prolog [49]. The prototype serves as an experimental environment for studying theoretical aspects

28

of object-oriented data models and object algebras. The second prototype is implemented as an extension

of the database programming language E [21]. It is used for studying the problems of QAL integration with

the C++-based database programming language. In both prototypes we did not address the problems of

e�cient implementation and query optimisation. Some aspects of the Prolog and E-based implementations

are presented in the following sub-sections.

5.1 The Prolog-based Prototype

We aimed to study previously presented theoretical aspects of the QAL algebra using the prototype which is

exible enough to be able to experiment with the data model and the operations of QAL. The Prolog-based

prototype is not tied to any particular type system or subject to any similar constraint, unlike, for example,

our second prototype, which extends the E database programming language, and is thus constrained by the

E type system. The basic motives in the Prolog-based implementation of QAL were the study of: (i) the

operations for the e�cient manipulation of complex objects, (ii) the implementation of the substitutability

principle [35] in the context of a query language, (iii) the optimisation of queries which include model-based

operations, and, (iv) the implementation of static type checking of QAL queries.

The prototype comprises a simple user-interface module, a query evaluation module, and a storage man-

ager module. The query evaluator consists of the query interpreter, query optimisation, and type-checking

sub-modules. The query interpreter is designed similarly to the query execution sub-system of Postgres

extended relational database system [12, pp.78]. The query optimiser is currently under development. In

the current version of the prototype, we implemented some ad-hoc optimisation rules necessary to speed up

the evaluation of the most critical types of nested queries. Static type checking is implemented to provide

the user with diagnostics for type errors [42]. The type checking algorithm is based on the ideas presented

by Cardelli in [13]. The QAL storage manager is implemented on top of Postgres DBMS. The external

representation of objects is based on the subset of the structural part of F-Logic [26]. A more detailed

description of the prototype implementation can be found in [42].

5.2 Extending the Database Programming Language E

The basic intention of the second prototype implementation is to study QAL integration with a C++-based

database programming language [21, 31, 4] (abbr. DBPL), which itself provides programming constructs for

the manipulation of collections of database objects. The integration of QAL in a C++-based DBPL extends

the functionality of the DBPL by adding to it facilities for declarative manipulation of database objects. The

problems that arise in the integration of procedural programming languages and declarative query languages

are the consequences of the di�erent syntax and semantics of the two languages. They are often referred to

as the impedance mismatch problem [5].

The extension of the E DBPL with the constructs of the query language QAL is realised by extending

the semantics of dot expressions which are commonly used for accessing record components in procedural

programming languages (e.g. C programming language). The ordinary dot expressions are extended to

29

subsume functional queries expressed by the QAL query algebra. From our experience, the functional nature

of QAL and its comprehensible operations make the language suitable for integration with an object-oriented

programming language.

The integration of the E language with the QAL query algebra is implemented by a preprocessor that is

realised as an extension of the existing C++ parser cppp [19]. The preprocessor is written using the standard

Unix tools Yacc and Lex. The C++ parser cppp is extended to: (i) recognise E constructs, and (ii) compile

QAL expressions into E code. The currently implemented features of the query language are: support for

class extensions and QAL sets, the operation apply restricted to the evaluation of the class data members

and member functions, and the operation select.

The sets are implemented using the class template setof<T>. The generic type T can be any legal E

dbtype. Further, each E dbclass is extended by the concept of a class extension. The class extension is

a set of object identi�ers that refer to the class members. Class extensions obey the following restrictions:

(i) they are de�ned only for dbclass-es

5

, (ii) a class extension is a persistent set of dbpointer-s, (iii) they

include only the persistent instances of the dbclass, and (iv) an instance object can be an element of the

single class extension. The operations ext and exts, which are de�ned in Section 3.2, are used for accessing

the class extensions.

Example 5.1 This example presents the use of the operation select in the E language extended with the

constructs of the QAL query algebra. The operation select �lters the set p by selecting from it persons who

are younger than the value of the variable max age and do not work in Ljubljana. The variable this denotes

an implicit variable which iterates through the argument set of the operation select.

int max age;

setof<person> p;

...

setof<person> ps = p.select(this->age < max age &&

!(this->works in institution.ext.

select(this->address = \Ljubljana")));

6 Related Work

Almost all recent database algebras have evolved from the relational database algebra proposed by Codd

in [16]. Although some algebras do not include the operations of relational algebra, each of them includes the

ability to compute selection, standard set operations, projection and Cartesian product. This is somehow

natural, since the algebraic structures of recent algebras subsume or extend
at relations. In the QAL algebra,

some of the relational algebra operations are generalised to be able to manipulate objects, while some have

retained their original semantics. The QAL operation tuple, for instance, generalises the relational operation

project. On the other hand, the QAL set operations (e.g. union) are de�ned as in the relational algebra.

The work on the QAL algebra has been in
uenced by the early functional query language FQL proposed

5

Class extensions are not de�ned for ordinary C++ classes.

30

by Buneman and Frankel [11], by some of its descendants, that is, GDL [9] and O

2

FDL [34], and by the

functional database programming language FAD [18]. The algebra is by its nature a functional language,

where the operations can be combined by the use of functional composition and higher-order functions to

form the language expressions. The algebraic structures manipulated by FQL are entities represented by the

functional data model. The QAL algebra can be treated as a generalisation of FQL for the manipulation

of objects. It subsumes the operations of FQL, i.e. operations extension, restriction, selection and

composition, as well as the extensions of FQL provided by the query languages GDL [9] and O

2

FDL [34].

Further, the QAL algebra is closely related to the Query Algebra originally proposed by Shaw and Zdonik

in [47]. This algebra has been further used as the basis for the EXCESS/EQUAL algebra [35] and its query

optimiser, and for the algebra Aqua [32]. QAL shares many similarities with these algebras in some of the

basic operations (i.e. select, tuple and set manipulation operations), while it di�ers in the operations for

restructuring complex objects and for querying nested components of complex objects. In addition, QAL

includes a rich set of primitive operations which serve for querying database schemata.

In the following sub-sections, we present the approaches of other algebras and query languages to the

two problems addressed in this work. First, the existing approaches to querying conceptual schemata are

presented. Next, the existing operations for querying nested components of complex objects are overviewed.

6.1 The Use of Schema for Querying Databases

While the problem of querying conceptual schema of object-oriented databases has, to our knowledge, not

been addressed by recent database algebras, there are some query languages which include facilities to

manipulate schema.

In this respect, QAL was signi�cantly in
uenced by F-Logic as proposed by Kifer, Lausen and Wu in [24]

and [26]. F-Logic is a declarative language which incorporates the constructs of object-oriented data model

and the frame-based knowledge representation languages into logic. The possibility of querying data and

schema portions of a database emerged from frame-based knowledge representation languages which use the

same language constructs for the representation of the schema and the data portions of the database. In brief,

F-Logic provides the following possibilities for querying database schema. Firstly, the relationships between

instances and classes, which are based on the isa hierarchy of database objects, can in F-Logic be queried

using the prede�ned predicates for testing class membership and the subclass relationship. Secondly, F-Logic

provides facilities to explore the properties of individual and class objects by treating attributes and methods

as objects that can be manipulated in a similar manner to other database objects. This allows, among other

things, inquiring about some types of non-trivial relationships among objects such as the analogy and the

similarity relationships.

Similarly to F-Logic, the query language XSQL [25] includes a set of constructs for querying database

schema. XSQL queries can include variables that range over class objects. Therefore, classes can be queried

on the basis of their properties and the properties of their instances. The XSQL operation subclassOf can,

in this context, be used to inquire about the relationships among classes which are based on the inheritance

31

hierarchy of classes. In a similar manner to F-Logic, XSQL also treats attributes and methods as objects

that can be queried; hence, a user can inquire about the properties of individual and class objects.

Further, the work on QAL was in
uenced by the work of Papazoglou presented in [38]. He suggests a set

of high-level operations for expressing intensional queries which aid the user in understanding the meaning of

stored data. The proposed operations can express the following types of queries: relate individual objects to

classes, browse the isa hierarchy of classes, inquire about the class properties, compute associations among

classes which are not related by isa relationship, locate objects on the similarity basis, and inquire about

the dynamic evolution of objects represented by roles.

A query language which is also closely related to the QAL query algebra is the query language P/FDM

[22]. P/FDM is based on the Functional Database Model [48] (abbr. FDM). It extends FDM by incorporating

in the language the constructs of the object-oriented database model. P/FDM is implemented using the

Prolog programming language. The database comprises the data and metadata entities. Every metadata

entity, a class or a function for example, is described using a set of prede�ned predicates. The Prolog

predicates which serve as the interface to the database, and the query language P/FDM which is implemented

by the use of these predicates, provide uniform access to the data and metadata entities. These facilities

allow for querying the properties of metadata entities and some types of relationships among them.

The operations for querying database schema provided by the query languages of recent object-oriented

databases management systems (i.e., query languages of ORION [28], O

2

DBMS [8, 20], Postgres [12, 40] or

ObjectStore [36, 37]) are brie
y overviewed. Most recent query languages allow the use of class extensions

in queries through a function which maps a class onto: the set of its members and/or the set of its instances.

ORION [28] provides a set of operations to modify database schema at di�erent levels: modi�cation of

inheritance, class properties, methods, and inheritance hierarchy of classes. However, it does not include

additional constructs which would allow querying of conceptual schema and the relationships between the

data and schema parts of the database. Next, in [10], Bertino proposes the use of the operator class of, which

returns the class of an object at run-time. The resulting class can be further used in queries. Finally, the

ODMG standard [14] includes a set of operations for accessing the properties of metadata. The information

that can be obtained about a type is: the set of operations de�ned for a given type, the set of its attributes,

the set of its supertypes and subtypes, and the extent of a given type. The ODMG standard does not

provide uniform access to the intensional and extensional levels of the OO database in the way proposed by

our model-based operations. Moreover, some of our model-based operations can not be expressed using only

ODMG types. Such operations include poset comparison operations de�ned on structured o-values and the

operations lub-set and glb-set.

6.2 Querying Complex Objects

We base our discussion on the operations for the manipulation of complex objects on the classi�cation of

operations on complex objects introduced by Kim et al. in [27]. The operations for querying complex objects

are classi�ed into basic and advanced operations. Basic operations include: (i) the retrieval of complete

32

complex objects, (ii) the projection of the selected attribute values, (iii) the restriction predicates on the

nested components of complex objects, and (iv) three types of object update operation: insertion, deletion

and modi�cation of complex objects. The advanced operations on complex objects are: (i) the complex join

operation which allows for joining complex objects at di�erent nesting levels, and (ii) the recursive queries

by which the recursively structured hierarchies of complex objects can be manipulated.

The operations discussed by Kim at al. [27] are closely related to the operations of nested relational

algebras [1, 33, 41]. The basic types of operations presented above can be realised by the operations of

most NF

2

algebras, if, however, the algebraic structures are restricted to nested relations. The use of NF

2

restructuring operations for querying nested components of complex objects is computationally expensive

since it requires the reconstruction of the complex object up to the manipulated component. On the other

hand, the NF

2

algebra VERSO introduced in [1] includes very expressive operations which provide the means

to realise complex forms of selection, projection and join operations on complex objects. The join operation

of VERSO, for instance, allows for the expression of some forms of complex join as presented in Kim's

classi�cation.

The basic queries on complex objects de�ned by Kim et al. can be expressed using the operations of

object algebras [47, 32, 53, 35, 15]. As discussed in Section 1.2, these algebras include either the operations

evolved from NF

2

algebras, the operations derived from functional query languages, or both. The �rst

type of operation for querying complex objects includes variants of the NF

2

operations nest and unnest,

which serve for creating and unnesting component relations in an argument complex object [41, 1]. The

second type of operation for querying complex object includes operations which evolved from the functional

operations apply-to-all and tuple construction [7]. Both types of operations are referred to as the re-

structuring operations. The restructuring operations are suitable for expressing the queries which restructure

complex objects or which extract the components of complex objects. Let us now focus on the queries which

manipulate nested components of complex objects.

The problems which appear when using the restructuring operations for querying nested components of

complex objects are as follows. Firstly, it has been shown by Roth and Korth in [41] that the restructuring

operations nest and unnest are not inverse in general. In order to safely restructure component relations,

additional constraints have to be satis�ed by the complex objects otherwise information may be lost during

the restructuring of the target components. In particular, the NF

2

relations have to satisfy the partitioned

normal form and even some more strict conditions (required for the operation nest to retain partitioned

normal form) in order to be safely restructured [41]. Another possibility for retaining the information

about the unnested groups of objects is to index unnested tuples [17]. The second problem of restructuring

operations relates to the reciprocity property of operations used to create and
atten sets of sets; the

operations group and
atten, as de�ned in [47], for instance. Such operations are not inverse in the sense

that the operations nest and unnest are. Hence, it is not possible to restore the original state of a
attened

set of sets unless some additional technique is used to store information about the groupings of objects.

Finally, the evaluation of the query which includes a sequence of restructuring operations is computationally

33

expensive: it reconstructs the complex objects up to the target nested components, and it may require the

creation of a sequence of temporal objects [23].

In contrast to the approach to querying nested components of complex objects using restructuring op-

erations, the use of the operation apply at does not require the evaluation of a sequence of restructuring

operations on the argument complex objects in order to access theirs nested components. Namely, it can

be implemented as an iterator which accesses nested components of complex objects, passes the evaluation

of the parameter function of apply at to the query sub-tree which realises the parameter function, and,

�nally, collects and assembles results of the parameter function. In this way, the above stated problems,

which appear when the restructuring operations are used to access nested components of complex objects,

are avoided.

An approach to querying complex objects, which could be treated as the above stated second approach

to querying complex objects (i.e., including the operations which evolved from functional languages), is

suggested by Abiteboul and Beeri with Complex Object Algebra [2] (abbr. COA). The operations of COA

can express the basic operations on complex objects as de�ned by Kim et al. in [27]. The algebra introduces

the operation replace to provide facilities to restructure complex objects and to apply queries to the nested

structures of complex objects. The operation replace is a generalisation of the well-known functional

operation apply-to-all [7]. It realises the application of the parameter query on the set of objects. The

parameter query of the replace operation is speci�ed in a functional notation called replace speci�cations

which subsumes all de�nable queries of COA. In addition, the notation allows the queries to be structured by

the arbitrary use of the set and tuple constructors. In this way, the replace parameter forms a \structured

query" which, when applied to the set of values, can be used to restructure and query complex objects.

Finally, the recursive algebras proposed by Colby in [17] and Liu in [33] introduce another approach to

querying complex objects. Both algebras evolved from nested relational algebras [41, 1]. The operations

of these algebras are de�ned recursively so that each of the operations can be recursively applied to the

components of the argument complex object. Each recursive operation includes a list which directs the

evaluation of the operations by specifying the components of complex objects, to which the evaluation of

the given operation is recursively transferred. The operations of recursive algebras are related to the QAL

operation apply at since both provide the means for directing the evaluation of operations to the nested

components of the argument complex object. However, in the QAL query algebra a single operation (i.e.

apply at) serves as the \navigator" for directing the evaluation of other operations, whereas in recursive

algebras all operations, except for the restructuring operations, include a list which directs their evaluation.

7 Concluding remarks

In this paper we have presented the QAL query algebra. QAL includes a set of simple operations, referred

to as model-based operations, intended for inquiring and reasoning about the properties of individual and

class objects. The salient feature of the model-based operations is their close relationship to the underlying

data model formalisation, which uni�es the representation of the intensional and the extensional parts of a

34

database. As a consequence of this relationship with the data model of QAL, the model-based operations

provide a uniform access to the properties of individual and class objects. They can serve as the means for

expressing intensional queries on object-oriented databases, as well as extensional queries that refer to the

properties of a conceptual schema.

The declarative operations of the QAL query algebra are used for querying a database. They evolved from

the operations of relational algebra, NF

2

algebras and functional query languages. The set of declarative

operations includes the operation apply at, which is used for querying nested components of complex

objects. The operation generalises the well-known operation Apply-To-All [7] by adding to it a new

parameter which speci�es the path to the nested component where the parameter query is evaluated. Its

semantics is simple and comprehensible, and it can serve as the basis for the e�cient implementation of

queries that manipulate nested components of complex objects.

There is a list of tasks that remain to be done or completed on the QAL query algebra. Here we present

only the most important. Firstly, the algebraic properties of the newly proposed operations are studied in

order to be utilised for query optimisation. Secondly, study of the expressive power of QAL is currently

under way. We are addressing the problem by studying the relationships between QAL and other database

algebras and logic based languages. Finally, the current e�orts on the QAL implementation show that it can

serve to extend C or C++ based database programming languages with declarative facilities. The e�cient

implementation of the integration of QAL and such a DBPL remains to be completed.

Acknowledgments

The authors wish to thank the anonymous referees for their helpful comments on the draft versions of this

paper. In particular, we thank the referee who gave us detailed and constructive suggestions which have

signi�cantly improved the readability and the quality of the paper. Further, we thank prof. Mike Papazoglou

for his advise and support during the early stages of the presented work, Vanja Josifovski for his work on

the prototype of QAL based on GNU E DBPL, and prof. Michael Kifer for his suggestions on the draft

version of this paper. The work of Iztok Savnik was supported by Republic of Slovenia Ministry of Science

and Technology Grant J2-7627.

References

[1] S. Abiteboul, N. Bidoit, Non First Normal Form Relations: An Algebra Allowing Data Restructuring,

Journal of Comp. and System Science 33, 1986, pp. 361-393.

[2] S. Abiteboul, C. Beeri, On the Power of the Languages For the Manipulation of Complex Objects, Verso

Report No.4, INRIA, France, Dec. 1993.

[3] S. Abiteboul, P.C. Kanellakis, Object Identity as Query Language Primitive, Proc. of the ACM Conf.

on Management of Data, 1989, pp. 159-173.

35

[4] R. Agrawal, N.H. Gehani, ODE (Object Database and Environment): The Language and Data Model,

Proc. of the ACM Conf. on Management of Data, 1989, pp. 36-45.

[5] J. Annevelik, Database Programming Languages: A Functional Approach, Proc. of the ACM Conf. on

Management of Data, 1991, pp. 318-327.

[6] M. Atkinson, et al. The Object-Oriented Database Systems Manifesto, Proc. of First Int'l Conf Deductive

and Object-Oriented Databases, North Holland, 1989, pp. 40-57.

[7] J. Backus, Can programming be liberated from the von Neumann style? A functional style and its algebra

of programs, Communications of the ACM, 21(8), August 1978, pp. 613-641.

[8] F. Banchilion, S. Cluet, C. Delobel, A Query Language for the O

2

Object-Oriented Database System,

Proc. 2nd Workshop on Database Programming Languages, 1989, pp. 122-137.

[9] D.S. Batory, T.Y. Leung, T.E. Wise, Implementation Concepts for an Extensible Data Model and Data

Language, ACM Trans. on Database Systems, 13(3), Sept. 1988, pp. 231-262.

[10] E. Bertino et al., Object-Oriented Query Languages: The Notion and Issues, IEEE Trans. on Knowledge

and Data Engineering, 4(3), June 1992, pp. 223-237.

[11] P. Buneman, R.E. Frankel, FQL- A Functional Query Language, Proc. of the ACM Conf. on Manage-

ment of Data, 1979, pp. 52-58.

[12] Next-Generation Database Systems, Communications of the ACM, 34(10), 1991.

[13] L. Cardelli, A Semantic of Multiple Inheritance, Information and Computation, 76, 1988, pp. 138-164.

[14] R.G.G. Cattell (Editor), The Object Database Standard: ODMG-93, Morgan Kaufmann Publishers,

1993.

[15] S. Ceri et al., Algres: An Advanced Database System for Complex Applications, IEEE Software, July

1990, pp. 68-78.

[16] E.F. Codd, A Relational Model of Data for Large Shared Data Banks, Communications of the ACM,

13(6), June 1970, pp. 377-387.

[17] L.S. Colby, A Recursive Algebra and Query Optimization for Nested Relations, Proc. of the ACM Conf.

on Management of Data, 1989, pp. 273-283.

[18] S. Danforth, P. Valduriez, A FAD for Data Intensive Applications, IEEE Trans. on Knowledge and

Data Engineering, 4(1), Feb. 1992, pp. 34-51.

[19] T. Davis, cppp documentation, Brown University, 1993-94.

[20] O. Deux et al., The Story of O2, IEEE Trans. on Knowledge and Data Engineering, 2(1), March 1990,

pp. 91-108.

36

[21] An Introduction to GNU E, The E Reference Manual and The Design of the E Programming Language,

Exodus Project Documents, University of Wisconsin-Madison.

[22] S.M. Embury, Z. Jiao, P.M.D. Gray, Using Prolog to Provide Access to Metadata in an Object-Oriented

Database, Practical Application of Prolog, 1992.

[23] G. Graefe, Query Evaluation Techniques for Large Databases, ACM Comp. Surveys, Vol.25, No.2, June

1993, pp. 73-170.

[24] M. Kifer, G. Lausen, F-Logic: A Higher-Order Language for Reasoning about Objects, Inheritance, and

Scheme, Proc. of the ACM Conf. on Management of Data, 1989, pp. 134-146.

[25] M. Kifer, W. Kim, Y. Sagiv, Querying Object-Oriented Databases, Proc. of the ACM Conf. on Manage-

ment of Data, 1992, pp. 393-402.

[26] M. Kifer, G. Lausen, J. Wu, Logical Foundations of Object-Oriented and Frame-Based Languages, Jour-

nal of the ACM, 42(4), July 1995, pp. 741-843.

[27] W. Kim, H.-T. Chou, J. Banerjee, Operations and Implementation of Complex Objects, IEEE Trans. on

Software Engineering, 14(7), July 1988, pp. 985-996.

[28] W. Kim, et al., Features of the ORION Object-Oriented Database System, 11th Chapter in Object-

Oriented Concepts, Databases and Applications, W.Kim (ed.), Sept. 1989, pp. 251-282.

[29] G.M. Kuper, M.Y. Vardi, A New Approach to Database Logic, Proc. of the ACM Conf. on Management

of Data, 1984, pp. 86-96.

[30] C. Lecluse, P. Richard, F. Velez, O

2

, an Object-Oriented Data Model, Proc. of the ACM Conf. on

Management of Data, 1988, pp. 424-433.

[31] C. Lecluse, P. Richard, The O

2

Database Programming Language, Proc. of the 15th Conf. on Very Large

Databases, 1989, pp. 411-421.

[32] T.W. Leung, et al., The Aqua Data Model And Algebra, Technical Report No. CS-93-09, Brown Uni-

versity, March 1993.

[33] L. Liu, A formal approach to Structure, Algebra & Communications of Complex Objects, Ph.D. thesis,

1992, Tilburg University.

[34] M. Mannino, I.J. Choi. D.S. Batory, The Object-Oriented Data Language, IEEE Trans. on Software

Engineering, 16(11), Nov. 1990, pp. 1258-1272.

[35] G.A. Mitchell, Extensible Query Processing in an Object-Oriented Database, Ph.D. thesis, Brown Uni-

versity, 1993.

[36] J. Orenstein, S. Haradhvala, B. Margulies, D. Sakahara, Query Processing in the ObjectStore Database

System, Proc. of the ACM Conf. on Management of Data, 1992, pp. 403-412.

37

[37] ObjectStore User Guide, Release 2, ObjectStore Design, Inc., 1992.

[38] M.P. Papazoglou, Unravelling the Semantics of Conceptual Schemas, Communications of the ACM,

Sept. 1995.

[39] S.L. Peyton Jones, The Implementation of Functional Programming Languages, Prentice-Hall, 1987.

[40] The Postgres Documents, Computer Science Department, University of California at Berkeley, 1994.

[41] M.A. Roth, H.F. Korth, A. Silberschatz Extended algebra and calculus for non 1NF relational databases,

ACM Trans. Database Systems, 13(4), 1988, pp. 389-417.

[42] I. Savnik, A Query Language for Complex Database Objects, Ph.D. thesis, University of Ljubljana, CSD

Technical Report, Jozef Stefan Institute, CSD-TR-95-6, Jun 1995.

[43] I. Savnik, Z. Tari, Querying Conceptual Schemata of Object-Oriented Databases, Proc. of Database and

Expert Systems Applications Workshop, IEEE Comp. Society, 1996, pp. 384-390.

[44] I. Savnik, Z. Tari, Querying Objects with Complex Static Structure, Proc. of Int. Conf. on Flexible Query

Answering Systems, Roskilde, Denmark, To appear in Lecture Notes in Arti�cial Intelligence, 1998.

[45] I. Savnik, T. Mohori�c, Z. Tari, Unifying Schema and Instance Levels of Object-Oriented Database, CSD

Technical Report, Jo�zef Stefan Institute, May 1998, In preparation.

[46] M.H. Scholl, H.-J. Schek, A Synthesis of Complex Objects and Object-Orientation, OO Databases:

Analysis, Design & Construction (DS-4), R.A.Meersman, W.Kent, S.Khosla (Eds.), Elsevier Science

Publishers, 1991.

[47] G.M. Shaw, S.B. Zdonik, A Query Algebra for Object-Oriented Databases, Proc. of IEEE Conf. on Data

Engineering, 1990, pp. 154-162.

[48] D.W. Shipman, The Functional Data Model and the Data Language DAPLEX, ACM Trans. on Database

Systems, 6(1), March 1981, pp. 140-173.

[49] SICStus Prolog Users's Manual, Swedish Institute of Computer Science, October 1991.

[50] S.Y. Su, Modelling Integrated Manufacturing Data with SAM*, IEEE Computer, Jan. 1986, pp. 34-49.

[51] S.Y. Su, M. Gou, H. Lam, Association Algebra: A Mathematical Foundation for Object-Oriented

Databases, IEEE Trans. on Knowledge and Data Engineering, 5(5), Oct. 1993, pp. 775-798.

[52] J. Tillquist, F.-Y. Kuo, An approach to the recursive retrieval problem in the relational databases,

Communications of the ACM, 32(2), Feb. 1989, pp. 239-245.

[53] B. Vance, Towards an object-oriented query algebra, Tech. Report CS/E91-008, Dept. Comp. Science

and Eng., Oregon Graduate Institute, Jan. 1991.

38

[54] S.L. Vandenberg, D.J. DeWitt, Algebraic Support for Complex Objects with Arrays, Identity, and In-

heritance, Proc. of the ACM Conf. on Management of Data, 1991, pp. 158-167.

[55] S.L. Vandenberg, Algebras for Object-Oriented Query Languages, Ph.D. thesis, Technical Report No.

1161, University of Wisconsin, July 1993.

39

