
Unifying intensional and extensional representation levels of
Object model

Iztok Savnik
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska

Glagoljaška 8, 5000 Koper, Slovenia
iztok.savnik@upr.si

Abstract
In this paper we present the consequences of unifying the
representation of the schema and the instance levels of an
object programming language to the formal representation
of object model. The uniform representation of schema and
instance levels of object languages is achieved, as in the
frame-based knowledge representation languages [13], by
representing them using a uniform set of modeling con-
structs. We show that, using such an approach, the struc-
tural part of the object language model can be described
in a clear manner providing the simple means for the de-
scription of the main constructs of the structural model and
the relationships among them. Further, we study the conse-
quences of releasing the boundary between the schema and
the instance levels of an object programming language by
allowing the definition of objects which include data from
both levels. We show that few changes are needed in order
to augment the previously presented formal definition of the
structural part of object language to represent the extended
object model.

Keywords: programming languages, semantics, object model,
database models, conceptual models.

1. Introduction
In spite of considerable research effort directed to the prob-
lems of the formalization of object model in the areas of
programming languages [11, 18, 17], databases [20, 3, 16,
2, 6] and conceptual modeling [5, 8, 9] in the last few
decades, there is still a lack of a precise theoretical frame-
work for object model. The main reason for this lies in the
rich set of sophisticated data modeling constructs provided
by the numerous variants of object models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

In this paper we focus on one aspect of object model:
a structural model. Formal semantics of object model is
presented in the denotational style [30]. The presented for-
malization unifies the schema and the instance levels of a
language by treating classes as objects in a similar way as
frames [13] are used to represent abstract concepts.

The idea of treating classes as objects is present in var-
ious object-oriented programming languages. For instance,
Smalltalk [14] treats every construct of the language as ob-
ject. Programming language C++ [27] includes some in-
trospective language constructs that provide the access to
some properties of classes. Finally, in Java [15] classes are
indeed treated as objects but have different access mecha-
nisms comparing to the access to ground objects.

We show that the uniform treatment of extensional and
intensional parts of object model allows clear and robust
definition of the formal representation of object model. We
present a formalization of the structural model that con-
forms with the main features of object languages.

The same modeling constructs are used for the repre-
sentation of extensional and intensional parts of an object
model. However, in the beginning we retain a strict separa-
tion between the conceptual schema and the instance parts
of object repository. In the sequel, we observe the conse-
quences of releasing the boundary between these two parts
of a object repository. Merging the intensional and exten-
sional levels of an object programming language is achieved
by allowing objects to include individual objects and classes
as their components. The features of the extended object
model are studied by considering the constructs needed to
extend the previously defined formalization of the ordinary
object model to be able to express all aspects of the ex-
tended model.

Uniform treatment of object model simplifies the rep-
resentation of complex environments that have rich con-
ceptual schemata. Examples include Internet databases and
repositories, and distributed database environments. Such
databases usually contain rich metadata repository and the
distinction between extensional and intensional databases
is often blurred. Apart from serving as formal framework
for structural model, uniform treatment of extensional and

intensional parts of a programming language object model
can serve as a basis for the definition of uniform operations
for the manipulation of intensional and extensional parts of
object repository. They are presented in [22].

The rest of the paper is organized as follows. We start the
formal presentation by describing identifiers and their struc-
tural properties in Section 2.1. In Section 2.2 we define val-
ues, relate them to the previously presented identifiers and
describe their properties. Further, in Section 4 objects are
defined and their properties are described. In most cases,
the properties of objects are derived from the properties of
values and identifiers. In Section 5 we remove the boundary
between the schema and the instance levels of object model
and study the consequences of this in the framework of the
previously presented formalisation. Related work is pre-
sented in Section 6. We review the formalisations and the
description languages that had significant influence on the
development of the proposed formalisation. Finally, con-
cluding remarks and some aspects of implementation of the
presented model are given in Section 7.

2. Structural Model
The structural model is defined by presenting two basic as-
pects of structures which form object-relational database
model: identifiers and o-values. For each of these two con-
structs we present the definitions and the properties which
can be derived from their formal representation.

2.1 Identifiers
Let us first define some basic terminology used in the paper.
We assume the existence of a predefined infinite set of iden-
tifiers O. An identifier is a unique symbol which represents
an abstract or concrete entity from the real world. Identifiers
will be denoted by terms written in the lower-case letters.
For example, the identifier tom serves as a unique identifi-
cation of a person whose name is “Tom”, or, the identifier
student stands for the unique identification of the abstract
representation of a student.

As suggested by the above two examples, the set O is
further divided into the set of individual identifiers OD

representing concrete entities such as persons, and the set of
class identifiers OC representing abstract concepts, which
usually stand for a group of individual entities. In some
cases we will refer to the individual and class identifiers
simply as individuals and classes.

The most significant difference between class identifiers
and individual identifiers is in their interpretations. While
the interpretation of an individual identifier is the individual
itself, the interpretation of a class identifier is the set of
individuals. The interpretation of class identifiers is defined
as follows.

Definition 1. Let c ∈ OC . The interpretation of c, denoted
ΠJcK, has the following properties:

• ΠJcK ⊂ OD, and

• ∀p(p ∈ OC ∧ p 6= c⇒ ΠJc) ∩ΠJpK = ∅).

As can be seen from the above definition, we use the
common engineering intuition, as stated in [3], by treating
individuals as members of the interpretations of single class
identifiers. This design decision leads to disjunctive sets of
individuals that represent the interpretations of class identi-
fiers. Therefore, an individual identifier is an element of the
interpretation of exactly one class identifier.

The class interpretation specifies the membership rela-
tionship among individual and class identifiers. Let id1 ∈
OD and id2 ∈ OC . The identifier id1 is a member of the
identifier id2 if id1 ∈ ΠJid2K. The membership relationship
should not be exchanged with the instantiation relationship,
which is defined shortly.

A binary relation among class identifiers, denoted as (id1

subclass id2) where id1, id2 ∈ OC , is used to represent the
inheritance hierarchy of classes. We assume that this rela-
tion is given by the definition of the conceptual schema of
an object-oriented database. Using the subclass relation-
ship, we define a relationship �i.

Definition 2. Let id1, id2 ∈ O then id1 �i id2 if one of the
following holds:

• id1 = id2,
• id1, id2 ∈ OC ⇒
∃id3(id3 ∈ OC ∧ (id1 subclass id3) ∧ id3 �i id2), or

• id1 ∈ OD ∧ id2 ∈ OC ⇒
∃id3(id3 ∈ OC ∧ id1 ∈ ΠJid3K ∧ id3 �i id2).

The �i relationship is called more specific or, the oppo-
site, more general relationship.

Example 1. An example of a set of identifiers ordered by the
relationship �i is defined by the following terms: student
�i person, employee�i person, instructor�i person, ta�i

student, ta �i instructor, jim �i instructor, jane �i student,
john �i ta.

It can be easily seen that the relationship �i organises
identifiers into the partially ordered set (abbr. poset). It is
reflective, that is, id �i id for all id ∈ O. It is antisymmet-
ric since id1, id2 ∈ O ∧ id1 �i id2 ∧ id2 �i id1 implies
id1 = id2. It is also transitive since id1 �i id2∧ id2 �i id3

implies id1 �i id3 for id1, id2, id3 ∈ O.

Lemma 1. The set O is partially ordered by the relation-
ship �i.

The ordinary class interpretation maps a class identifier
to a set of individual identifiers called the members of the
class. By taking into account the previously defined partial
ordering among the class and individual identifiers, another
interpretation is introduced. The inherited interpretation [3]
of the class identifier c includes the members of the class c
and the members of class c’s subclasses.

Definition 3. Let c ∈ OC . The inherited interpretation of
c, denoted Π∗JcK, is defined as:

Π∗JcK =
⋃

p∈OC∧p�ic

ΠJpK

Using the above definition of the inherited interpretation,
we define the instantiation relationship commonly used to
represent the associations between individual and class con-
cepts. Let id1 ∈ OD and id2 ∈ OC . The identifier id1 is an
instance of id2 if id1 ∈ Π∗Jid2K.

2.2 Values
So far we have presented identifiers and their structural
properties. In this section, we extend the concept of iden-
tifier to the notion of value. We distinguish between two
basic types of value: identifiers and structured values. The
set and tuple constructors are used to build the structured
values.

Let us first present the basic terminology used in this sec-
tion. We assume the existence of an infinite set of values V .
Identifiers are, as defined in the previous section, elements
of the set O which can be further divided into the set of in-
dividual identifiers OD and the set of class identifiers OC .
Structured values are divided into the set of ground values
VD, and the set of values VT that represent types. Further,
we assume the existence of a set of attribute names A. The
following definition states the syntactical structure of the
values.

Definition 4. The value is one of the following:

• id ∈ O,
• {o1, . . . , on}, where oi ∈ V , or
• 〈A1 : oi, . . . , An : on〉, where oi ∈ V and Ai ∈ A.

Example 2. An example of a value is
〈age:24, kids:{jim},addr:”Milano”,work:”CS”〉
representing the properties of a person. The component
{ana, jim} is the set of identifiers which represent kids.
The strings ”Milano” and ”CS” have the role of primitive
identifiers which denote the address and profession of a
person.

Values which include only the individual identifiers are
called ground values. When the values are composed solely
of class identifiers, we refer to them as types1. Analogously
to our perception of class identifiers, types stand for the
abstract representation of a set of values. Formally, a type is
defined as follows.

Definition 5. The value t is a type, that is, t ∈ VT , if one of
the following holds:

• t ∈ OC ,
• t = {s}, where s ∈ VT , or,

1 Usually, the term type is used to represent the static structure and the
behavior of a set of values. For the purpose of this presentation we ignore
object behavior.

• t = 〈A1 : t1, . . . , An : tn〉, where ti ∈ VT and Ai ∈ A.

Example 3. Let us present an example of a type. The tuple
〈name:str, age:int, work:organisation,lives at:address〉
can represent the properties of employee. The type of the at-
tribute age is the primitive type int. Next, the class identifier
organisation has the role of a reference type [29].

Close integration of the concepts of class identifier and
type provides a clear method for the definition of type in-
terpretation which can be now defined as a straightforward
extension of the class interpretation. The type interpretation
is defined as follows. Note that in the following definition
Π∗c denotes the inherited interpretation of class identifiers.

Definition 6. Let t ∈ VT . With respect to type t structure,
its interpretation, denoted ΠJtK, is:

• t ∈ OC ⇒ ΠJtK = Π∗cJtK,
• t = {s} ⇒ ΠJtK = {o; o ⊂ ΠJsK}, or,
• t = 〈A1 : v1, . . . , An : vn〉 ⇒

ΠJtK = {〈A1 : v1, . . . , An : vn〉; vi ∈ ΠJtiK}.

This definition of the type interpretation specifies the
membership relationship between values and types. Let v ∈
VD and t ∈ VT . The value v is a member of t if v ∈ ΠJtK.
Therefore, the members of the particular type t are the
elements of type t interpretation.

The relationship �i defined on identifiers is extended to
relate values. It is denoted as �v . As with the relationship
�i, we call the relationship �v the more specific relation-
ship. Intuitively, values that are more specific, or ”below”
in the ordering defined by the relationship �v , refine the
more general values that are ”higher” in the set of values V
with regard to the relationship �v . The following definition
states the syntactical definition of the relationship �v .

Definition 7. Let v1, v2 ∈ V be values. The value v1 is more
specific then the value v2, denoted by v1 �v v2, if one of the
following holds:

• v1, v2 ∈ O ⇒ v1 �i v2,
• v1, v2 ∈ VT ∧ v1 = {s} ∧ v2 = {t} ⇒ s �v t,
• v1, v2 ∈ VT ∧ v1 = 〈A1 : a1, . . . , An : an〉 ∧
v2 = 〈B1 : b1, . . . , Bk : bk〉 ⇒
n ≥ k ∧ ∀bi(bi A v2 ⇒ (Ai = Bi ∧ ai �v bi)), or

• v1 ∈ VD ∧ v2 ∈ VT ⇒ v1 ∈ ΠJv2K.

Just as the relationship �i organizes identifiers into a
partially ordered set, the relationship �v forms a partial
ordering of values. It can be easily seen that it is reflective,
antisymmetric and transitive.

Lemma 2. The set V is partially ordered by the relationship
�v .

The previous definition of the value poset captures the
notion of partial ordering of types as defined by Cardelli
in [11], or Vandenberg in [29]. It can be obtained by re-
stricting the set of all values V to types VT . The value poset

subsumes also the membership relationship between types
and ground values.

The type interpretation defined in the previous sub-
section maps a type T to a set of its members whose struc-
ture is strictly the same as the structure of a given type.
We remove this constraint by defining the inherited inter-
pretation of a type to be the union of the interpretation of
a given type and the interpretations of all types which are
more specific than a given type.

Definition 8. Let t ∈ VT . The inherited interpretation of t,
denoted Π∗JtK, is defined as:

Π∗JtK =
⋃

s∈VT∧s�vt

ΠJsK.

Example 4. As an example, the inherited interpretation of
the type 〈name : string, works for : org〉 is the union of
ordinary type interpretations:
Π∗J〈name : string, works for : org〉K =
ΠJ〈name : string, works for : institute〉K ∪ . . . ∪
ΠJ〈name : string, age : int, works for : org〉K ∪ . . .
including the members of all subtypes.

The above definition captures the notion of the instan-
tiation relationship between ground values and types. For-
mally, the instantiation relationship can be defined as fol-
lows. Let v ∈ VD and t ∈ VT . The value v is an instance of
type t if v ∈ Π∗JtK.

Definition 7 gives a syntactical means for checking the
relationship �v between values. The following theorem
shows the correspondence between the syntactical defini-
tion of �v and the inherited interpretation function Π∗.

Theorem 1. Let t1, t2 ∈ VT . The following relation be-
tween the relationship �v and the interpretation Π∗ holds:

t1 �v t2 ⇐⇒ Π∗Jt1K ⊆ Π∗Jt2K.

Proof. The first part of the proof is to show that the syntacti-
cal definition implies the subsumption of the corresponding
inherited interpretations. Definition 8, which presents the
inherited interpretation of types, uses the relationship �v

to identify more specific values. If t1 is more specific than
t2 then, according to Definition 8, the set Π∗Jt1K has to be
included in the set Π∗Jt2K.

The reverse direction can be proved in a similar manner.
Suppose the relationship Π∗Jt1K ⊆ Π∗Jt2K holds. Defini-
tion 8 states that Π∗Jt2K includes all inherited interpreta-
tions of more specific types from VT . Therefore, if Π∗Jt1K
is included in Π∗Jt2K, than t1 has to be in the set of types
which are more specific than t2, or t1 �v t2.

3. Behavioural model
The behavior of instances which belong to the class c is
specified by the set of methods. Each method is defined
by the signature and the implementation of the method; an
algorithm that computes an object from the set of parameter

objects. Each method is a function which returns a value.
The signature specifies the name of the method and the
structure of objects that take part in the method evaluation.

Definition 9. (signature) The signature of a method m de-
fined on a class c0 is an expression m : 〈c0, c1, . . . , ck〉 →
c, where m is the signature name and ci (1 ≤ i ≤ k) and c
denote types.

The signature m is treated as an interface of the method
which can be applied to the instances of the class c0. The
signature defines the directed relationship among the in-
stances of types which take part in the signature definition.
Therefore, the signature interpretation is the set of all par-
tial functions from the Cartesian product of the parameter
type interpretations, to the interpretation of the type of the
method result.

Definition 10. (signature interpretation) The interpreta-
tion of the signature s = m : 〈c0, c1, . . . , ck〉 → c, where
ci ∈ VT and c ∈ VT , is the set of all partial functions:

ΠJsK = ΠJc0K× . . .×ΠJckK→ ΠJcK.

Analogously to values, we define also the inherited in-
terpretation of signatures using inherited interpretation of
types. The first interpretation of signatures is not useful in
practical programming language since the parameters must
be members of types of parameters. This restriction is re-
leased by the following definition.

Definition 11. (inherited signature interpretation) The in-
herited interpretation of the signature
s = m : 〈c0, c1, . . . , ck〉 → c, where ci ∈ VT and c ∈ VT ,
is the set of all partial functions:

Π∗JsK = Π∗Jc0K× . . .×Π∗JckK→ Π∗JcK.

3.1 Signature properties
In the following paragraphs, we present some properties
of the signatures which derive from the previously given
definition of the signature interpretation. We say that the
signature s1 is valid for the method m described by the
signature s, if Π∗Js1K ⊆ Π∗JsK. First, the input types of
the signature can be replaced by more specific types. This
primarily means that the signature c0 × . . . × ck → c is
inherited to the subclasses of c0.

Lemma 3. (inheritance) Let s = m : 〈c0, . . . , ck〉 → c be
a signature of the method m defined by the class c0 and let
be ca �i c0, then s1 = m : 〈ca, . . . , ck〉 → c is a valid
signature for the method m.

Proof. The corollary is correct since the definition of the
signature interpretation states that the method m can be
applied to the elements of the inherited interpretation of c0.
This set includes also interpretations of all classes that are
more specific than c0 (e.g. ca). Hence, Π∗Js1K ⊆ Π∗JsK and
the signature s1 is valid.

The objects that are used as the parameters of the method
can be instances of any type that is more specific than the
type specified by the signature.

Lemma 4. (input-type restriction) Letm : 〈c0, c1, . . . , ck〉 →
c be the signature of the method m defined by the class c0,
then the signatures
m : 〈c0, c′1, . . . , c′k〉 → c, where c′j �o cj ; j ∈ [1..k], are
valid signatures for the method m.

Proof. This property can also be simply proven from the
definition of the signature interpretation. The property is
stated as separate invariant in [11] and is defined as the
input-type restriction in [19]. Similarly, the output type of
the signature can be also restricted.

Java language specification [15] defines the input type
restriction in the same as defined by the above Definition
4. The types of the parameters can be convertable to the
declared types by widening conversion which resembles
subtype relationship.

Lemma 5. (output-type restriction) Letm : 〈c0, . . . , ck〉 →
c be a signature of the method m defined on a class c0, then
the signature m : 〈c0, . . . , ck〉 → c′, where c′ �o c, is also
a valid signature of the method m.

Proof. This property can again be easily derived from the
definition of the signature interpretation. The intuitive rea-
sons for the stated property are as follows: the method with
the output type cmanipulates properties of c, which are also
defined by any of its subtypes, while they need not be de-
fined for instances of supertypes of c. Similarly, if c is a
class, then the method m can manipulate the properties of
instances of any class c subclasses, since they have at least
the properties defined for the class c.

In Java [15] the return expression of a method must be
of type that is assignable to the declared return type. More
precise, the return type of a method have to be convertable
to declared type by widening conversion.

3.2 Signature poset
The partial ordering of signatures can be defined in a similar
way to that in which the partial ordering of o-values is
defined by the relationship more specific. The syntactical
definition of the partial ordering of signatures is given by
the following definition.

Definition 12. (signature poset) Let s1 and s2 be signa-
tures, such that s1 = m1 : 〈a1, . . . , ak〉 → a and s2 =
m2 : 〈b1, . . . , bl〉 → b.

s1 �o s2 ⇐⇒ ∀i ≤ l : ai �o bi ∧ a �o b

The definition of the partially ordered set of signatures
given by the above Theorem differs from the classical def-
inition of the signature subtyping, as for example stated
in [17, 11]. To demonstrate the difference, we use, as in

the previous proof, signatures s1 = m1 : a1 → a and
s2 = m2 : b1 → b. The classical subtyping rule is stated as

if a1 ≥ b1 and a ≤ b then m1 : a1 → a ≤ m2 : b1 → b

As can be seen by comparing the rule stated in Theorem
12 and the above rule, the condition among a1 and b1 is in-
verted. In other words, a more general method restricts the
parameter domain of the function in the case of the latter
rule, while in our rule, a more general signature also has a
more general function parameter domain. The use of clas-
sical rule guarantees safe compile-time type checking [11].
On the other hand, the rule given in Definition 12 follows
logically from the definition of signature interpretation and
provides a more flexible type system.

The correspondence between syntactical and semantical
definition of signature poset is stated by the following theo-
rem.

Theorem 2. (equivalence) Let s1 and s2 be signatures. The
signature s1 is more specific than the signature s2 or

s1 �o s2 ⇐⇒ Π∗Js1K ⊆ Π∗Js2K.

Proof. Without loss of generality, we assume that the left
sides of signatures s1 and s2 include only one parameter:
s1 = m : a1 → a and s2 = m : b1 → b. First we prove, if
s1 �o s2 then Π∗Js1K ⊆ Π∗Js2K. s1 �o s2 implies a1 �o

b1 and a �o b which in turn implies Π∗Ja1K ⊆ Π∗Jb1K and
Π∗JaK ⊆ Π∗JbK by Theorem 1. Following Definition 11 we
can conclude that Π∗Js1K ⊆ Π∗Js2K.

The reverse can be proved by using the previous proof in
a reverse direction. Π∗Js1K ⊆ Π∗Js2K implies Π∗Ja1K ⊆
Π∗Jb1K and Π∗JaK ⊆ Π∗JbK. Using Theorem 1 we can
conclude a1 �o b1 and a �o b and therefore s1 �o s2.

Theorem 2 says that we can use a method described
by the signature s2 in any place where the method with
the signature s1 is used. This interpretation is meaningful,
since the interpretation of s2 subsumes the interpretation of
s1. In other words, the properties of the input and output
parameter types of s2 are more general than the parameter
types of s1. This means that parameter objects on which the
method s1 can be applied contain all necessary components,
so that s2 can also be applied to them.

4. Object Model
The proposed data model distinguishes between two aspects
of objects. First, every object has an identity, also called ob-
ject identity (oid) which is realised by an identifier that dis-
tinguishes it from all other objects in the language reposi-
tory. Second, every object has a value which describes its
state. The two basic object aspects are connected by means
of a value assignment function that maps identifiers to cor-
responding values.

We distinguish between primitive and defined objects.
The identity of the primitive object is the same as its value.

The value of the defined object can be any of the previously
defined values.

Definition 13. An object is a pair o = (id, v), where
id ∈ O and v ∈ V . The object can be in the following
two forms:

• primitive object: (id, id), where id ∈ OD, or
• defined object: (id, v), where id ∈ (O −OD) ∧ v ∈ V .

Example 5. Let us now present some examples of objects.
Firstly, an example of a primitive object is (1, 1), which
is a formal representation of the integer number ”1”. The
identity of ”1” is the same as its value. Similarly, the object
(int, int) stands for the formal representation of the integer
number. As presented in Section 2.1, the term int represents
an identifier.

Further, the following are some examples of defined ob-
jects. An example of tuple-structured object is
(tom, 〈name:”Tom”,age:19,courses:{math, hist,gym}〉),
where the term tom is an identifier which uniquely identi-
fies an object. This example presents an individual object;
in the following example, we give a description of an ab-
stract entity represented by a class object. The object
(person, 〈name:string, age:int, lives at:address〉)
stands for an abstract representation of the person.

Finally, the object (id1, 1) is a simple defined object
which is a reference to a primitive object describing integer
number ”1”, that is, id1 is the identifier of an object which
value is the identifier 1.

In the above examples, we made a distinction between
individual and class objects. Since this distinction is impor-
tant for the further presentation, we define these two types
of objects explicitly. Firstly, individual object represents a
single concrete entity from a modelling environment. Its
value includes solely the individual identifiers. Secondly,
class object represents an abstract entity which stands for:
the representation of an abstract concept, or, from the other
point of view, an abstract representation of the set of indi-
vidual objects. The value of a class object includes solely
the class identifiers.

4.1 Relations between ids, values and objects
In this sub-section, we present in more detail some rela-
tionships among the basic elements of formal presentation:
identifiers, values and objects. First, we present the value
assignment functions. Next, the inheritance of properties in
the context of presented formal view is discussed. Finally,
we present the relations between partially ordered sets de-
fined in previous sections and the partially ordered set of
objects.

An object is described by a set of properties which are
represented by attributes. We assume that the attributes are
defined for a particular object at the time of their creation.
The individual objects inherit attributes from their parent
class objects. The attributes of class objects are defined

by the definition of classes in a programming language
environment.

The attributes that correspond to an object consist of:
the attributes that are directly associated to the class, and
the inherited attributes. For this purpose, two assignment
functions are defined. Let us first present the assignment
functions by means of examples.

Example 6. The value assignment function applied to the
class identifier student is defined as
ν(student) = 〈degree:int, courses:{course}〉.
The result of the application of the inherited value assign-
ment function to the same object identifier is
ν∗(student) =〈name:string, age:int, degree:int,

course:{course}〉.
The latter type includes the properties that pertain to
classes student and person.

The value assignment function ν is formally defined as
follows.

Definition 14. Let id ∈ O and ν:O → V a value assign-
ment function such that ν(id) = v where v ∈ V and (id, v)
is an object.

The inherited value assignment function ν∗ returns all
properties of an object o. It is defined by the following
definition. The relationship A denotes the component-of
relationship.

Definition 15. Let id ∈ O. The inherited value assignment
function ν∗ : O → V is defined as:

ν∗(id) = 〈A1:v1, . . . , Ak:vk〉, where
∀Ai(Ai ∈ Atr ∧ ∃p(id �i p ∧Ai:vi A ν(p))).

Example 7. Let us now present examples of using the value
assignment and the inherited value assignment function
on an individual identifier. The value assignment function
applied to the identifier peter which is an element of class
identifier person, returns, for instance, the tuple
〈name:”Peter”,age:40,address:”Ljubljana”〉.
Next, the result of the application of inherited assignment
function ν∗ to the same identifier is the tuple
〈name:”Peter”, name:string, age:40,age:int,
address:”Ljubljana”, address:string〉.

The above tuple includes pairs of components with equal
attribute names: the type of attribute, and the actual value
of attribute.

4.2 Structural inheritance
The inherited value assignment function ν∗ (Definition 15)
can return a value which includes more than one attribute
with the same name. A problem arises when we would
like to access the value of such an attribute. There are
two types of conflicts. In the first case, inherited attributes
with the same name are defined for objects related by the
relationship �i. In the second case, the cause of conflict is
multiple inheritance. In this situation, an object inherits two

or more attributes with the same name from more general
objects which are not related by the relationship �i.

The first type of conflict is resolved using the overriding
principle; the attribute which is the closest with respect to
the poset of identifiers is chosen. Still, according to Defini-
tion 15, both attributes are defined for the particular object.
The value of overridden attribute can be accessed by explic-
itly stating the object of its definition. This approach is used
in C++ as well as in Java.

An additional property of overriding principle is required
in proposed data model to establish conditions for partial
ordering of objects. The value of attribute A defined for
a class c must be more specific than the value of attribute
A defined by a superclass of c. The attribute of subclass
overrides the attribute of superclass.

Invariant 1. (Component refinement) Let id1, id2 ∈ O,
A:v1 A ν(id1) and A:v2 A ν(id2). The following impli-
cation must hold: id1 �i id2 ⇒ ν∗(id1).A �o ν

∗(id2).A
(or v1 �i v2).

The symbol A stands for the relationship component-of.
The value assignment functions ν and ν∗ are used to obtain
the values of identifiers. The dot operator is then used to
select the value of attribute A.

The property expressed by the above definition is nec-
essary for the definition of partial ordering relationship �o

and for the definition of static type checking algorithm [22].
Similarly to the inheritance of attribute also the behav-

ioral inheritance is treated. An important property of be-
havioral inheritance is method overriding. Let s1 = m :
〈ao, . . . , ak〉 → a and s2 = m : 〈bo × . . . bl → b be the
signatures such that b0 �i a0 (b0 is subclass of a0) and
s2 �o s1. For any object o ∈ Π∗Jb0K, the invocation of a
method named m on an object o causes the evaluation of
method with signature s2. We say that method with signa-
ture s2 overrides method with signature s1.

Let us now show the second type of conflict that can ap-
pear with inheritance. If a class inherits from two super-
classes which are not related by the inheritance hierarchy,
two attributes and/or methods with the same name can ap-
pear in the description of this class. This feature is usually
called multiple inheritance [28, 11, 19].

In the presented work we do not deal with this problem.
The user has to state the class where the attribute or the
method is defined by means of explicit quantification. Sim-
ilar approach has been taken in the implementation of C++
[28]. Quite differently, in Java implementations multiple in-
heritance of classes is forbiden [15].

4.3 The structures of objects
The partially ordered set of values can be seen as the fol-
lowing two posets. First, the relationship �i organizes the
identifiers into a partially ordered set. Second, values that
correspond to each of the identifiers are partially ordered by
the relationship �v . In other words, if the relationship �i

holds between identifiers, then the relationship �v holds
among the corresponding values. This is expressed by the
following Lemma. Note that id1 and id2 can be individual
or class identifiers.

Lemma 6. Let id1, id2 ∈ O such that id1 �i id2, then
ν∗(id1) �v ν

∗(id2).

Proof. When the inherited value assignment ν∗ is applied to
an identifier id, it returns the union of the attributes that are
defined for the object referenced by id and all its more gen-
eral objects. Since id1 �i id2 and since Invariant 1 requires
that the attribute is always overridden by a more specific
attribute, we can conclude that ν∗(id1) �v ν

∗(id2).

As a consequence of the above Lemma, we can define
a relationship among objects which integrates the relation-
ships �i and �v . Analogously to the relationships �i and
�v , we denote the relationship �o and we call it the rela-
tionship more specific defined on objects.

Lemma 7. (relationship �i) Let o1 = (id1, v1) and o2 =
(id2, v2) be objects. The object o1 is more specific than o2,
or o1 �o o2, iff id1 �i id2.

Proof. By Lemma 6.

Since the object identifiers uniquely identify objects and
since, by the above Lemma, the partial ordering relationship
�v among object values is determined by the relationship
�i among object identifiers, the complete set of objects is
also partially ordered by the relationship �o.

Lemma 8. The set of objects {(id, v); id ∈ O∧v = ν(id)}
is partially ordered by the relationship �o.

In a similar way to the above definition of the relation-
ship �o and partial ordering of objects, the ordinary inter-
pretation and the inherited interpretation of class identifiers
can be extended to class objects. They are denoted by Π and
Π∗ as in the case of ordinary objects. We give here only the
definition of the ordinary class interpretation.

Definition 16. Let oc = (idc, vc), where idc ∈ OC and
vc ∈ VT , be a class object. The interpretation of oc, denoted
Π(oc), is:

Π(oc) = {(id, v); id ∈ ΠJidcK ∧ v = ν∗(id)}.

The inherited interpretation of class objects can then be
defined in the same manner. It is based on poset (O,�i).

Definition 17. Let oc = (idc, vc), where idc ∈ OC and
vc ∈ VT , be a class object. The interpretation of oc, denoted
Π∗(oc), is:

Π∗(oc) = {(id, v); id ∈ Π∗JidcK ∧ v = ν∗(id)}.

Again, as a consequence of the unique identification of
objects by means of object identifiers, the membership and
the instantiation relationships between the class objects and

the individual objects are defined in the same manner as the
membership and instantiation relationships among the class
and individual identifiers.

5. Releasing the boundary
In the previous sections we have retained strict boundary
between schema and instance levels of object repository;
this was achieved by making a strict distinction between
values which represent types and ground values. The com-
ponents of the former are solely the class individuals, while
the components of the later are solely the individual iden-
tifiers. In this section we study consequences of allowing
values to include individual and class identifiers. We refer
to such values as abstract values.

The structure and the properties of identifiers is not af-
fected by the change in the definition of values. Therefore,
we study the consequences of mixing schema and instance
levels of object repository by revising the properties of val-
ues, and, further, the properties of objects.

5.1 Values
We start with the definition of values given by Definition 4.
The definition does not restrict the structure and the con-
tents of values in any way. The set and tuple structured val-
ues can include individual and class identifiers as leaf com-
ponents.

Example 8. As an example, the value 〈name:string, age:
int, works at:cs〉 is an abstract value describing the struc-
ture of values representing the employees of Computer Sci-
ence Department represented by an identifier cs. Note that
string and int are class identifiers while cs is an individual
identifier.

The partial ordering relationship�v defined in Section 3
has to be redefined to relate values which are composed
of individual and class identifiers. Intuitively, the structured
value v1 is more specific than value v2 if every component
of v2 is replaced by a more specific or equal component.
Formally, the relationship more specific �v on abstract val-
ues is defined as follows.

Definition 18. Let v1, v2 ∈ V . The value v1 is more specific
then the value v2, denoted as v1 �v v2, if one of the
following holds:

• v1 ∈ O ∧ v2 ∈ O: v1 �i v2,
• v1 = {s1, . . . , sn} ∧ v2 = {t1, . . . , tk}:
∀ti(ti ∈ v2 ∧ ∃sj(sj ∈ v1 ⇒ sj �i ti)), or

• v1 = 〈A1:a1, . . . , An:an〉 ∧ v2 = 〈B1:b1, . . . , Bk:bk〉:
∀bi(Bi:bi A v2∧!∀aj(Aj:aj A v2 ∧ Aj = Bi ⇒ aj �o

bi)).

The symbol A stands for the relationship component-of and
the augumented quantifier !∀ means ∀ but at least one.

Definition 7 poses more constraints on the structure de-
fined by relationship�v than Definition 18 since it is tied to

the object model of programming systems. The only time it
refers to the ground values is when describing relationship
between the instances and their types: v1 ∈ VD ∧ v2 ∈
VT ⇒ v1 ∈ ΠJv2K. The relationship �v is more complex
in the case of abstract values ordered by Definiton 18. Let
us present some examples of pairs of values for which the
relationship �v holds.

Example 9. Suppose object repository includes: a set of
class identifiers student, phd student, etc.; a set of in-
dividual identifiers s1, s2, s3, etc. which are the members
of class student; a set of identifiers e1, e2, etc. represent-
ing employees; etc. The following relationships are valid:
s1 �v student,
{s1, s2, s3} �v {student},
{phd student, e1, e2} �v {student, employee}, and
〈name:str, age:int, lives: addr〉 �v 〈name:str, age:int〉.

Similarly to the values presented in Section 2.2, the set
of values which can include individual and class identifiers
is partially ordered.

Lemma 9. The set of values V is partially ordered by the
relationship �v .

Proof. We have to show that reflexivity, antisymmetry and
transitivity properties hold for the relationship �v . We con-
sider here only transitivity. Firstly, the identifies are par-
tially ordered by Lemma 1. Let v1, v2 and v3 be sets such
that v1 �v v2 and v2 �v v3. If for each element of v3 there
exists a set of more specific elements from v2 for which,
in turn, there exists a set of elements of v1, then it is also
true that for each element of v3 there exists a set of more
specific elements of v1. Hence, v1 �v v3 holds. The case
when v1, v2 an v3 are tuples can be proved in a similar man-
ner.

The interpretation of values Π given by Definition 6) and
the interpretation Π∗ presented by Definition 8) do not need
to be changed to express the interpretations for the newly
defined values. However, these two interpretations do not
express the complete semantics of mixed values. Using the
previously defined partial ordering relationship �v , we de-
fine another type of interpretation. For a given value v the
newly defined interpretation, referred to as natural interpre-
tation, includes all more specific values of v. Such interpre-
tation allows the variables to range over individual values
and types.

Definition 19. Let v ∈ V . Natural interpretation Π�(v) is
defined as follows.

Π�JvK = {v′; v′ ∈ V ∧ v′ �v v}.

5.2 Objects
In this sub-section, we revise the relationships among ob-
jects presented in Section 4, and point out some differences
which are the consequences of different definitions of val-
ues.

The definition of objects given by Definition 13 can
withstand the change in the definition of values. To recon-
cile, each object has a unique identifier and a value which
can now include individual and class identifiers. We differ-
entiate between ground objects whose values are composed
solely of individual identifiers, and abstract objects whose
values include at least one class identifier.

The inheritance principle defined for ordinary objects is
used for objects with mixed data and schema as well. As for
ordinary objects presented in Section 4, the value of object
can be obtained as presented by the definition of inherited
value assignment function ν∗ (Definition 15). The proper-
ties which values are ground are in the context of abstract
objects inherited to all subclasses and instances, but can not
be refined within more specific objects. Different semantics
is used in Java where such attributes are called static data
members (properties) [15]. In this case, the properties that
have ground values are not inherited. Similar design was
chosen in Semantic Data Model [16] where such proper-
ties are called class attributes and they are used to describe
a property of classes, solely. To subsume both semantics,
Kifer in [18] proposes the use of two kinds of properties:
inheritable and non-inheritable.

The interpretations Π and Π∗ of ordinary class objects
presented in Definitions 16 and 20 can be adopted for mixed
objects without any changes. These interpretations remain
to include only ground objects. Finally, the natural inter-
pretation of types (Definition 19) can be used also for mixed
objects.

Definition 20. Let o = (id, v), where id ∈ O and v ∈ V ,
be a class object. The natural interpretation of o, denoted
Π�(o), is:

Π∗(o) = {(id′, v′); id′ �i id ∧ v′ = ν∗(id′)}.

The natural interpretation of an object includes besides
the ground objects also abstract objects including pure
”type objects” as well.

6. Related work
In this section, we overview the existing formalisations of
object models and the representation languages that are
related to, or have influenced on the design of the presented
formalization of object model.

First of all, the presented formal treatment of objects
bears close resemblance to the Frame-based languages [13].
The formal view of object model is based on ideas intro-
duced by Frame Logic (abbr. F-Logic) [18]. F-Logic is a
declarative language that integrates predicate calculus and
the constructs of object model. It treats classes and instances
uniformly as objects. Consequently, there is no distinction
between class and individual objects, at one level. In com-
parison to F-Logic, the presented formalization proposes a
view of object which is closer to recent implementations of
object programming systems. We define the semantics of

object model that is close to the view presented in [3, 20],
show the consequences of treating classes in the same man-
ner as individual objects, and, afterwards, release the barrier
between schema and individual objects by allowing values
to include individual and class identifiers.

The proposed formalisation uses many ideas presented
by some existing formal representations of the object-
oriented database model. First, the formalisation is closely
related to the formalisation of the O2 database model pro-
posed by Lecluse at al. in [20], and to the formal presenta-
tion of the database model of IQL [3]. The paper of Lecluse
et al. presents clearly the main features of the object model,
including the inheritance, methods and types, in a denota-
tional style using the standard notions of interpretations and
models. In a similar way, Abiteboul and Kanellakis define a
structural part of database model of the logic-based declar-
ative language IQL. Important contributions of this formal-
ization, which had a significant influence on our work, are:
the formal distinction between types and classes; the def-
initions of the inherited interpretation of types; and study
of the relations between structural inheritance and interpre-
tations in the framework of *-interpretation. Second, our
work is related to the formalisation of the database model
EXTRA presented by Vandenberg in [29]. Among the im-
portant features of the formalisation of EXTRA are: the in-
terpretation which, similarly to the inherited interpretation
of types [3], takes into account type hierarchy; and the in-
terpretation of so-called reference types, which correspond
to classes in the terminology of IQL and ours.

By the presented formalization we define a data model
which is related to the family of languages popularly called
description logic (abbr. DL) [8]. Description logics evolved
from KL-ONE [5]—a frame-based language that uses con-
cepts and roles for describing the modeled domain. Con-
cepts are usually divided into simple concepts and defined
concepts, which can be constructed using the composition
and intersection of concepts, providing a kind of inheri-
tance relationship and the generalization type constructor
[2]. Roles can be seen as a generalization of the single-
valued and multi-valued attributes in a database terminol-
ogy. In addition, roles can be attributed by: value restric-
tions, co-reference constraints (e.g. equality of two roles)
and cardinality constraints, which can be associated to the
database constraints. Although DL is designed to serve as
knowledge-representation formalism providing reasoning
facilities such as testing the subsumption between descrip-
tions, there are many common properties between DL and
the proposed data model. Besides the similarities in the
structural properties of DL concepts and objects in our for-
malisation, they also share some common operations: for
instance, the subsumption test [8] is related to testing the
validity of the relationship �v between values, and, com-
puting Least Common Subsumer [10] corresponds to the
model-based operations lub-set and glb-set [23].

7. Concluding Remarks
In this paper, we studied structural aspects of object model
through the formalization which unifies the instance and
schema levels of object model. It is shown that the structural
part of object language can be seen as three partially ordered
sets: partially ordered sets of identifiers, values and objects.
The relationships between the elements of these sets are
presented by defining the semantics of the main features
of object model, such as classes, types, inheritance, and
instantiation. The consequences of removing the boundary
between the intensional and the extensional levels of object
model are studied. It is shown that only a few changes
and additional constructs need to be introduced in order to
represent the formal view of the extended object model.

The presented object model has been implemented in
the framework of the object algebra [22]. In brief, object
algebra includes, in addition to the relational and nested-
relational operations also operations for the manipulation
of extensional and intensional parts of object repositories
and the operations for the efficient manipulation of com-
plex composite objects. Object algebra is implemented as a
query language of the system for querying and integration
of Internet data [24].

References
[1] S. Abiteboul, C. Beeri, On the Power of the Languages For

the Manipulation of Complex Objects, Verso Report No.4,
INRIA, France, Dec. 1993

[2] S. Abiteboul, R. Hull, IFO: A Formal Semantic Database
Model, ACM Trans. Database Systems, Vol.12, No.4, 1987

[3] S. Abiteboul, P.C. Kanellakis, Object Identity as Query
Language Primitive, ACM SIGMOD 1988

[4] F.Bancilhon, S.Khoshafi an, A calculus for complex objects,
Proceedings of 5th ACM symposium on Principles of
database systems, pp.53-60, 1985.

[5] R.J. Brachman, J.G. Schmolze, An Overview of the KL-
ONE Knowledge Representation System, Cognitive Science,
Vol.9, No.2, 1985

[6] C. Beeri, A Formal Approach to Object-Oriented Databases,
Data & Knowledge Engineering, No.5, 1990

[7] E. Bertino et al., Object-Oriented Query Languages: The
Notion and Issues, IEEE TKDE, Vol.4, No.3, June 1992

[8] A. Borgida, Description Logics in Data Management, IEEE
TKDE, Vol.7, No.5, October 1995

[9] A. Borgida, R.J. Brachman, D.L. McGuiness, L.A. Resnick,
CLASSICS: A Structural Data Model for Objects, SIGMOD
1989

[10] W.W. Choen, A. Borgida, H. Hrish, Computing Least
Common Subsumers in Description Logics, Proc. AAAI
Conference, 1992

[11] L. Cardelli, A Semantic of Multiple Inheritance, Information
and Computation, 76, 138-164, 1988

[12] An Introduction to GNU E, The E Reference Manual and The

Design of the E Programming Language, Exodus Project
Documents, University of Wisconsin-Madison

[13] R. Fikes, T. Kehler, The Role of Frame-Based Representation
in Reasoning, Comm. of ACM, Vol.28, No.9, Sept. 1985

[14] A. Goldeberg, D. Robson, Smalltalk-80: The Language and
Its Implementation, Addison-Wesley Publishing Company,
1983.

[15] James Gosling, Bill Joy, Guy Steele and Gilad Bracha,
The Java Language Specification Third Edition, Addison
Weseley.

[16] M. Hammer, D. McLeod, Database Description with SDM:
A Semantic Database Model, ACM Trans. Database Syst. 6,
3 (1981), 351-386

[17] R. Harper, Theoretical Foundations of Programming Lan-
guages (Draft), CMU, 2007.

[18] M. Kifer, G. Lausen, F-Logic: A Higher-Order Language for
Reasoning about Objects, Inheritance, and Scheme, ACM
SIGMOD 1989

[19] M. Kifer, G. Lausen, J. Wu, Logical Foundations of Object-
Oriented and Frame-Based Languages, Technical Report
93/06, Dept. of Computer Science, SUNY at Stony Brook

[20] C. Lecluse, P. Richard, F. Velez, O2, an Object-Oriented
Data Model, ACM SIGMOD 1988

[21] M.P. Papazoglou, Unraveling the Semantics of Conceptual
Schemas, Comm. of ACM, Sept. 1995

[22] I. Savnik, Z. Tari, T. Mohorič, ‘QAL: A Query Algebra
of Complex Objects’, Data & Knowledge Eng. Journal,
North-Holland, Vol.30, No.1, 1999, pp.57-94.

[23] I.Savnik and Z.Tari, Querying Objects with Complex Static
Structure, Proc. of Int. Conf. on Flexible Query Answering
Systems (FQAS’98), To appear, May 1998.

[24] I. Savnik, Z. Tari, ‘QIOS: Querying and Integration of
Internet Data’,
http://www.famnit.upr.si/˜savnik/qios/, FAMNIT, April
2007.

[25] G.M. Shaw, S.B. Zdonik, A Query Algebra for Object-
Oriented Databases, Proc. of Data Eng., IEEE, 1990

[26] M. Stonebraker, L.A. Rowe, M. Hirohama, The Implementa-
tion of Postgres, IEEE Transactions on Knowledge and Data
Engineering, March 1990, vol.2, (no.1):125-42

[27] B. Stroustrup, The C++ Programming Language, Addison-
Wesley, 3rd edition, 1995.

[28] B. Stroustrup, Multiple inheritance for C++, AT&T Bell
Laboratories, The C/C++ Users Journal, May 1999.

[29] S.L. Vandenberg, Algebras for Object-Oriented Query Lan-
guages, Ph.D. thesis, Technical Report #1161, University of
Wisconsin-Madison, July 1993 ”

[30] G. Winskel, The Formal Semantics of Programming Lan-
guages: An Introduction, MIT Press, 1993 (1-8).

