Proof of the Chebyshev inequality (continuous case):

Given: X areal continuous random variables with E(X) = p, V(X) =
0%, real number € > 0.
To show: P(|X —pu| >¢€) < ‘2—22

Then
o = V(X)

-/ Tt ) (t) de

> [ -t / i(t Pt

where the last line is by restricting the region over which we integrate
a positive function. Then this is
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sincet <p—e = e<|t—pu = € < (t— p)? But we rearrange
and use the definition of the density function to get
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= EP(|X —pul > o).
Thus,
0 2 EP(IX — | > ),
and dividing through by €? gives the desired. O



