Proof of the Chebyshev inequality (continuous case):

Given: X a real continuous random variables with $E(X) = \mu$, V(X) = σ^2 , real number $\epsilon > 0$. To show: $P(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}$.

Then

$$\sigma^2 = V(X)$$

= $\int_{-\infty}^{\infty} (t-\mu)^2 f_X(t) dt$
$$\geq \int_{-\infty}^{\mu-\epsilon} (t-\mu)^2 f_X(t) dt + \int_{\mu+\epsilon}^{\infty} (t-\mu)^2 f_X(t) dt,$$

where the last line is by restricting the region over which we integrate a positive function. Then this is

$$\geq \int_{-\infty}^{\mu-\epsilon} \epsilon^2 f_X(t) \, dt + \int_{\mu+\epsilon}^{\infty} \epsilon^2 f_X(t) \, dt,$$

since $t \leq \mu - \epsilon \implies \epsilon \leq |t - \mu| \implies \epsilon^2 \leq (t - \mu)^2$. But we rearrange and use the definition of the density function to get

$$= \epsilon^2 \left(\int_{-\infty}^{\mu-\epsilon} f_X(t) \, dt + \int_{\mu+\epsilon}^{\infty} f_X(t) \, dt \right)$$
$$= \epsilon^2 P(X \le \mu - \epsilon \text{ or } X \ge \mu + \epsilon)$$
$$= \epsilon^2 P(|X - \mu| \ge \epsilon).$$

Thus,

$$\sigma^2 \ge \epsilon^2 P(|X - \mu| \ge \epsilon),$$

and dividing through by ϵ^2 gives the desired.