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Abstract
This paper is inspired by classical and combinatorial variations of Alexander duality and mo-
tivated by applications to graphs with a perfect matching. We develop a notion with similar
homological properties for complexes embedded into the cross-polytope. We relate to the work
of Björner et al. in [3], and show that poset Bier spheres are vertex-decomposable. We further
generalize their results to arbitrary triangulations of spheres. As a consequence, we also give
an explicit method for constructing abstract n-spheres on n+ 4 vertices.

1 Introduction

Alexander duality stems from a result of J.W Alexander in 1915. It describes the homology of the
complement of a subspace X in Euclidean space, a sphere, or another manifold. This theorem says:

Theorem 1.1 (Alexander duality theorem). If X is a compact, locally contractible, nonempty,
proper subspace of the sphere Sn, then:

∀i H̃i(S
n \X) ≈ H̃n−i−1(X).

In 1983, Gil Kalai [7] first noticed that the blocker of a simplicial complex ∆ on vertex set V ,
denoted as ∆∗ = {σ ∈ V : V \ σ ̸∈ ∆}, is homotopy equivalent to the complement of ∆ in the
simplex boundary. Thus:

Theorem 1.2. Let ∆ be a simplicial complex on the vertex set of size n, then for every i:

H̃i(∆) ≈ H̃n−i−3(∆∗).

Although this was an easy consequence of Theorem 1.1, a simple and self-contained proof was also
presented by Björner et al. and Tancer [4]. We will review a variation of their proof later. Blocker
has been a very useful tool, for example see [3], [5], [6].

In this paper, we will describe an analog to the blocker by working in the cross-polytope. This
will give us a potentially useful tool to tackle problems regarding graphs with perfect matching,
whose independence complexes correspond naturally to subcomplexes of the cross-polytope. We
will then adapt the work of Björner et al. in [3] to our definitions and give a way of constructing
many vertex-decomposable spheres.

This paper will be organized as follows: In the second section, we introduce some basic definitions
of concepts related to simplicial complexes in general. In the third section, we introduce formally
the notion of combinatorial Alexander duality as well as some results relating to it. In section four
we introduce our new notion of Alexander duality on the cross-polytope and provide some basic
calculations using it. We will then prove the main results of the paper.
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2 Background

In this section, we will define the main mathematical object that we will use in this paper, a
simplicial complex. There are a few ways to define a simplicial complex. We will begin with a
purely combinatorial approach, by defining abstract simplicial complexes. Throughout the paper,
we will see that some of the results and theorems about simplicial complexes sometimes come from
combinatorial and algebraic arguments, while others are purely topological.

Definition 2.1. An abstract simplicial complex ∆ is a collection of sets that is closed under taking
subsets.

We call the elements of ∆ faces, we will call a face with n elements a (n−1)-face. Maximal elements
of ∆ are called facets. Particularly 0-faces will be called vertices and 1-faces edges. In case all the
facets have the same dimension we call the complex pure.
We can construct the topological space related to a complete abstract simplicial complex on n
vertices (a simplex ) by placing n linearly independent points v1, v2, . . . , vn into Rn−1 and taking
the convex hull.
Now for an arbitrary simplicial complex ∆ we construct the corresponding topological space in
two steps. First we identify the dimension of maximal facets, say m. We then place n points in
Rm−1 and repeat the above process for each facet of ∆ on corresponding vertices. We obtain the
corresponding space by taking the union over all facets of ∆. We call this topological space a
geometric realization of ∆.

Example 2.1. We will set a running example of

∆ = {{x1, x2, x3}, {x4, x5, x6}, {x2, x3, x4},

{x3, x4, x5}{x1, x3, x5}, {x1, x2, x6}, {x2, x4, x6}, {x1, x5, x6}}

We omit all the smaller faces and just list the facets in order to simplify writing. We will later see
that ∆ is actually the boundary of the octahedron, or 3-dimensional cross-polytope.

We can naturally define a face lattice L(∆) of ∆ by ordering faces with inclusion and adding an
artificial top element 1̂.
Conversely, we can define the order complex ∆(P ) of a bounded poset P with top 1̂ and bottom 0̂
as a complex on vertex set P \ {1̂, 0̂} with faces equal to chains in P \ {1̂, 0̂}.

Example 2.2. The Boolean lattice Bn is isomorphic to the face lattice of the boundary of the
simplex on n vertices.

Proposition 2.1 ([19] Page 6). Let K be a simplicial complex, then ∆(L(K)) is isomorphic to the
barycentric subdivision of K.

Two important complexes related to a vertex v of a simplicial complex ∆ are the link, the deletion
and the star:

For a simplicial complex ∆ on vertex set V and v we define the deletion of v ∈ V as ∆ \ v =
{σ ∈ ∆ : v ̸∈ σ}, the link of v as link∆ v = {σ ∈ ∆ \ {v} : σ ∪ v ∈ ∆} and the star of v as
star∆v = {σ ∈ ∆ : σ ∪ v ∈ ∆}. See Figure 2
Counting information about a simplicial complex is stored in the corresponding f -vector:
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Figure 1: Geometric realization of ∆

Definition 2.2. The f -vector of a simplicial complex ∆ is the vector f∆ = (f−1, f0, f1, . . . , fn)
where fn is the number of n-dimensional faces. We set f−1 = 1 as we consider the empty set to be
a (−1)-dimensional face.

Sometimes it is useful and easier to talk about the h-vector (although it is not as clear what it
counts):

Definition 2.3. The h-vector of a simplicial complex ∆ is the vector h∆ = (h0, h1, . . . , hn) where∑n
i=0

fit
i

(1−t)i =
∑n

i=0
hit

i

(1−t)n .

There is no good combinatorial interpretation of the h-vector in general. However, it does exist for
the class of partitionable complexes:

Definition 2.4. We say that a simplicial complex ∆ is partitionable if we can split L(∆) into a
disjoint union of intervals such that the top element of each interval is a facet.

In the case ∆ is pure and partitionable, we know that hi counts the number of chains of length i
in the face lattice of ∆ [12].
We have already seen the bridge between posets and simplicial complexes. We will now take time
to describe a relationship between commutative rings and simplicial complexes.
First, we note that in a polynomial ring F [x1, x2, . . . , xn], a square-free monomial is any element
of the form Πd

i=0xi. We call an ideal generated by such elements a square-free monomial ideal.
For every simplicial complex ∆ we can naturally describe a square-free monomial ideal connected to
it, and a corresponding factor ring. If ∆ is a simplicial complex on a vertex set V = {x1, x2, . . . , xn},
and F is any field, then we will work in a ring F [x1, x2, . . . , xn], where variables are in a natural
correspondence with the vertices of the simplicial complex. We will also abuse notation and write
x1x2x3 for both the face and the corresponding polynomial in the ring. In this setting we can now
define the following:
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Figure 2: The link, deletion and star of the middle vertex

Definition 2.5. For a simplicial complex ∆, the Stanley-Reisner ideal of ∆ is I∆ = (σ ⊂ V : σ ̸∈
∆).

We can see that I∆ can be written with its minimal generators, i.e., the minimal non-faces of ∆.
The quotient of the polynomial ring F (x1, x2, . . . , xn) by I(∆) is the Stanley-Reisner ring of ∆.
This correspondance is reversible. If I is a square-free monomial ideal we can construct a corre-
sponding simplicial complex as follows:

Definition 2.6. For a square-free monomial ideal I ⊂ F [x1, x2, . . . , xn] , the Stanley-Reisner
complex ∆(I) of I is the simplicial complex consisting of the monomials not in I, i.e., ∆(I) = {σ :
σ ̸∈ I}.

Example 2.3. We go back to the octahedron:

∆ = {{x1, x2, x3}, {x4, x5, x6}, {x2, x3, x4}, {x3, x4, x5}{x1, x3, x5},

{x1, x2, x6}, {x2, x4, x6}, {x1, x5, x6}}

Then we have: I∆ = {x1x4, x2x5, x3x6}.

We also state the following result, which is to be expected:
For any simplicial complex K, ∆(I(K)) = K.
We now define two important homological properties of a simplicial complex, both of which are
equivalent to notions in commutative algebra:

Definition 2.7. The depth of simplicial complex ∆ over a field F is the number

depth(∆) = max{d : H̃i(link∆ σ,F) = 0 ∀σ ∈ ∆; i < d− |σ|}.

4



Definition 2.8. The Castelnuovo-Mumford regularity of ∆ over F is the number

reg(∆) = max{i : H̃i(Γ,F) ̸= 0, Γ is an induced subcomplex of ∆},

or equivalently

reg(∆) = min{i : H̃i(Γ,F) = 0, for all induced subcomplexes Γ of ∆}.

This allows us to define a few important classes of simplicial complexes and describe the relationships
between them:

Definition 2.9. If depth(∆) = dim(∆) we say that ∆ is Cohen-Macaulay.

A closely related property is shellability:

Definition 2.10. Let ∆ be a simplicial complex. We say that ∆ is shellable if its facets can be
ordered linearly in such a way that the complex generated by the facet σj, for each j > 1, intersects
in a pure (dimσj − 1)-dimensional complex with the complex generated by the previous j − 1 facets
in the ordering.

The notion of shellability has proven to be useful. For example, it was used by McMullen [9] to
prove the Upper Bound conjecture for the number of faces in convex polytopes.
Finally, we will discuss vertex-decomposable complexes: We will call a vertex v a shedding vertex
if there exists another vertex w that satisfies:

σ ∈ ∆, v ∈ σ =⇒ (σ \ v) ∪ {w} ∈ ∆.

Knowing this, we can give the following definition:

Definition 2.11. We say that a simplicial complex ∆ is vertex decomposable if it is a simplex or
if it has a shedding vertex v such that ∆ \ v and link∆(v) are both vertex-decomposable.

It is both easy and important to see that the definition gives us a way to recursively check whether
a simplicial complex is vertex-decomposable.
The following list of implications is strict:

Vertex-decomposable + pure =⇒ Shellable + pure =⇒ Cohen-Macaulay.

3 Combinatorial Alexander Duality

In the introduction, we stated the Alexander duality theorem and presented shortly the concept
of combinatorial Alexander duality arising from the blocker. We will now recall the definition and
explore the material in more depth:

Definition 3.1. Let ∆ be a simplicial complex on a vertex set V . The combinatorial Alexander
dual of ∆ is the complex

∆∗ = {σ : σ̄ ̸∈ ∆}

The following statement is easy to see:
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Proposition 3.1. Let ∆ be a simplicial complex, then (∆∗)∗ = ∆.

Proof. The facets of (∆∗)∗ are {σ : σ̄ ̸∈ ∆∗} = {σ : ¯̄σ ̸∈ ∆} = {σ : σ ∈ ∆}, which are exactly the
facets of ∆.

Example 3.1. If we look at the simplicial complex ∆ = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}, whose geo-
metric realization is a square, we see that it’s minimal missing faces are {{1, 3}, {2, 4}}. By taking
complements, we get the facets of ∆∗ to be {{1, 3}, {2, 4}}.

We now proceed to look at a connection between links and deletions of a vertex in ∆ and ∆∗:

Lemma 3.1. Let ∆ be a simplicial complex on vertex set V and let v ∈ V . then:

(link∆ v)∗ = ∆∗ \ v

(∆ \ v)∗ = link∆∗ v.

Here we consider ∆∗ to be a complex on vertex set V \ {v}.

Proof. 1. First let σ ∈ (link∆ v)∗. This tells us that σc ̸∈ link∆ v so either

σc ̸∈ ∆ =⇒ σ ∈ ∆∗ =⇒ σ ∈ ∆∗ \ v

or alternatively:
σc ∪ {v} ̸∈ ∆ =⇒ σ ∩ {v}c = σ ∈ ∆∗ =⇒ σ ∈ ∆∗ \ v

so we have one inclusion. For the other inclusion let σ ∈ ∆∗ \ v, then σ ∈ ∆∗ and v ̸∈ σ, therefore:

v ∈ σc =⇒ σc ∪ {v} = σc ̸∈ ∆ =⇒ σc ̸∈ link∆ v =⇒ σ ∈ (link∆ v)∗

2. Let σ ∈ (∆ \ v)∗ =⇒ σc ̸∈ ∆ \ v and as our vertex set doesn’t include v this means that
σc ̸∈ ∆ =⇒ σ ∈ ∆∗. Now assume that σ ∪ {v} ̸∈ ∆∗, then σc ∩ {v}c = σ ∈ ∆ giving us a
contradiction and one inclusion. The other inclusion is trivial.

We will now state the fundamental result regarding the Alexander dual. We will denote by |∆| the
topological space arising from ∆.

Theorem 3.1. Let ∆ be a nonempty, non-simplex complex on the vertex set V and let Σ be the
boundary of the simplex on V . Then |Σ| \ |∆| deformation retracts to |∆∗|.

We will give multiple proofs of this. The first proof will use a strong result from Algebraic Topology,
the Nerve Lemma. First, we define the nerve:

Definition 3.2. If J = U1, U2, . . . , Um form a cover of a topological space X, then the nerve of
this cover is the simplicial complex with vertices V = {1, 2, . . . ,m}, and faces consisting of subsets
σ ⊂ J such that

⋂
i∈σ Ui ̸= ∅.

Example 3.2. Consider the cover of the Octahedron by triangles (corresponding to the facets of the
abstract simplicial complex). The nerve is a “thickened” cube. To see this we first have to notice
that each vertex of the octahedron corresponds to the intersection of four triangles which will make
up a tetrahedron in the nerve. Thus the nerve has as facets six tetrahedra. Collapsing an edge of
each tetrahedron, we are left with 6 squares, each composed from two triangles. These make up a
cube.

6



The Nerve lemma gives us sufficient necessary conditions for this situation to occur:

Lemma 3.2 (Nerve lemma, [20] Theorem 1.7). If U1, U2, . . . , Un form a cover of a topological space
X, and if for each σ ∈ {1, 2, . . . , n} the intersection

⋂
i∈σ Ui is either empty or contractible, then

the nerve of the cover is homotopy equivalent to X.

From Lemma 3.2, together with the classical Alexander duality theorem, Theorem 3.1 follows as a
corollary.

Proof of Theorem 3.1. We start by covering |Σ| by small open neighborhoods of its facets, which
automatically gives us a cover of |Σ \∆| by intersecting with |Σ \∆|. Now we will call this cover
A and look at N(A). Before continuing we note that there is a one-to-one correspondence between
facets of Σ and it’s vertices, obtained by sending each facet to the unique vertex not contained in it.
Now if we fix a facet σ and corresponding vertex v, intersecting any other facet with σ is equivalent
to deleting v in N(A). Thus, the faces of N(A) are exactly the vertex subsets whose complement is
not a face of ∆. Equivalently, they’re faces of ∆∗. Applying the Nerve lemma, we get the desired
result.

We will now move to the face lattice of a simplicial complex ∆. Then, we will see how we can use
it to give a different description of ∆∗. We will reprove Theorem 3.1 to show that this description
is worth considering. First, we need an additional definition and a lemma:

Definition 3.3. For a poset (P,≤) we define the dual poset to be P ↕ = (P,≥).

Now in order to reprove Theorem 3.1, we need the following lemma:

Lemma 3.3. If P ⊂ Q are bounded posets, then |∆(P )| \ |∆(Q)| deformation retracts to |∆(Q) \
(P ∪ {1̂, 0̂})|.

For proof of 3.3 look at [2] [lemma 4.7.27]
With Lemma 3.3, we can reprove Theorem 3.1:

Proof. As Σ is the boundary of a simplex on the vertex set of our simplicial complex X, we have
L(Σ) = Bn where Bn is the boolean lattice. Now if we apply the lemma:

|∆(Bn)| \ |∆(L(X))| ≃ |∆(Bn \ L(X) ∪ {1̂, (̂0)}|

If we call the poset on the right-hand side P , we can see that the faces of ∆(P ) are chains of
non-faces of ∆. We will now consider the map:

c : Bn → B↕
n

A → {1, 2, . . . , n} \A.

Thus is the complementation map. Thus, c(P ) ∼= P ↕ is the face lattice of X∗, which gives us the
above-mentioned description and the desired result.

Before considering some more deep results that find usage for combinatorial Alexander duality, we
will consider another way of describing it. This result was proven by Csorba in [5]. First, we will
need two new definitions:
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Definition 3.4. For graph G we define Gn to be the graph G with every edge replaced with a path
of length n.

Definition 3.5. For a graph G, we define idependence complex of G to be the simplicial complex
whose faces are the independent sets of G. We will denote it Ind(G).

Now we can state the main theorem from [5]:

Theorem 3.2. For a graph G, Ind(G)∗ is homotopy equivalent to Ind(G2). Here we consider
Ind(G) to be the complex on n+1 vertices with no face containing the additional vertex.

Proof. We will make use of the nerve lemma, so we will first need to build our open cover. We do
this in the following way:

1. Let K∅ be the subcomplex induced by V (G2) \ V (G)

2. For each vi inV (G) we define Ki = starInd(G2)(vi).

Obviously, each Ki is open and a cone, hence contractible. Their union is Ind(G2) and we just need
to look at the intersection. First of all,

⋂
Ki is going to be a cone at some vertex as V (G) is an

independent set in G2 and thus it forms a facet in Ind(G2) and all Ki will intersect as we wanted.
Now we will let k ≤ n and consider: K∅∩K1∩· · ·∩Kk, this intersection is empty if V (G)\v1, . . . , vk
forms an independent set. Otherwise, the intersection is a simplex where vertices correspond to the
edges spanned by V (G) \ v1, . . . , vk. By the nerve lemma Ind(G2) is homotopy equivalent to the
complex on n+ 1 vertices. Nonempty intersections correspond to non-independent sets, which are
the non-faces of Ind(G), exactly as in Alexander dual.

3.1 Eagon-Reiner theorem

Now we will discuss and prove the fundamental result proven by Eagon and Reiner in [6]. The
result gives necessary and sufficient conditions for a simplicial complex ∆ to be Cohen-Macaulay.
To introduce the result, we need some algebraic notions. First of these is a resolution of a R-module
for a ring R:

Definition 3.6. For a ring R and R-module M , a resolution of M is the exact sequence of R-
modules:

· · · dn+1−−−→ En · · ·
d2−→ E1

d1−→ E0
d0−→ M −→ 0.

Now as any ideal is also a free module we can also talk about resolutions of ideals over R. In
particular, we say that resolution is free if all the modules Ei are free. If R is a polynomial ring
then we say that an ideal I has a linear resolution if there exists a minimal free resolution where
all modules in the sequence are of degree 1 in the standard grading of the polynomial ring R. Now
we’re set to state the theorem:

Theorem 3.3 (Eagon-Reiner theorem). Let ∆ be a simplicial complex, it is Cohen-Macaulay if
and only if I∆∗ has a linear resolution.

We will do the proof, as in [10], and for that we will need some strong results:

Theorem 3.4 (Reisner’s criterion). Let ∆ be a n-dimensional simplicial complex. ∆ is Cohen-
Macaulay if and only if, for every face σ, the link satisfies

H̃i(link∆(σ) = 0, whenever i ̸= dim(∆)− |σ|.
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Proof of Eagon-Reiner theorem. Assume that I∆∗ is generated in degree d. By dual Hochester
formula from [10, Corollary 1.40], the ideal has linear resolution if and only if for every σ ∈ ∆

H̃i−1(link∆(σ) = 0 whenever i ̸= |σ̄| − d.

By our assumption ∆ has dimension n−d−1, hence dim(∆)−|σ̄| = |σ|−d−1. Therefore, Reisner’s
criterion holds for ∆.

We now consider a homological outlook on the Eagon-Reiner theorem, we first need the following
lemma:

Lemma 3.4. Let ∆ be a complex on vertex set V , such that |V | = n, let σ be a face and F a field.
Then

H̃i(link∆ σ, F ) = H̃n−|σ|−3−i(∆
∗, F ).

Where ∆∗ is considered as a complex on V \ σ.

The proof of this lemma boils down to two steps. First, we notice that (link∆ σ)∗ = ∆∗ on the
wanted vertex set. Second, we consider combinatorial Alexander dual on said vertex set and apply
the homology/cohomology relation over the field.
Now we state the homological Eagon-Reiner theorem, as observed by Terai in [14]:

Theorem 3.5. In the following calculations we will write ∆∗[V \σ] to emphasize the vertex set we
are working on.

depth(∆) = max{d : H̃i(linkσ) = 0,∀σ, i < d− |σ|} =

max{d : H̃n−|σ|−3−i(∆
∗[V \ σ]),∀σ, i < d− |σ|} =

max{d : H̃j(∆
∗[V \ σ]),∀σ, j > n− 3− d} =

n− 2 + max{d : H̃j(∆
∗[V \ σ]),∀σ, j > −1− d} =

n− 2 + min{d : H̃j(∆
∗[V \ σ]),∀σ, j > d− 1}.

As V \σ is a non-face of ∆∗ for each σ (in fact these are exactly the non-faces), and as each σ has
0-homology, the last line is n− 2− reg(∆∗).

3.2 Alexander dual and f and h-vectors

In this section, we will describe the relationship between the f - and h-vectors of a simplicial complex
∆ and those of ∆∗. As f -vectors are somewhat easier to deal with, we will first find a good way to
transition between the f− and h-vectors. This will be done using the following:

Definition 3.7. For a n-dimensional simplicial complex ∆, we define the F -polynomial to be
F∆(x) =

∑n
i=−1 f

∆
i xi+1. The H-polynomial is defined in a completely analogous way, H∆(x) =∑n

i=0 h
∆
i x

i.

The result we are about to present was presented first in a highly circulated preprint by Terai [15]
which was, unfortunately, never published. Parts of the preprint appeared in Terai’s later works on
Alexander duality [13, 14]. We compute as in [15] with d∗ = dim(∆∗). Recall that

H∆(x)

(1− x)d
=

d∑
i=0

fix
i

(1− x)i
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so that also

H∆(1− x)

xd
=

d∑
i=0

fi(1− x)i

xi
.

Now we observe the following relationship between the H-polynomial of ∆ and that ∆∗:

H∆(x)

(1− x)d
=

d∑
i=0

fix
i

(1− x)i

=

n∑
i=0

(
n
i

)
xi

(1− x)i
−

n∑
i=0

f∗
n−ix

i

(1− x)i(
1 +

x

1− x

)n

−
(

x

1− x

)n n∑
i=0

f∗
n−1(1− x)n−i

xn−i

=
1

(1− x)n
− xn

(1− x)n

d∗∑
j=0

f∗
j (1− x)j

xj

=
1

(1− x)n
−
(

x

1− x

)n
H∆∗(1− x)

xd∗

3.3 Bier spheres

In this section, we will look at the concept first presented by Bier in his unpublished notes[1], the
so-called Bier spheres. Bier discovered a way to make a large number of simplicial spheres by gluing
an abstract simplicial complex and its Alexander dual in a smart way. We will present this similarly
as in [8].

Definition 3.8. For a simplicial complex ∆, we define the Bier sphere of ∆ as

Bier(∆) = {σ ⊎ δ|σ ∈ ∆, δ ∈ ∆∗, σ ∩ δ}.

Here, the symbol ⊎ means that we are taking faces from two copies of ∆ and taking the simplex
spanned by the union, i.e. σ ⊎ δ = (σ × {1}) ∪ (δ × {2}).
It is not obvious that this construction yields a sphere, except in extremely simple cases such as
the boundary of a simplex or the empty complex. The following theorem tells us that this is in fact
always the case.

Theorem 3.6. For a simplicial complex ∆ on a vertex set V with n vertices, the Bier sphere
Bier(∆) is a simplicial complex on at most 2n vertices, and has geometric realization homeomorphic
to Sn−2.

In order to prove Theorem 3.6, we need the following definition and lemma:

Definition 3.9. For simplicial complexes X and Y , we define their join, denoted, X ∗ Y to be the
simplicial complex with faces:

{δ ⊎ σ : δ ∈ X,σ ∈ Y }.
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Lemma 3.5. For a simplicial complex ∆, the complex Bier(∆) has facets σ ⊎ δc where σ ⊂ δ and
σ ∈ ∆, δ ̸∈ ∆, |σ \ δ| = 1.

Proof. For any face σ ⊎ δc it holds that σ ⊂ δ and there are σ′ and δ′ satisfying the conditions of
the lemma, even further σ ⊎ δc ⊆ σ′ ⊎ δ′c as faces of the Bier sphere.

Now we can start proving the Theorem 3.6:

Proof. We will proceed by induction on k, the number of faces of a simplicial complex ∆ on the
vertex set V , such that |V | = n. If k = 0, then ∆ = {∅} and Bier(∆) has geometric realization
homeomorphic to Sn−2. We will now assume that Bier(∆) has the same property for arbitrary k
and we will add a new face σ to ∆. We now have a simplicial complex with facets:

∆ \ {(σ \ {x}) ⊎ σc : x ∈ σ} ∪ {σ ⊎ (σ ∪ {y})c : y ̸∈ σ}

We can now notice that the vertex set that is common for all added and removed faces is σ ⊎ σc,
and the subcomplexes induced by these sets in Bier(∆) and Bier(∆∪σ) are two n− 2 balls sharing
a boundary. Also, if δ is a face with vertex outside of this set, it will not contain a face ”inside”
of these balls, only on the boundary. This means that adding σ to ∆ is equivalent to taking out a
ball and replacing it with a finer ball in Bier(∆). Thus, Bier(∆) and Bier(∆ ∪ σ) are topologically
equivalent, proving our theorem.

This gives us a way to construct simplicial spheres. Furthermore, we can use this to show that there
are shellable triangulations of spheres which can’t be realized as boundaries of convex polytopes. A
proof of this fact can be found in [8]. Matoušek constructs O(2(2

n/n)−2n2

) nonisomorphic spheres.
This ends up being more than the number of convex polytopes on 2n vertices.

In later work, Björner et al. [3] showed that there is a beautiful generalization of Biers method.
This is done by looking at posets and reinterpreting the construction in that setting. First, they
generalized the construction to an arbitrary poset, their so-called Bier posets. They showed that
the original construction of Bier comes out when considering ideals of the Boolean lattice. We will
now take a look at their definition of a Bier poset and state a few important results from that
paper. First, we recall the definition of a poset ideal:

Definition 3.10. Let P be a poset and let I ⊂ P be nonempty. We say that I is an ideal of P if:
1. whenever x ∈ I and y ≤ x, then y ∈ I 2. whenever x, y ∈ I and y ≤ x, then there is a z ∈ I
such that x, y ≤ z.

Definition 3.11. Let P be a bounded poset of finite length and I a proper ideal. Then the Bier
poset of I in P is denoted Bier(P, I), and consists of the intervals of the form [x, y] where x ∈ I
and y ̸∈ I, ordered by reverse inclusion.

In the original paper, it is shown that if P is the face lattice of a strongly regular piecewise linear
CW-sphere, then so is Bier(P, I) for any ideal I. Here, strongly regular means that each attaching
map is a homeomorphism, and the intersection of any two faces is again a face. It is also shown that
if P is Cohen-Macaulay, then so is Bier(P, I). However, a main property of Bier spheres that they
have proven is that Bier spheres are shellable ([3], Thm 4.1). This gives a construction of a large
number of shellable spheres. In Subsection 4.1 we give an improvement to their shelling result.
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3.4 Self-dual complexes

Now we will look at results by Timotijević [16] regarding the combinatorial structure of self-dual
simplicial complexes. We first give a few definitions:

Definition 3.12. Let ∆ be a simplicial complex, then:

1. ∆ is self-dual if it is isomorphic to ∆∗.

2. ∆ is sub-dual if it is isomorphic to a subcomplex of ∆∗.

3. ∆ is super-dual if it is isomorphic to a supercomplex of ∆∗.

Self-dual complexes were extensively studied by other authors and have applications in Optimization
Theory and Algebraic topology. For example, such complexes have been used by Matoušek in [8]
as prime examples of nonembedable objects in R2k.
Now we will describe necessary and sufficient conditions needed for an arbitrary simplicial complex
∆ to be self-dual:

Theorem 3.7. Let ∆ be a simplicial complex on the vertex set V , then:

1. ∆ is sub-dual if and only if there is no simplex σ ⊆ V such that both σ and V \ σ are in ∆,

2. ∆ is super-dual if and only if there is no simplex σ ⊆ V such that both σ and V \ σ are not
in ∆, and

3. ∆ is self-dual if and only if for any arbitrary σ ⊂ V , either σ ∈ ∆ or V \ σ ∈ V .

Proof. 1. First, we assume that ∆ is sub-dual and that such σ exists. Then σ and V \ σ are
complements to non-faces of ∆ and are therefore not in ∆, contradicting our assumption. Now we
assume that there is no such σ. It follows that for arbitrary δ ∈ ∆, V \ δ ̸∈ ∆ which means that
δ ∈ ∆∗, finishing the proof.
2. This follows from the fact that ∆ is super dual if and only if ∆∗ is sub dual and applying the
first part of the theorem.
3. In order for ∆ to be self-dual it needs to be both super-dual and sub-dual. Thus by first two
parts of the theorem, if σ ∈ ∆, then V \ σ is not in ∆ as ∆ is sub-dual, a similar argument works
in case σ ̸∈ ∆.

We will also state the following facts regarding the structure of self-dual complexes without proof,
all of which were proven by Timotijević in ([16] section 7).

Proposition 3.2. Let ∆ be a self-dual simplicial complex on the vertex set V . Then for any vertex
v, link∆(v) is a sub dual complex on vertex set V \ {v}.
Proposition 3.3. Let ∆ be as before. Then for any vertex v ∈ ∆ we have:

∆ = link∆(v)
c ∪ C(link∆(v))

where C(X) is the cone over X.

The next result is the main result of the original paper by Timotijević and gives us a pleasant tool
for combinatorial classification of self-dual simplicial complexes.

Theorem 3.8. Let X and Y be two self-dual simplicial complexes on the vertex set V . Then X
and Y are isomorphic if and only if there exist vertices x ∈ X and y ∈ Y such that linkX(x) and
linkY (y) are isomorphic.
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4 Cross-polytopal Alexander duality

In this section, we will describe the main problem that we are trying to tackle. We will de-
scribe Alexander duality over subcomplexes of the cross-polytope, rather than a simplex. The
n-dimensional cross-polytope is a convex hull of 2n vertices chosen as endpoints of unit vectors
pointing along each co-ordinate axis. Since we will work on the boundary of the cross-polytope, we
will say “cross-polytope” to mean the boundary. We describe this boundary as follows:

Definition 4.1. The n-dimensional cross-polytope is the independence complex of the graph defined
on vertex set {x1, y1, x2, y2, . . . xn, yn} with edges (xi, yi) for each 1 ≤ i ≤ n.

We use this definition to shine the light on why this concept of duality is interesting. We can easily
construct a large number of complexes and their duals when working inside an octahedron. We do
this by taking supergraphs of the graph described in the definition above, the “matching graph”
and considering their independence complexes. Specifically, these graphs are interesting because
they have a perfect matching.
To start our work on the cross-polytope we will first note that a 1-dimensional cross-polytope is
the suspension of the empty set and in general, the n-dimensional cross-polytope is the suspension
of the (n− 1)-dimensional cross-polytope.
Now we will construct a crucial tool that we use in order to talk about our notion of duality, the
facet cover. The facet cover of a simplicial complex ∆, embedded into n-dimensional cross polytope
X is obtained by covering X with its facets and taking the intersection with |∆|.
With this, we are ready to define the first version of “cross dual”:

Definition 4.2. Let X be the n-dimensional cross-polytope and let ∆ be a subcomplex of X. We
define the cross-dual of ∆ to be the nerve of the facet covering of |∆| and denote it ∆cd.

Before we look at some examples, it is important to note that our definition has the same behavior
as combinatorial and classical Alexander duality. This will be a consequence of the Nerve lemma
we discussed earlier and the fact that homology/cohomology groups are homotopy type invariant.

Example 4.1. Consider the 2-dimensional cross-polytope (square) S embedded inside the 3-dimensional
cross-polytope (octahedron) X. We can see that |X| \ |S| is two pyramids without the bottom bound-
ary. Thus, the cross-dual of S is two tetrahedra. See Figure 3.
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Figure 3: The process of obtaining the cross-dual of S

It is not hard to see that Example 4.1 can be generalized to the n-dimensional cross-polytope (n ≥ 1)
embedded into the (n+1)-dimensional cross-polytope. In this situation, taking the cross-dual yields
two disjoint (n+ 1)-dimensional simplices.
An alternative and closely related definition, can be obtained by looking at the face lattice of the
cross-polytope:

Definition 4.3. Let X and ∆ be as in Definition 4.2. Then L(∆) is a subposet of L(X) and we
call the (L(∆)c)↕ the poset cross-dual of ∆ and denote it ∆pcd.

Example 4.2. Let S and X be as in Example 4.1. Then the poset cross-dual of S will be the face
lattice of a cubical complex consisting of two disjoint squares. See Figure 4.
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Figure 4: The process of obtaining the poset cross-dual of S

The following proposition tells characterizes situations when this phenomenon occurs:

Proposition 4.1. Let ∆ be a complex embeddable into the n-dimensional cross-polytope X. Then
cross-dual of ∆ is disconnected if and only if in ∆ there exists facets σ1, σ2, . . . , σk of X such that
∂(
⋃k

i=1 σi) ⊂ ∆ and
⋃k

i=1 σi \∆ ̸= ∅.

Proof. One direction is easy. For the other direction assume that ∆ is such that ∆cd is disconnected.
This means that the order complex of ∆pcd is disconnected as well. Thus, in the top level of ∆pcd

we will have at least two elements whose join is the zero element of the poset. Thus in the first
level of ∆ there exist two disjoint sets A and B such that for any x ∈ A and any y ∈ B there is no
meet. These correspond to the connected components of |X| \ |∆|. These components are union
of facets of X (or facets without part of the boundary to be precise). Thus in order to achieve
separation, ∆ must contain their original intersection, which is exactly the boundary of one of the
components.

Of course, we need to show that our definitions yield the “same” object. Consider X and ∆ as
before. Now each vertex in ∆cd will correspond to an element of the facet cover of ∆ which is
exactly a facet missing from ∆. On the other hand, vertex in ∆pcd will be a maximal element in
L(X) \ {1̂} i.e., a facet of X which is not in ∆. Thus we are working on the same vertex set. We
now look at the ways faces will be formed in both of these objects. In order to get a k-dimensional
face in ∆pcd we need to have k+1 chains of length k in (L(X) \L(∆)). These chains have to share
the same origin and finish with maximal elements of L(X) \ {1̂}. Similarly, a k-dimensional face
is formed in ∆cd whenever we have k elements in the face cover intersecting. So there is a way of
“crossing” between the two objects. We will now state and prove a theorem formalizing this:

Theorem 4.1. Let ∆ be a simplicial complex embedded into a n-dimensional cross-polytope X.
Then, the geometric realizations of the cross-dual and the poset cross-dual of ∆ are homotopy
equivalent.
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Proof. We first note that by the Nerve lemma |X| \ |∆| is homotopy equivalent to ∆cd. Next, by
Lemma 3.3 we know that |X| \ |∆| is homotopy equivalent to |∆∗|. Thus, as homotopy equivalence
is an equivalence relation we get the desired result.

One may ask: “Why do we need two definitions if they end up doing the same job?” An answer to
that question is that each of them comes with its own set of advantages and disadvantages. The
cross-dual inflates the dimension. Indeed, if a complex is embedded into the n-dimensional cross-
polytope, its cross-dual can have dimension as high as 2n−1. An advantage is that the cross-dual
is always simplicial on at most 2n vertices. On the other hand, the poset cross-dual keeps the
dimension as low as possible. Its disadvantage is that it yields a face poset of a cubical complex.
Cubical complexes aren’t always as easy to deal with as simplicial complexes. One way to fix this
is to look at its order complex. However, then the number of vertices can become very high, as the
order complex of a cubical face lattice is its barycentric subdivision.

4.1 Cross-polytopal Bier spheres and many more vertex decomposable
spheres

Now we will consider the poset construction of Bier spheres from [3]. The classical Bier sphere
construction uses the combinatorial Alexander dual and deleted join in order to make a sphere.
The construction of Bier posets gave an analogous description that uses the poset description of the
combinatorial Alexander dual and ideals of the boolean lattice. We will work on the face lattice of
the n-dimensional cross-polytope, denoted On. In this setting, looking at Bier(P,On) corresponds
to looking at the ideal of On combined with its poset cross-dual. As before, this construction will
yield a sphere. We will show that this sphere is always vertex-decomposable and thus shellable.
Indeed, our proof will also give us the k-decomposability of any Bier sphere constructed from a
k-decomposable simplicial sphere.
First, we will show that the n-dimensional cross-polytope is vertex-decomposable. For that we need
the following lemma, whose proof is completely straightforward:

Lemma 4.1. ∆ is vertex-decomposable if and only if cone(∆) is vertex-decomposable.

Proposition 4.2. The n-dimensional cross-polytope is vertex-decomposable

Proof. We proceed by induction on n: For n = 1, everything is clear. We now assume that the
statement is true for (n− 1). In general, any vertex is easily seen to be a shedding vertex. The link
of the vertex is an (n − 1)-dimensional cross-polytope. The deletion is the cone over an (n − 1)-
dimensional cross-polytope. Both are vertex-decomposable by the lemma/inductive step.

We can now proceed to the main theorem:

Theorem 4.2. Let ∆ be a k-decomposable simplicial sphere, and denote by X the face lattice of
∆. For a proper ideal I of X, the Bier sphere Bier(X, I) is k-decomposable.

Proof. To begin, we note that in their paper Björner et al. proved that the order complex of
Bier(P, I) is a stellar subdivision of the order complex of P [3, Theorem 2.2]. Also, by [11, Theo-
rem 2.7] k-decomposability is preserved under stellar subdivision. This completes the proof.

We get the following as a corollary easily:
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Corollary 4.1. For any simplicial complex ∆ embeddable in the n-dimensional cross-polytope,
Bier(On, L(∆)) is vertex-decomposable.

Corollary 4.2. For any ideal I of a Boolean lattice Bn, Bier(Bn, I) is vertex-decomposable and
hence shellable.

The proof of this corollary is immediate from Theorem 4.2 and offers an improvement on the
original proof of shellability from [3]. Even further, this gives us a method of constructing many
vertex-decomposable non-polytopal spheres. The number of these spheres is much greater than
the number of shellable spheres from the original paper. To see this, we only need to notice the
number of complexes embeddable into the cross-polytope is bigger than the number of complexes
embeddable into the simplex. This gives us the following corollary:

Corollary 4.3. Let An be the set of all n-dimensional vertex-decomposable simplicial complexes.
Let Sn be the same set with the additional requirement that complexes are polytopal. Then

lim
n→∞

|Sn|
|An|

= 0.

In the original paper, Björner et al. left an open question. They asked if there was a way to
adapt Bier’s construction to make many shellable (n − 2) spheres on more than 2n vertices. This
was first answered by Čukić and Delucchi in [18]. Our particular construction gives a nice way of
constructing many such vertex-decomposable spheres. Simply let P be an ideal of On such that
there exists more than 4 intervals [x, y] where x ∈ P , x ̸∈ P will yield such a sphere.
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[8] Jǐŕı Matoušek. Using the Borsuk-Ulam theorem. Universitext. Springer-Verlag, Berlin, 2003.
Lectures on topological methods in combinatorics and geometry, Written in cooperation with
Anders Björner and Günter M. Ziegler.

[9] P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17:179–184,
1970.

[10] Ezra Miller and Bernd Sturmfels. Combinatorial commutative algebra, volume 227 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2005.

[11] J. Scott Provan and Louis J. Billera. Decompositions of simplicial complexes related to diam-
eters of convex polyhedra. Math. Oper. Res., 5(4):576–594, 1980.
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