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1 Introduction

1.1 A brief history

Independence polynomials have been studied in various papers before. Heil-
mann and Lieb proved the real-rootedness of the independence polynomials
of line graphs in [7], while Schwenk showed in [10] that the edge independent
sequence of a graph is unimodal. Hamidoune later showed in [6] that the
independence polynomial of a claw free graph is unimodal. A particularly
notable result is in [4], where Chudnovsky and Seymour showed that all the
roots of the independence polynomials of claw free graphs are real. We will
de�ne the edge independent sequence, independence polymomial, and the
claw in Section 1.2. In this paper, we will study independence polynomials
in connection with trees and claw free graphs.

In Subsection 1.2, we will provide most of the de�nitions and tools needed
throughout the paper. In Section 2, we will do some calculations to introduce
the reader to independence polynomials of graphs. In Section 3 we will
examine the following question given by Alavi, Malde, Schwenk, and Erd®s
as Problem 3 in [1]:

Question 1. For trees (or perhaps forests) is the independence polynomial
unimodal?

We will discuss an unsuccessful approach to Question 1. In Section 4, we
will look at the lexicographic product of two graphs to determine when it
is claw free. In Section 5, we will work with independence polynomials that
have a root of -1.
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1.2 De�nitions and some tools

For basic graph theory notation, we use the same practices as Matou²ek and
Ne²et°il in [9].

The following are some additional de�nitions needed for this paper.

De�nition 2. The disjoint union of the graphs G1, G2 is the graph G =
G1∪G2 having as vertex set V (G1)∪V (G2), and as edge set E(G1)∪E(G2).
Similarly, the join of the graphs G1, G2 is the graph G = G1 + G2 having
as vertex set V (G1) ∪ V (G2), and as edge set E(G1) ∪ E(G2) ∪ {e1e2|e1 ∈
E(G1), e2 ∈ E(G2)}.

Example 3. K3,4
∼= K3 +K4

De�nition 4. The claw is the graph K1,3, and a graph is said to be claw
free if it has no induced subgraph isomorphic to a claw.

Example 5. Kn is claw free because it has all possible edges.

Example 6. P2 +K3 is not claw free because a vertex in P2 together with
the three vertices in K3 form a claw.

De�nition 7. The diameter of a graph is the greatest distance between two
vertices.

De�nition 8. A polynomial a0 + a1x + a2x
2 + ... + anx

n is unimodal if
a0 ≤ a1 ≤ ... ≤ ai−1 ≤ ai ≥ ai+1 ≥ ... ≥ an−1 ≥ an for some i ∈ {0, ...n}.

Example 9. The polynomial 1 + 5x + 17x2 + 12x3 is unimodal because
1 ≤ 5 ≤ 17 ≥ 12.

Example 10. The polynomial 1 + 7x + 8x2 + 6x3 + 13x4 is non-unimodal
because 8 ≥ 6 ≤ 13.

De�nition 11. An edge independent set in G is a set of edges E1 ⊂ E(G)
such that, for all edges e, f ∈ E1, e ∩ f = ∅.

De�nition 12. An independent set in G is a set of pairwise non-adjacent
vertices. An independent set of maximum size will be referred to as a maxi-
mum independent set of G, and the independence number of G, denoted by
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α(G), is the cardinality of a maximum independent set in G. Let sk be the
number of independent sets of cardinality k in a graph G. The polynomial

I(G;x) =

α(G)∑
k=0

skx
k = s0 + s1x+ s2x

2 + ...+ sα(G)x
α(G)

is called the independence polynomial of G.

Levit and Mandrescu give the following two equalities relating to inde-
pendence polynomials in [8]:

Lemma 13. Let G = (V,E) be a graph, w ∈ V . Then

I(G;x) = I(G− w;x) + xI(G−N [w];x)

Proof. I(G−w;x) counts the independent sets that do not contain w. xI(G−
N [w];x) counts the independence sets that do contain w.

Lemma 14. Let G = G1 ∪G2. Then

I(G;x) = I(G1;x)I(G2;x)

Sketch. This is not di�cult to see with some knowledge of generating func-
tions. See, for example, [2].

2 Independence polynomials of some families

of graphs

We start by computing the independence polynomials of some well-known
families of graphs to introduce the reader to calculating independence poly-
nomials.

De�nition 15. The Fibonacci polynomials are de�ned by the following re-
cursion:

F0(x) = 1, F1(x) = 1, Fn(x) = Fn−1(x) + xFn−2(x)

In [8], Levit and Mandrescu give the following two relationships for the
independence polynomials of path and cycle graphs:

Lemma 16. I(Pn;x) = Fn+1(x)
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Lemma 17. I(Cn;x) = Fn−1(x) + 2xFn−2(x)

These two facts got me interested in the independence polynomials of
other in�nite graph families.

Lemma 18. Let G be a graph on n vertices. The constant term and linear
terms of I(G;x) are 1 and nx, respectively.

Proof. There is one way to choose 0 independent vertices, so the constant
term counts the empty set. When choosing an independent set of size one,
any vertex is an independent set, so the linear term counts the number of
vertices.

Lemma 19. I(Kn;x) = 1 + nx.

Proof. Kn has no independent sets of size greater than 1, so ∀k ∈ N, sk =
0, k ≥ 2. By Lemma 18, we have 1 + nx.

Lemma 20. Thus, I(Kn) =
∑n

i=0

(
n
i

)
xi.

Proof. Kn has no edges, so any subset of V (Kn) is an independent set. Thus,
∀k ∈ N, sk =

(
n
k

)
.

Proposition 21. I(P n) = 1 + nx+ (n− 1)x2

Proof. The constant and linear terms can be determined by Lemma 18.
There are n − 1 edges in Pn, so there are n − 1 independent sets of size
2 in P n. Pn has no subgraphs isomorphic to a complete graph of size greater
than 2, so P n has no independent sets of size greater than 2.

Proposition 22. I(Cn) = 1 + nx+ nx2

Proof. The constant and linear terms can be determined by Lemma 18.There
are n edges in Cn, so there are n independent sets of size 2 in Cn. Cn has no
subgraphs isomorphic to a complete graph of size greater than 2, so Cn has
no independent sets of size greater than 2.
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3 A class of polynomials

In this section we work toward �nding an answer to Question 1. The approach
we took to this question was to try to create a class of polynomials that
contained all independence polynomials and also only contained unimodal
polynomials. Unfortunately, we were unsuccessful.

De�nition 23. Let T = (V,E) be a tree and v ∈ V be such that all neighbors
of v except possibly one are leaves. Then we call v a near-leaf.

The following proposition encapsulates a useful property of trees that we
will use to show our main property about the class of polynomials we de�ne
in this section.

Proposition 24. Let T = (V,E) be a tree with diamT ≥ 2. Then there
exist at least two near-leaves in T .

Proof. Let T be a tree. Choose v, w ∈ V such that dist(v, w) = diamT .
Then we claim that v and w are both leaves. Suppose not. Without loss of
generality, let deg v > 1. Then let P = v, ..., w be the unique path from v to
w. One of the neighbors of v is v1 ∈ P ; the others, say {n1, n2, ..., ni} /∈ P .
Then choose one of those, say nj, and we have dist(nj, w) = diamT +1. This
is a contradiction. Thus, v and w are leaves.

Then v has a unique neighbor y, and w has a unique neighbor z. Without
loss of generality, we look at y. If diamT = 2, then y = z and we have a
star graph. Then all neighbors of y are leaves, and y is a near-leaf. Consider
diamT ≥ 3. y has one neighbor y1 such that y1 ∈ P, deg y1 > 1. Then
suppose y has another non-leaf neighbor t /∈ P . Then t has at least one more
neighbor t1, and dist(v, t1) = diamT + 1. This is a contradiction. A similar
argument can be made for z and w. Thus, y and z are both near-leaves.

The following is the main purpose of this section:

De�nition 25. Let C be the class of polynomials de�ned by the following
recursion: 1 ∈ C, and f + gx ∈ C whenever f and g follow these rules:

1. f, g ∈ C,

2. deg f ≥ deg g ≥ deg f − 1, and

3. f ≥ g component-wise.
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We were led to de�ne C in such a way from thinking about Lemma 13.
Our goal was to model the behavior of trees when choosing w to be a leaf.
This provided the basis for the proof of Proposition 28.

The following lemmas are facts about C that are helpful in the proofs of
Proposition 28 and Proposition 29 below.

Lemma 26. Let f be a polynomial. If f ∈ C, then (1 + x)f ∈ C.

Proof. We know f ∈ C, deg f = deg f , and f = f component-wise. Thus,
f + xf = (1 + x)f ∈ C.

Lemma 27. For all n ∈ N, 1 + nx ∈ C.

Proof. We proceed by induction.
Base Case: 1 + x(1) = 1 + x ∈ C.
Inductive Step: 1 + nx+ x(1) = 1 + (n+ 1)x ∈ C.

The following proposition is the reason we proved Proposition 24 above.

Proposition 28. If T is a tree, then I(T ;x) ∈ C.

Proof. Let T be a tree. We proceed by induction.
Base Case: By Lemma 27, 1 + x ∈ C. 1 + x = I(K1;x), and K1 is a tree.
Inductive Step: Choose a vertex v to be a leaf that is a neighbor of a

near-leaf w of degree d. By Lemma 13, we have

I(T ;x) = I(T − v;x) + x · I(T −N [v];x).

We know f = I(T − v;x) is a tree because we have only deleted a leaf. We
know that g = I(T −N [v];x) = I(T −v−w;x) is the disjoint union of a tree
T1 and d−2 independent vertices. Thus, by Lemma 14, g = (1+x)d−2I(T1;x).
Now we check that f and g follow the rules of C.

1. By our inductive hypothesis and Lemma 26, f, g ∈ C.

2. Suppose deg I(T ;x) = n.

(a) Then suppose that all independent sets of size n contain v. Then
these sets must not contain w. Thus, deg f = deg g = n− 1.

(b) Then suppose at least one independent set of size n does not
contain v. Then it must contain w. Thus, deg f = n, and
deg g = n− 1. Therefore, deg f ≥ deg g ≥ deg f − 1.
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3. Every independent set in I(T − N [v];x) is also in I(T − v;x). Thus,
f ≥ g component-wise.

Therefore, I(T ;x) ∈ C.

After determining that C contains all the independence polynomials of
trees, we wanted to discover whether or not it contained any non-unimodal
polynomials. Unfortunately, it does. We selected the following independence
polynomial of a graph from [1]:

Proposition 29. C contains a non-unimodal polynomial that is the indepen-
dence polynomial of a graph: I(K17+4K2;x) = 1+25x+24x2+32x3+16x4

Proof. These steps follow the rules of C and yield the desired polynomial:

1. By 27, 1 + 2x ∈ C

(a) By Lemma 26, (1 + 2x)(1 + x) = 1 + 3x+ 2x2 ∈ C
(b) 1 + 3x+ 2x2 + x(1 + 2x) = 1 + 4x+ 4x2 ∈ C
(c) By Lemma 26, (1 + 4x+ 4x2)(1 + x) = 1 + 5x+ 8x2 + 4x3 ∈ C
(d) 1 + 5x+ 8x2 + 4x3 + x(1 + 4x+ 4x2) = 1 + 6x+ 12x2 + 8x3 ∈ C.

We'll call this g′.

2. By Lemma 27, 1 + 19x ∈ C

(a) 1 + 19x+ x(1 + 2x) = 1 + 20x+ 2x2 ∈ C
(b) 1 + 20x+ 2x2 + x(1 + 2x) = 1 + 21x+ 4x2 ∈ C
(c) 1 + 21x+ 4x2 + x(1 + 4x+ 4x2) = 1 + 22x+ 8x2 + 4x3 ∈ C
(d) 1+ 22x+8x2 +4x3 + x(1 + 4x+4x2) = 1+ 23x+12x2 +8x3 ∈ C
(e) 1+ 23x+12x2 +8x3 + x(1+ 6x+12x2 +8x3) = 1+ 24x+18x2 +

20x3 + 8x4 ∈ C. We'll call this f ′.

3. f ′ + xg′ = 1 + 25x+ 24x2 + 32x3 + 16x4 ∈ C

After learning that C does contain a non-unimodal polynomial, and in
fact, such a polynomial that is the independence polynomial of a graph, we
were led to ask the following question:

7



Question 30. Is there any graph whose independence polynomial is not con-
tained in C?

This question is more di�cult than the analogous question with trees,
because we can't form the proof around the existence of a near-leaf in an
arbitrary graph.

4 Lexicographic product

De�nition 31. Let G = ({A,B,C, ...}, E(G)), H = ({a, b, c, ...}, E(H)} be
graphs. De�ne the lexicographic product of G and H to be

G[H] = ({Aa,Ab,Ac, ..., Ba,Bb,Bc, ..., Ca, Cb, Cc, ...}, E(G[H])),

where for some W,Y ∈ V (G) and x, z ∈ V (H) an edge e = WxY z ∈
E(G[H]) if either of the following is true:

1. WY ∈ E(G)

2. W = Y and xz ∈ E(H)

Brown, Hickman, and Nowakowski showed in [3] the following equality re-
lating to the independence polynomial of the lexicographic product of graphs:

Lemma 32. I(G[H];x) = I(G; I(H;x)− 1)

With the work of Chudnovsky and Seymour in [4], it is natural to ask
when the lexicographic product of two graphs would be claw free. In this sec-
tion we show when it is claw free; we found it to be a restrictive relationship
between the two graphs.

De�nition 33. Let G and H be de�ned as in De�nition 31, and let i ∈ V (H)
and I ∈ V (G). We de�ne a copy of G in G[H] to be the induced subgraph
on the vertices Ai,Bi, Ci, ... and a copy of H in G[H] to be the induced
subgraph on the vertices Ia, Ib, Ic, ... We write Gc to denote a copy of G in
G[H] and Hc to denote a copy of H in G[H].

The following lemma is helpful in proving Proposition 35.

Lemma 34. Let G = G1 ∪G2 ∪ ...∪Ga be a graph with a connected compo-
nents, and let H be a graph. Then

G[H] ∼= G1[H] ∪G2[H] ∪ ... ∪Ga[H].
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Proof. If Gi ∩Gj = ∅, then Gi[H] ∩Gj[H] = ∅. Therefore, G[H] ∼= G1[H] ∪
G2[H] ∪ ... ∪Ga[H].

Proposition 35. Suppose G and H are graphs. Then G[H] is claw free if
and only if one of the following is true:

1. G is an empty graph, and H is claw free.

2. G is claw free, and H is a complete graph.

3. G ∼= Ka ∪ Kb ∪ ... is the disjoint union of complete graphs, and H is
co-triangle-free.

Proof. ( =⇒ )
We consider cases:

1. G is the empty graph, so G[H] is the disjoint union of |V (G)| copies of
H. Thus, G[H] is claw free.

2. G[H] is the disjoint union of |V (G)| copies of H with all edges added
between two copies corresponding to edges in G. Suppose G[H] has a
claw. H is a complete graph, so α(H) = 1. Therefore, each leaf vertex
of the claw is in a di�erent copy of H. Then G has a claw. This is a
contradiction. Thus, G[H] is claw free.

3. By 34, G[H] ∼= Ka[H]∪Kb[H]∪ ..., so if we show Ki[H] is claw free for
some i ∈ N, then G[H] is claw free. We consider cases:

(a) H = Kn, n ∈ N. Thus, each component of G[H] ∼= Ka[H] ∪
Kb[H] ∪ ... ∼= Kan ∪Kbn ∪ ... is claw free. Therefore, G[H] is claw
free.

(b) α(H) = 2. SupposeKi[H] has a claw. Ki is claw free, so the leaves
of the claw must all be in the same copy of H. Thus, α(H) ≥ 3.
This is a contradiction. Thus, Ki[H] is claw free, and so G[H] is
claw free.

(⇐= )
Suppose the negation of the hypothesis.
We consider cases:
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1. Suppose G or H contains a claw. Then either the copy of G or the
copy of H contains a claw. Thus, G[H] contains a claw.

2. Suppose G has at least one edge AB and is not the disjoint union of
complete graphs, and H has at least one non-edge xy. Then G also
contains another edge BC that is connected to AB. Then the edges
{BxAx,BxAy,BxCx} are inG[H], but the edges {AxAy,AyCx,CxAx}
are not in G[H]. Thus, G[H] has a claw.

3. Suppose G has at least one edge AB, and the complement of H con-
tains at least one triangle. Then H has an independent set of size
3 {x, y, z}. Then G[H] contains the edges {AxBx,AxBy,AxBz} but
does not contain the edges {BxBy,ByBz,BxBz}. Thus, G[H] has a
claw.

5 Independence polynomials with a root of -1

The independence polynomial at -1 has been studied in [3]. It is interesting
because taking the independence complex gives a connection with topology.
In particular, the graphs whose independence complexes collapse to a point
have independence polynomials with a root of -1. In other words, their
reduced Euler characteristic is -1.

Lemma 36. Let G,H be graphs. If I(G;x) = I(H;x), then |V (G)| =
|V (H)|, and |E(G)| = |E(H)|.

Proof. Suppose I(G;x) = I(H;x) = 1 + ax+ bx2 + . . . . Then |V (G)| = a =
|V (H)|, and |E(G)| =

(
a
2

)
− b = |E(H)|.

While considering how to answer Question 39, we were led to the following
question:

Question 37. Let G be a graph, and let f = I(G;x) have a factor of (1+x).
Does f

1+x
= I(H;x) for some graph H?

Counterexample. Let f = I(P7;x) = 1+ 7x+ 15x2 + 10x3 + x4. I(P7;−1) =
1−7+15−10+1 = 0, so (1+x) is a factor of f . f

1+x
= 1+6x+9x2+x3. This

is not the independence polynomial for any graph, by inspection of graphs
with six vertices and six edges.
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Lemma 38. Let G = (V,E) be a connected graph on n vertices and m edges
with (1 + x) a factor of I(G;x). Then n− 1 ≤ m.

Proof. Supposem < (n−1). Then G has at least two connected components.
This is a contradiction. Thus, m ≥ (n− 1).

The following question could be proved using Question 37 and Lemma
36, if Question 37 had a positive answer. Nevertheless, it is still an open
question.

Question 39. Let G be de�ned as in Lemma 38. Is m ≤
(
n−1
2

)
always true?

The bound in Question 39 held for ten thousand randomly created graphs
with a number of vertices in the range [10, 100]. It also holds for all graphs
on up to nine vertices.

Fact 40. The following table shows the number of connected graphs on n
vertices whose independence polynomials have a root of −1:

n Graphs

≤ 3 0
4 1
5 6
6 38
7 277
8 3056
9 59768

The Sage [5] code that produced these results is available at my advisor,
Russ Woodroofe's webpage: http://rwoodroofe.math.msstate.edu/advising.html
.
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